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Previous studies have shown that anisotropy generally exists in geological bodies
such as sedimentary rocks and fault zones, andmore andmore attention has been
paid to the arbitrary conductivity media in surveys with the magnetotelluric
sounding method. With the breakthrough development of computer hardware
technology, large-scale 3D magnetotelluric modeling in anisotropic media has
gradually become possible. At present, there are 3D magnetotelluric field
simulation algorithms based on finite differences or finite elements for arbitrary
anisotropic conductivity. In order to solve the common computational efficiency
problems of the existing algorithms, we proposed a rapid 3D magnetotelluric
forward approach for arbitrary anisotropic conductivity in the Fourier domain.
Through the 2D Fourier transform, the governing equation can be converted from
the space domain to the Fourier domain, thereby greatly reducing the calculation
amount of the numerical simulation and improving the calculation efficiency.
Then, the classical 1D anisotropy model is used to verify the correctness and the
computational efficiency. Finally, the 3D anisotropic models of land and ocean are
calculated, and the influence characteristics of the anisotropic medium on the
magnetotelluric response are analyzed. The proposed algorithmwill be used in the
inverse imaging technique for large-scale 3D anisotropic data in future studies.

KEYWORDS

Fourier domain, 3D modeling, anisotropic conductivity, magnetotelluric, parallel
algorithm

1 Introduction

Since its establishment in the 1950s, the magnetotelluric (MT) method has gradually
become an important geophysical prospecting method after 70 years of development. The
MT method uses the natural variable electromagnetic field as the field source and finally
obtains the underground electrical structure through qualitative analysis or inverse
interpretation of the transfer function of the induced electromagnetic field. It is well
known that the conductivity of subsurface media often exhibits anisotropy. Laboratory
observations and studies have shown that gneiss and other types of rocks have significant
electrical conductivity anisotropy (Parkhomenko, 1967; Keller, 1982; Andréa and Li, 2022; Li
et al., 2022; Yin et al., 2022). During the development of magnetotellurics, the research on
anisotropy included all aspects of data analysis, forward modeling, and inversion. The early
simulation of anisotropy mainly used analytical solutions to solve 1D models (Kovacikova
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and Pek, 2002; Pek and Santos, 2002; Okazaki et al., 2016), but due to
its narrow application range, it was gradually replaced by numerical
simulation methods.

With the improvement in the performance of computing
equipment and the improvement in computing methods,
researchers have successively carried out the simulation of 3D
anisotropic magnetotelluric field (Liu et al., 2018; Yu et al., 2018;
Rivera-Rios et al., 2019; Xiao et al., 2019; Guo et al., 2020; Ye
et al., 2021; Zhou et al., 2021; Luo et al., 2022; Li et al., 2023). At
present, the 3D electromagnetic numerical simulation methods
mainly include the integral equation method (IEM), the finite
difference method (FDM), the finite volume method (FVM), and
the finite element method (FEM). The integral equation method
only discretizes the anomalous body region, so the dimension of
the obtained linear equations is small. In the early stage of
electromagnetic calculation, due to the limitation of computer
memory and calculation speed, the integral equation method
was only widely used in the calculation of a simple 3D geoelectric
model. The finite difference method is a numerical simulation
method that was earlier applied to the calculation of
electromagnetic fields. Saraf et al. (1986) used the finite-
difference method to realize the numerical simulation of the
TM mode of the magnetotelluric structure with perpendicular
anisotropy. Pek and Verner (1997) implemented a 2D
magnetotelluric numerical algorithm for arbitrary anisotropic
media based on the finite difference method and analyzed the
magnetotelluric response characteristics in a specific anisotropic
model. Han et al. (2018) implemented a 3D arbitrary anisotropic
magnetotelluric forward algorithm based on the finite difference
method and analyzed the influence of inclined anisotropic
blocks on the magnetotelluric field. Yu et al. (2018) also
implemented a 3D arbitrary anisotropic magnetotelluric
forward algorithm based on finite differences and analyzed
the influence of a specific 3D model on the magnetotelluric
phase. The finite volume method is similar to the finite
difference method. The grid of the finite volume method can
be a regular grid or an irregular grid. Because of this property,
the finite volume method is widely used in the calculation of fluid
mechanics. However, the finite volume method is not as widely
used in electromagnetic calculations as other numerical
methods. The finite element method can simulate complex
terrain and has received more and more attention in recent
years. Reddy and Rankin (1975) implemented a 2D anisotropic
magnetotelluric forward algorithm with three principal axis
conductivities and a strike angle based on the finite element
method. Li (2002) implemented a 2D magnetotelluric forward
algorithm for arbitrary anisotropic media based on the finite
element method. Li and Pek (2008) added adaptive unstructured
mesh technology to the 2D anisotropic finite element numerical
solution algorithm, which improved the calculation accuracy
and efficiency. Cao et al. (2018) realized the magnetotelluric
forward algorithm of the 3D anisotropic model based on the
adaptive finite element. Xiao et al. (2019) derived the finite
element equations of 3D anisotropic media by using vector
potential functions and realized the forward algorithm. Zhou
et al. (2021) integrated divergence correction technology into
the numerical simulation of magnetotelluric 3D anisotropic

vector finite element, which improved the iterative solution
accuracy of linear equations.

However, since 3D calculation involves the solution of large
linear equations, the increase in unknowns of anisotropic media
increases the scale of linear equations, resulting in the problems of
large calculation and time consumption in a 3D anisotropic
numerical simulation. Most research on the 3D anisotropic
forward modeling algorithm is only to achieve corresponding
numerical simulation, and there is a lack of algorithm research
aimed at improving the efficiency of forward modeling. The spatial
wavenumber mixed domain simulation method based on vector
potential is a newly proposed simulation method, which has been
applied in gravity, magnetic, and control source electromagnetic
methods (Dai et al., 2018; Dai et al., 2019a; Dai et al., 2019b; Dai
et al., 2021; Dai et al., 2022); these works of research show that using
this method can effectively reduce the computing memory and
computation time. In this paper, a Fourier domain simulation
method is used for 3D anisotropic magnetotelluric simulation.
First, the Coulomb gauge is used to transform the anisotropic
electromagnetic field equations into vector and scalar governing
equations. The 3D partial differential equation in the space domain
is transformed into a 1D ordinary differential equation in the
Fourier domain by using the 2D Fourier transform. Then, the
Galerkin method is used to transform the Fourier domain
equations into finite element equations and the Chase method is
used to solve the equations. Finally, the 2D Fourier inverse
transform is performed on the solution in the Fourier domain to
obtain the electromagnetic fields in the space domain. This method
transforms the space domain equation into the Fourier domain,
reduces the solution dimension, and improves the calculation
efficiency. The proposed algorithm can be used for other
electromagnetic methods for anisotropic media in future studies.

2 Basic theory

2.1 Frequency domain Maxwell’s equations
in anisotropic media

In the frequency domain, assuming that the time constant is
e−iωt, the electromagnetic field in the conductivity anisotropic
medium satisfies the following Maxwell equations (Weiss and
Newman, 2000):

∇× E � iωμ0H (1)
∇× H � σ − iωε( )E (2)

In formulas 1–2, ω is the angular frequency, i is the imaginary
number unit, μ0 is the magnetic permeability in a vacuum, σ is any
anisotropic conductivity tensor, ε is the permittivity, E is the electric
field strength, and H is the magnetic field strength. B � μ0H is the
magnetic induction intensity, and it is described by the relationship
between magnetic permeability and magnetic field strength H. For
the natural low-frequency electromagnetic field (10-3~104 Hz)
studied in this paper, the displacement current term can be
ignored. Among them, any 3×3 anisotropic conductivity tensor
can be expressed as follows:
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σ �
σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (3)

In the actual formation medium, these two tensors can be rotated to
establish the relationship with the main coordinate axis. For the
conductivity tensor, here are three main coordinate axes
conductivity σx, σy, σz, and anisotropy strike angle (αs),
anisotropy dip angle (αd), and anisotropy deflection angle (αl)
represent.

σ �
σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � RT
s R

T
dR

T
l

σx 0 0
0 σy 0
0 0 σz

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦RlRdRs (4)

where,

Rs �
cos αs sin αs 0
−sin αs cos αs 0

0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (5)

Rd �
cos αd 0 sin αd
0 0 0

−sin αd 0 cos αd

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (6)

Rl �
0 0 0
0 cos αl sin αl
0 −sin αl cos αl

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (7)

In Eqs 5–7, αs, αd and αl, are three Euler rotation angles (Pek and
Santos, 2002). Any anisotropic conductivity can be obtained from
the principal axis conductivity in the x, y, and z directions, and
by Euler rotation, transformation is obtained, as shown in
Figure 1.

2.2 Vector-scalar-position governing
equations based on coulomb gauge

According to the relationship between magnetic vector potential
and electric scalar potential (Biro and Preis, 1989)

B � ∇× A (8)
E � iωA − ∇Φ (9)

Substituting Eqs 8–9 into Eqs 1–2, and introducing the
vector identity ∇× (∇× A) � ∇(∇ · A) − ∇2A and the Coulomb
gauge ∇ · A � 0 (Everett and Schultz, 1996), we can get the
coupled equations of vector potential and scalar potential
equations (LaBrecque et al., 1999; Haber et al., 2000;
Varilsuha and Candansayar, 2018)

∇2A + k2A − μ0σ∇Φ � 0
∇ · σ∇Φ( ) − iω∇ · σA( ) � 0

{ (10)

The equations are relatively complete in theory, and the physical
meaning is relatively clear, and at this time, the vector position and
the scalar position have unique solutions.

Vector potential and scalar potential based on the Coulomb
gauge are expressed as

A � Ap + As

Φ � Φp +Φs{ (11)

where Ap,As are the vector potential of the primary field and the
vector potential of the secondary field, and Φp,Φs are the scalar

FIGURE 1
Schematic diagram of Euler rotation (Pek and Santos, 2002).

FIGURE 2
Schematic diagram of the 1D model.
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potential of the primary field and the scalar potential of the
secondary field, respectively.

k2 � k2p + k2s
σ � σp + σs

{ (12)

where k2p is the product of the admittance tensor and
resistivity corresponding to the primary field, σp is the
conductivity tensor corresponding to the primary field, k2s is the
product of the admittance tensor and resistivity corresponding to
the secondary field and σs is the conductivity corresponding to the

secondary field rate tensor. According to the principle of
superposition, the coupling equations satisfied by the secondary
field vector potential and scalar potential are

∇2As + k2pA
s − μ0σp∇Φs � −μ0σsE

∇ · σp∇Φs( ) − iω∇ · σpA
s( ) � ∇ · σsE( )

⎧⎨⎩ (13)

Many scholars (Haber et al., 2000; Badea et al., 2001;
Jahandari and Farquharson, 2015) used numerical methods
to solve the above Eq. 10 or (13) and achieved good results.
However, the conventional numerical methods require a large

FIGURE 3
Comparison of apparent resistivity and phase calculation results. (A) Apparent resistivity, (B) phase, (C) relative error of apparent resistivity, and (D)
error of phase.

FIGURE 4
3D land anisotropy model: (A) section view along the x-axis and (B) plan view.
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amount of calculation and storage due to the large sparse matrix
linear equations (Varilsuha and Candansayar, 2018), especially
for any anisotropic medium. In order to decrease the
computation and storage load, how to solve the governing
equations of vector potential and scalar potential is
particularly important. This paper intends to use a rapid 3D

numerical simulation method in the Fourier domain (Dai et al.,
2022), and this method performs a 2D Fourier transform of
Equation 13 along the horizontal directions, a 3D partial
differential equation in the space domain is transformed into
multiple 1D coupled ordinary differential equations in the
Fourier domain, and the coupling between different wave

TABLE 1 The comparison of the memory and time obtained with the five algorithms.

Algorithm Mesh Num. Degrees of freedom Calculation area (km3) Memory (GB) Time cost s)

SFE 463680 1391040 57.2 × 56.8 × 40 51.3 561

SFE1E 338336 1015008 6 × 6 × 4 29.3 255

TFE 463680 1391040 57.2 × 56.8 × 40 51.2 549

TFETE 338336 1015008 6 × 6 × 4 33.3 263

MSWD 9895936 39583744 57.2 × 56.8 × 40 14 45

MSWD 338336 1353344 6 × 6 × 4 4.1 11

It can be seen from Table 1 that the algorithm in this paper (MSWD), which is marked by bold values, cost less computing memory and time.

FIGURE 5
Apparent resistivity plan at different strike angles at 0.1Hz.
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numbers’ ordinary differential equations are independent of
each other and have a high degree of parallelism.

2.3 Vector and scalar potential ordinary
differential equation in fourier domain

We wrote formula (13) in component form and expanded

∂2As
x

∂x2 + ∂2As
x

∂y2 + ∂2As
x

∂z2
+ k2pA

s
x − μ0ŷp

∂Φs

∂x
� −μ0jsx

∂2As
y

∂x2 + ∂2As
y

∂y2 + ∂2As
y

∂z2
+ k2pA

s
y − μ0ŷp

∂Φs

∂y
� −μ0jsy

∂2As
z

∂x2 + ∂2As
z

∂y2 + ∂2As
z

∂z2
+ k2pA

s
z − μ0ŷp

∂Φs

∂z
� −μ0jsz

ŷp
∂2Φs

∂x2 + ∂2Φs

∂y2 + ∂2Φs

∂z2
( ) + ∂Φs

∂z
∂ŷp
∂z

− iωAs
z

∂ŷp
∂z

� ∂jsx
∂x

+ ∂jsy
∂y

+ ∂jsz
∂z

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where As
x, A

s
y and As

z are the three components of the secondary
field vector potential, jsx � ŷsE

0
x, jsy � ŷsE

0
y, jsz � ŷsE

0
z are the

current density tensors, and E0
x, E

0
y and E0

z are the background
fields.

For formula (14), a 2D Fourier transform is used along the x and
y direction

∂2 ~A
s

x

∂z2
+ k2p − k2x − k2y( ) ~As

x + ikxμ0ŷp ~Φ
s � −μ0~j

s

x

∂2 ~A
s

y

∂z2
+ k2p − k2x − k2y( ) ~As

y + ikyμ0ŷp ~Φ
s � −μ0~jsy

∂2 ~A
s

z

∂z2
+ k2p − k2x − k2y( ) ~As

z − ŷpμ0
∂~Φs

∂z
� −μ0~j

s

z

ŷp
∂2 ~Φs

∂z2
+ ∂ŷp

∂z
∂~Φs

∂z
− ŷp k2x + k2y( )~Φs( )+

iω ikxŷp ~A
s

x + ikyŷpA
s
y − ŷp

∂ ~A
s

z

∂z
( ) − iω ~A

s

z

∂ŷp
∂z

� −ikx~jsx − iky~j
s

y +
∂~jsz
∂z

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

FIGURE 6
Apparent resistivity plan at different angles αD at 0.1Hz.
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where kx and ky are the wavenumbers in the space wavenumber
domain, ~A

s
x, ~A

s
y and ~A

s
z are the three components of the secondary field

vector potential in the Fourier domain, and ~Φs
are the secondary field

scalar potential in the Fourier domain, ~j
s
x, ~j

s
y and ~j

s
z are the current

densities in the Fourier domain, respectively.
Using a 2D Fourier transform to transform the 3D partial

differential coupling Eq. 14 into 1D ordinary differential coupling
Eq. 15, thus decomposing a super-large-scale problem into multiple
small problems and greatly reducing the anisotropy Medium
simulation requires computing time and storage, and the ordinary
differential equations between different wave numbers are
independent of each other, which has a high degree of parallelism.

2.4 Boundary conditions

In a homogeneous medium, according to the Helmholtz equation
and the Coulomb gauge ∇ · A � 0 satisfied by the electric field vector E,
combined with the relationship between the vector potential A, the
scalar potential Φ and the electromagnetic field, and the lower and
upper boundary conditions of the vector potential ~A , scalar potential ~Φ
in the Fourier domain can be obtained

∂ ~A
s

x

∂z
� −s ~As

x +
t − s( )
ω

kx ~Φ
s

∂ ~A
s

y

∂z
� −s ~As

y +
t − s( )
ω

ky ~Φ
s

∂ ~A
s

z

∂z
� ikx ~A

s

x + iky ~A
s

y

∂~Φs

∂z
� −t~Φs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

∂ ~A
s

x

∂z
� s ~A

s

x − ikx ~A
s

z +
skx ~Φ

s

ω

∂ ~A
s

y

∂z
� s ~A

s

y − iky ~A
s

z +
sky ~Φ

s

ω

∂ ~A
s

z

∂z
� ikx ~A

s

x + iky ~A
s

y

∂~Φs

∂z
� iω ~A

s

z

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

2.5 Finite element method

Eq. 15 is the coupled ordinary differential equation satisfied by the
vector and scalar potentials in the Fourier domain, and Eqs 16, 17 are
the lower and upper boundary conditions, respectively. For Eqs 15–17
boundary value problems, this paper intends to use the one-
dimensional finite element method based on quadratic interpolation

FIGURE 7
Schematic diagram of 3D anisotropic ocean model.

FIGURE 8
Effect of ρx on apparent resistivity: (A) xy component and (B) yx component.
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to solve them. Using the Galerkin method to transform the boundary
value problem of Eqs 15–17 into finite element equations

∑Ne

e�1
∫
e

−∂ ~A
s

x

∂z
∂Ni

∂z
+ k2p − k2x − k2y( )Ni

~A
s

x + ikxμ0σpNi
~Φs +Niμ0~j

s

x( )dz
+∑Ne

e�1
∫
s
Ni

∂ ~A
s

x

∂z
nzdz � 0

∑Ne

e�1
∫
e

−∂
~A
s

y

∂z
∂Ni

∂z
+ k2p − k2x − k2y( )Ni

~A
s

y + ikyμ0σpNi
~Φs +Niμ0~j

s

y
⎛⎝ ⎞⎠dz

+∑Ne

e�1
∫
s
Ni

∂ ~A
s

y

∂z
nzdz � 0

∑Ne

e�1
∫
e

−∂ ~A
s

z

∂z
∂Ni

∂z
+ k2p − k2x − k2y( )Ni

~A
s

z − μ0σpNi
∂~Φs

∂z
+Niμ0~j

s

z( )dz
+∑Ne

e�1
∫
s
Ni

∂ ~A
s

z

∂z
nzdz � 0

∑Ne

e�1
∫
e

−σp
∂~Φs

∂z
∂Ni

∂z
+Ni

∂ŷp
∂z

∂~Φs

∂z
− σp k2x + k2y( )Ni

~Φs( )dz+
∑Ne

e�1
∫
e

−iωNi

∂ŷp
∂z

~A
s

z + ikxNi
~j
s

x + ikyNi
~j
s

y −Ni
∂~j

s

z

∂z
( )dz+

∑Ne

e�1
∫
s
σpNi

∂~Φs

∂z
nzdz � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(18)

whereNe is the number of vertical unit subdivisions,Ni(i � j, p,m)
is the quadratic interpolation function of the eth unit and the ith
node (Xu, 1994). For Eq. 18, there are mainly seven types of integrals
(Dai et al., 2022); the overall synthesis of each unit integral can be
obtained as a diagonal equation system with a bandwidth of 23

Ku � P (19)
where K is a 23-diagonal matrix, P is the source term, and u is the
Fourier domain vector and scalar potential to be obtained. Linear Eq.
19 can be quickly solved using the chasing method. The numerical
simulation method adopted in this paper transforms the 3D
problem into multiple independent 1D problems, which
fundamentally change the characteristics and solution methods of

the governing equation. Compared with the iterative solution
method and the direct solution method, the pursuit method has
the advantage of solving ordinary differential equations; its high
parallelism greatly reduces the simulation time and memory
consumption.

The other components of the electromagnetic field in the Fourier
domain can be obtained through the relationship between the
magnetic vector potential and the electric scalar potential and the
electromagnetic field (8)~(9). The electromagnetic field in the space
domain can be obtained by the 2D inverse Fourier transform of the
electromagnetic field in the Fourier domain (Dai et al., 2022).

2.6 Compact operator iteration scheme

For the above formula (18), the solution obtained by the finite
element method is the Born approximate solution, and it is difficult
to achieve stable convergence or even divergence by direct iteration.
For the convergence problem, here, the scalar iteration format for
stable convergence in isotropic media is extended as tensor form
(Gao, 2005; Dai et al., 2022).

E n( ) � αE n( ) + βE n−1( ) (20)
where α, β is the tensor related to the background field conductivity
σb , the difference Δσ between the abnormal bulk conductivity and
the background field conductivity is calculated as follows:

α � 2σb

2σb + Δσ
(21)

β � Δσ

2σb + Δσ
(22)

2.7 Apparent resistivity and phase

Assuming that the ground electromagnetic fields excited by two
linearly independent field sources are Ex1, Ey1, Hx1, Hy1 and Ex2,

FIGURE 9
Effect of ρy on apparent resistivity: (A) xy component and (B) yx component.
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Ey2, Hx2, Hy2, respectively, the impedance tensors of XX, XY, YX,
and YY polarization modes can be obtained.

Zxx � Ex1Hy2 − Ex2Hy1

Hx1Hy2 −Hx2Hy1
(23)

ZxY � Ex2Hx1 − Ex1Hx2

Hx1Hy2 −Hx2Hy1
(24)

Zyx � Ey1Hy2 − Ey2Hy1

Hx1Hy2 −Hx2Hy1
(25)

Zyy � Ey2Hx1 − Ey1Hx2

Hx1Hy2 −Hx2Hy1
(26)

Then, according to the apparent resistivity and phase formulas, we can get

ρij �
Zij

∣∣∣∣ ∣∣∣∣2
ωμ

,φij � arg Zij( ) i, j � x, y( ) (27)

3 Numerical experiments

3.1 Calculation accuracy and time-
consuming comparison

In order to verify the accuracy of the algorithm proposed in this
paper, the one-dimensional anisotropic mediummodel in the article by
Rasmussen (1988) was used to compare the calculation results. This
one-dimensional model was used as a test model by Pek and Santos
(2002) and Han et al. (2018). The model is divided into four layers: the
second and third layers are anisotropic media and the first and bottom
layers are isotropic media (Figure 2). The first layer of the model has a
resistivity of 10000Ω·m and a thickness of 10km; the depths of the
second and third layers are 18 km and 100 km, respectively, and the
principal axis resistivity is 200/20000/200Ω·m and 1000/2000/
1000Ω·m, respectively; the Euler rotation angle αs is 15° and −75°,
respectively, and the angles αd and αl are both zero. The bottom layer is
an isotropic medium with a resistivity of 100Ω·m.

The number of grid nodes calculated by our algorithm is
101×101×81, and the number of air layers is set to 10. The

frequency used in the forward modeling is 31 frequency points
taken at logarithmic intervals from 0.0001 Hz to 100 Hz. The
calculated numerical solution is compared with the one-
dimensional analytical solution given by Pek and Santos (2002)
(Figure 3). The relative error and phase error of apparent resistivity
are calculated, as shown in Figure 4. It can be seen that the relative
error of apparent resistivity is less than 1%, and the error of phase is
less than 0.2°. Therefore, the calculation accuracy of this algorithm
satisfies the requirements of magnetotelluric simulation.

The 3D numerical simulation algorithm in this paper has the
feature of high parallelism, and its calculation time andmemory cost
will not increase exponentially with the number of mesh nodes but
will increase approximately linearly. This feature is suitable for the
numerical simulation of large-scale complex 3D models.

The algorithms in this paper are written in Fortran 95 language,
and the calculation platform is Intel(R) Xeon(R) CPU3.1G, 64GB
RAM, 16CPUs, which is basically the same configuration as in
Zhang et al. (2017). According to the 3D model by Zhang et al.
(2017), we design a model with a mesh number of 119×65×38 (the
grid nodes number is 120×66×39) to test the calculation efficiency
and memory usage of the algorithm in this paper.

Zhang et al. (2017) used four algorithms: 1) algorithmbased on total
field finite element (TFE); 2) algorithm based on secondary field finite
element (SFE); 3) algorithmbased on total field finite element and infinite
element (TFEIE); 4) algorithm based on the secondary field finite-
element and infinite element (SFEIE). The SFE and TFE algorithms
adopt the truncated boundary condition, and the electric field on the
boundary is assumed to be zero, so a larger calculation area
(57.2×56.8×40 km3) is needed, while a smaller calculation area
(6×6×4 km3) can be set for the SFEIE and TFEIE algorithms. For
comparison, we also designed a model with a larger calculation area
(57.2×56.8×40 km3), and the grid nodes number is 256×256×151. Table 1
lists the calculation memory and calculation time of the algorithm in this
paper (MSWD) and the four algorithms of Zhang et al. (2017).

The algorithm (MSWD) proposed in this paper has a high
degree of parallelism, and its forward modeling speed is 1–2 orders
of magnitude faster than the traditional finite element method, and
it consumes less memory.

FIGURE 10
Effect of ρz on apparent resistivity: (A) xy component and (B) yx component.
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The calculation advantage of the algorithm (MSWD) in this
paper is more obvious in the model with numerous meshes.

3.2 The 3D anisotropic land model

Referring to the model by Xiao et al. (2019), an anisotropic 3D
anomalous body model with a size of 1 km × 1 km × 1 km was
selected as shown in Figure 4, in which the top surface of the
anomalous body is 0.5 km away from the surface. For comparison,
the surrounding rock around the abnormal body is set as an
isotropic medium with a resistivity of 100Ωm.

First of all, we studied the horizontal anisotropy, and the main axis
resistivity of the 3D anisotropic anomalous body is taken as 1000, 10, and
100, the Euler rotation angle αd and αl are 0°, and the angle αs is taken as
0°, 30°, 60°, and 90°. In this paper, the cuboid unit is used to divide the
grid of the research area, and a total of 96×96×80 (97×97×81 grid nodes)
grid units are discretized, and the number of air layers is five. The

forward modeling result of the finite element method at a frequency of
0.1 Hz is shown in Figure 5.

Figure 5 contains 16 sub-figures; from left to right are the results
of taking the αs values of 0°, 30°, 60°, and 90°, and from top to bottom
are the apparent resistivity of XX mode, XY mode, YX mode, and YY
mode. These figures show that when αs=0°, the apparent resistivity of
the XY mode at the abnormal body position mainly depends on the
spindle resistivity ρx, and the apparent resistivity of the YX mode at
the abnormal body position depends on the spindle resistivity ρy.
With the change of αs, the apparent resistivity changes of XY mode
and YX mode also rotate accordingly. When αs=90°, the apparent
resistivity of the XY mode at the abnormal body position is mainly
related to the spindle resistivity ρy, and the apparent resistivity of the
YX mode at the abnormal body position is related to the spindle
resistivity ρx. It shows that when the main axis resistivity is constant
and the αs changes, the apparent resistivity of both the XY mode and
YX mode changes, and the directionality of apparent resistivity
imaging is related to the αs.

FIGURE 11
Effect of αd on apparent resistivity: (A) xy component and (B) yx component.

FIGURE 12
Effect of αs on apparent resistivity: (A) xy component and (B) yx component.
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We then studied the tilt anisotropy, and the 3D anomalous body
model is the same as above; the main axis resistivity is still 1000, 10, and
100; however, this time, the Euler rotation angle sum is 0°, and the Euler
rotation angle is 0°, 30°, 60°, and 90°. The calculation frequency is also
0.1Hz, and the forward simulation results are shown in Figure 6.

Figure 6 includes 16 subgraphs, which are arranged in the same way
asmentioned above. From the apparent resistivity imaging in the figure, it
can be seen that no matter how the Euler rotation angle αd changes, the
apparent resistivity ρxy does not change. This is because the Euler rotation
angle αd changes around the x-axis, so the resistivity ρx of the anomaly
position does not change, indicating that the apparent resistivity ρxy is only
related to the principal axis resistivity ρx. However, the apparent resistivity
ρyx changes with the change in the Euler rotation angle. When the Euler
rotation angle αd = 90°, the resistivity in the y direction of the abnormal
body position is 10. At this time, a large low-resistance anomaly appears at
the abnormal body position.When the Euler rotation angle is applied, the
resistivity of the abnormal body position in the y direction is equal to the
principle axis resistivity ρz which is 100. At this time, the apparent
resistivity of the abnormal body position is almost consistent with the
surrounding rock area within the allowable range of error, which is also
the main axis anisotropic; the off-diagonal elements of the anisotropic
conductivity tensor matrix are zero. When the Euler rotation angle αd
changes from 0° to 90°, the apparent resistivity near the position of the
abnormal body increases, since the principal axis resistivity is ρz is larger
than ρy, this means the component in the y direction is related to the
principal axis resistivity ρy and ρz. In addition, the apparent resistivity
imaging of the XXmode andYYmode shows that the apparent resistivity
change of XXmode is related to YXmodewhen the tilt anisotropy occurs,
and the imaging of YY mode is similar to that of XY mode.

3.3 3D anisotropy ocean model

In order to verify the influence of resistivity anisotropy on the
magnetotelluric response in the seabed model, this paper improves
the marine oil and gas reservoir model designed by Li andDai (2011)
with resistivity anisotropy of surrounding rock, as shown in Figure 7.
The air resistivity is 108Ωm; the resistivity of seawater is 0.3Ωm, and
the thickness of seawater is 1000 m; the seabed is the anisotropic
medium, and an isotropic high-resistivity oil and gas reservoir exists
at 1000 m below the seabed, with a resistivity of 50Ωm; the length
and width are 6000 m, and the thickness is 100 m. The research
frequency is 0.25Hz, and the electromagnetic-receiving devices are
placed on the seabed −14 km–14 km.

3.3.1 Influence of ρx
In the resistivity anisotropic mediummodel shown in Figure 7, it

is assumed that ρy � ρz � 1.0 Ωm in the anisotropic medium layer is
constant, and its influence on the electromagnetic response is
studied by changing the resistivity of the main coordinate axis ρx
as 1 Ωm, 2 Ωm, 4 Ωm, and 10 Ωm. The calculation results are
shown in Figure 8. From the calculation results, it can be seen that
the influence of ρx on the xy component of the apparent resistivity is
more obvious than that of the yx component.

3.3.2 Influence of ρy
In the anisotropic resistivity mediummodel shown in Figure 7, it

is assumed that the resistivity of the principal axis of the anisotropic

medium layer ρx � ρz � 1.0 Ωm remains unchanged, and the effect
of the resistivity of the principal coordinate axis on the
electromagnetic response is studied by changing the resistivity of
the principal coordinate axis ρy as 1 Ωm, 2 Ωm, 4 Ωm, and 10 Ωm.
The calculation results are shown in Figure 9. From the calculation
results, it can be seen that the influence of ρy on the yx component of
the apparent resistivity is more obvious than the xy component.

3.3.3 Influence of ρz
In the anisotropic resistivity mediummodel shown in Figure 7, it is

assumed that the resistivity of the principal axis of the anisotropic
medium layer ρx � ρy � 1.0 Ωm remains unchanged, and the effect of
the resistivity of the principal coordinate axis on the electromagnetic
response is studied by changing the resistivity of the principal
coordinate axis ρz as 1 Ωm, 2 Ωm, 4 Ωm, and 10 Ωm. The
calculation results are shown in Figure 10. From the calculation
results, it can be seen that ρz has an influence on both the xy
component and the yx component of the apparent resistivity.
Relatively speaking, the influence range of the xy component is
larger than that of the yx component.

3.3.4 Influence of αd
In the resistivity anisotropic mediummodel shown in Figure 7, it is

assumed that the resistivity of the principal axis of the anisotropic
dielectric layer is ρx � ρy � 1.0 Ωm and ρz � 4Ωm ; the effect on the
electromagnetic response is studied by changing the anisotropic dip
angle αd as 0°, 30°, 45°, 60°, and 90°. According to the different angles of
anisotropy, it can be divided into three types.When αd � 0。, it is called
transverse isotropy vertical (TIH); when αd =30°, 45°, and 60°, it is called
transverse isotropy dip (TID); when αd � 90。, it is called transverse
isotropy horizontal (TIV). The calculation results are shown in
Figure 11. From the calculation results, we can see that αd has an
influence on both the xy component and the yx component of the
apparent resistivity. Relatively, the influence range of the xy component
is larger than that of the yx component.

3.3.5 Influence of αs
In the resistivity anisotropic mediummodel shown in Figure 7, it is

assumed that the resistivity of the principal axis of the anisotropic layer
is ρx � 4Ωm and ρy � ρz � 1.0 Ωm; the effect on the electromagnetic
response is studied by changing the anisotropic strike angle αs as 0°, 30°,
45°, 60°, and 90°. The calculation results are shown in Figure 12. From
the calculation results, it can be seen that αs has a greater influence on
the yx component of the apparent resistivity than the xy component.

4 Conclusion

In this paper, from the perspective of improving the calculation
efficiency of 3D anisotropic magnetotelluric numerical simulation, a
Fourier domain anisotropic 3Dmagnetotelluric simulation algorithm is
proposed. This algorithm transforms the space domain equation into
the Fourier domain, reduces the solution dimension, and improves the
calculation efficiency. A one-dimensional model is used to test the
correctness of the algorithm, and a land model and a group of ocean
models are calculated using this algorithm, The influence characteristics
of resistivity anisotropy on the magnetotelluric response function in
different models are discussed respectively.
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