
Clustering features and
seismogenesis of the
2014 M6.6 Jinggu earthquake in
Yunnan Province, China

Jianchang Zheng*

Shandong Earthquake Agency, Jinan, China

Seismic activities can be seen as the composition of background and clustering
earthquakes. It is important to identify seismicity clusters from background events.
Based on the Nearest Neighbour Distance algorithm proposed by Zaliapin, we use
the Gaussian mixture model (GMM) to fit its spatiotemporal distribution and use
the probability corresponding to clustering seismicity in the GMM model as the
clustering ratio. After testing with synthetic catalogues under the ETAS (epidemic-
type aftershock sequence) model, We believe themethod can discriminate cluster
events from randomly occurring background seismicity in a more physical
background. We investigate the seismicity and its clustering features before the
M6.6 Jinggu earthquake in Yunnan Province, China on 7October 2014. Our results
show the following: 1) The seismogenic process of this strong earthquake has
three stages, which are already described by the IPEmodel (themodel is similiar to
dilatancy diffusion model, growth of cracks is also involved but diffusion of water
in and out of the focal region is not required); 2) The main shock might have been
caused by the breaking of a local locked barrier in the hypocentre, and the meta-
instability stage was sustained for about 1 year on the fault. From this study, we
conclude that the evolution of seismicity clustering features can reflect changes in
stress in the crust, and it is closely connected to the seismogenic process of a
strong earthquake.
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1 Introduction

Seismic data can be regarded as a combination of background and clustering earthquakes
(Zhuang et al., 2005). These two parts have different tectonic genesis and physical
mechanisms (Zhuang et al., 2005; Jagla and Kolton, 2010; Hardebeck, 2021):
Background earthquakes are assumed to be mostly caused by secular, tectonic loading
or, in the case of seismic swarms, by stress transients that are not caused by previous
earthquakes; Clustering earthquakes triggered by static or dynamic stress changes,
seismically-activated fluid flows, after-slip, etc., hence by mechanical processes that are
at least partly controlled by previous earthquakes (van Stiphout et al., 2012). The
identification and statistical characterisation of seismic clusters may provide useful
insights about the features of seismic energy release and their relation to physical
properties of faults (Peresan and Gentili, 2018). The identification of clustering
earthquakes is important for many applications in seismology, including seismic hazard
assessment, earthquake prediction research, and seismicity rate change estimation
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(Bayliss et al., 2019). Since clustering earthquakes are mainly
affected by earthquakes that have already occurred, the so-called
“parent event”, and their physical properties and mechanisms are
different from background seismicity, therefore, it is often necessary
to separate the two groups of events (Zhang and Shearer, 2016).

Studies have shown that seismicity clusters can occur before
moderate and strong earthquakes (Yamashita and Knopoff, 1992;
Evison and Rhoades, 1999; Ma et al., 2013). Dieterich (1994)
believed that small earthquake clustering is driven by changes in
stress near the seismic zone and may be related to the nucleation
process of large earthquakes. This has been confirmed by rock tests
(Yang et al., 1998). Background seismicity also changes regularly
during stress changes caused by a strong earthquake (Ellsworth et al.,
1981); therefore, by using relative ratio changes between cluster and
background events, we can estimate the risk of a future strong
earthquake (Cao et al., 1996).

Many methods exist to quantify the spatiotemporal clustering
of earthquakes, as well as to distinguish background and
clustering events in seismic activity (e.g., Gardner and
Knopoff, 1974; Reasenberg, 1985; Reasenberg and Jones, 1989;
Molchan and Dmitrieva, 1992). Pioneering methods include the
earthquake concentration C-value as defined by Wang (1984),
which is a function based on frequency per unit area; and the
seismic spatial clustering (Js) and temporal clustering degree (Jt)
based on the Morishita index of Zhang and Jiang (1996). Later
studies include the commonly used windowing methods
(Gardner and Knopoff, 1974; Reasenberg, 1985) and a
stochastic declustering method based on the ETAS model
(Zhuang et al., 2002).

Pei et al. (2004) assumed that background and clustering
earthquakes satisfy the 2D Poisson process with different
parameters. By introducing the concept of N-order distance, a
superimposed 2D Poisson process is transformed into a 1D
mixed-density function. Based on the selected distance order, a
genetic algorithm can be used to decompose the mixed density and
then analyse the seismic clustering mode (Zaliapin et al., 2008;
Zaliapin et al., 2011). considered factors such as the spatiotemporal
distribution and energy of earthquakes and defined the nearest
neighbour distance (NND) between different events, from which
a method for analysing clustering earthquakes and identifying
aftershocks was derived. Promising results have been obtained
from applications of this method in recent years (Zaliapin and
Ben-Zion, 2013a; Zaliapin and Ben-Zion, 2013b; Zaliapin and Ben-
Zion, 2016a; Zaliapin and Ben-Zion, 2016b).

Building on previous work (Zheng et al., 2014; Wang et al.,
2017), we develop Zaliapin’s method using a Gaussian mixture
model (GMM). Using the M6.6 Jinggu earthquake in Yunnan
Province on 7 October 2014 (hereinafter “Jinggu earthquake”) as
an example, we analyse the spatiotemporal clustering characteristics
of regional small earthquakes before a strong earthquake.

2 Theory and method

2.1 NND algorithm

For a given earthquake catalogue ti, θi,φi, hi, mi{ }, i � 1 . . .N, t
is the earthquake occurrence time, θ,φ is the longitude and latitude

of the epicentre, respectively, h is the hypocentral depth, andm is the
magnitude. Not considering the depth, the time-space-magnitude
distance between any two seismic events is defined as (Zaliapin et al.,
2008):

nij � cτijrdij10
−b mi−m0( )

∞{ τ ij ≥ 0
τ ij < 0 (1)

where τij � tj − ti, rij is the surface distance, m0 is the reference
magnitude, c is the constant coefficient, d is the fractal dimension of
earthquake epicentres, and b is the b-value of the Gutenberg-Richter
relation.

In a given time-space magnitude, the nearest neighbour is
defined as follows:

η*j � min i nij (2)

Zaliapin et al. (2008) proved through theoretical analysis
that if the assumption is that the earthquake process is a
stable stochastic Poisson process with a certain probability
density, and the magnitude marks mi are independent of
the time-space random variables (tj, θj,φj) and have
exponential distribution, then the NND satisfies the Weibull
distribution and is independent of the lower magnitude
threshold m0.

It is possible to further define the temporal and spatial
components of the magnitude-normalised NND:

Tij � τ ij10
−bmi/2, Rij � rdij10

−bmi/2 (3)

η � TR (without loss of generality, it is assumed
here c � 1, m0 � 0).

In the previous statistical methods for analysing seismic activity,
time, space and energy domains were often separated and not
considered together. The NND defined by Zaliapin et al. (2008)
comprehensively considers the distribution of earthquakes in the
space, time and energy domains and provides normalised
parameters, which effectively simplifies the complex problem of
the N-dimension.

2.2 The ETAS model

The ETAS model is a self-exciting point process (Ogata, 1999)
that describes the spatiotemporal clustering of seismicity, which
accounts for secondary aftershock excitation with statistically
self-similar features and has notable significance in terms of
statistical physics. Therefore, it is widely used to study the
spatiotemporal features of regional seismicity as well as
features of aftershock activity (such as Jiang et al., 2007; Jiang
and Zhuang, 2010).

Assuming that each earthquake triggers its aftershocks and
aftershock activity follows the Omori-Utsu formula in the time
domain, in the ETAS model, the frequency of aftershocks per unit
time t is as follows:

nj t( ) � K exp α mj −m0( )[ ]/ t − tj + c( )p (4)

where m0 is the lower magnitude threshold, Mi and ti are the
magnitude and origin time of the i-th earthquake. K, α, c, and p
are constants, which hold true for all aftershock sequences in
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a given area. The earthquake occurrence rate at time t is as
follows:

λ t( ) � μ∑
i
ni t( ) (5)

There are two parts on the right side of Eq. 5. The first is the
background earthquake occurrence rate, which represents seismicity
caused by external triggers, such as structural loading or increased
pore pressure. The second is the aftershock sequence, which follows
the modified Omori formula.

Consider point-processmodels for the data of occurrence times and
locations of earthquakes, Ogata & Zhuang (2006) extended the ETAS
model to spatiotemporal domain. The occurrence rate λ(t, x, y) of a
space–time point process is mathematically defined in terms of the
occurrence probability of an event at time t and the location (x, y)
conditional on the past history of the occurrences. In the typical
space–time extensions of the ETAS model, formula (5) can be
modified as

λ t, x, y( ) � μ x, y( ) + ∑
j: tj < t{ }

n t − tj( ) × g x − xj, y − yj,mj −m0( )
(6)

2.3 AGaussianmixturemodel of background
and clustering earthquakes

Earthquakes can be regarded as a spatiotemporal stochastic point
process (Ogata, 1988; Console et al., 2003; Holden et al., 2003); in
particular cluster earthquakes can be regarded as a self-exciting
spatiotemporal stochastic point process (Reinhart, 2018). Assuming
that background earthquakes and clustering earthquakes are generated
by different stochastic processes, and taking into account the
spatiotemporal distribution of NND η* in each process, GMM can
be used for analysis. A single spatiotemporal stochastic process satisfies

FIGURE 1
(A) Temporal distribution of M>=1.0 events in synthetic catalogues; (B) Spatiotemporal distribution of η*; (C) Contour map of distribution density of
panel (B); (D) Histogram of η*; (E) Fitted mixture PDF (red).
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a 2D normal distribution. For seismic activity within a certain
spatiotemporal range, a GMM of K=2 can be selected. There are
two Gaussian models in GMM, one for background earthquakes,
and the other for clustering earthquakes. The probability density
function (PDF) of GMM is as follows:

f η( ) � w1*f1 η( ) + w2*f2 η( ) (7)
where f1(η), f2(η) are two Gaussian PDFs for seperately modeling
background and clustering earthquakes. The coefficient wk is the
weight of the k-th Gaussian model for k � 1, 2, which is known as
the probability of selecting the k-th model and satisfies ΣK

k�1wk � 1.

2.4 Numerical test

Figure 1A shows the M-t diagrams of 1,000 simulated
earthquakes generated by the ETAS model. The catalogue was
generated using the code from Helmstetter and Sornette (2002).
The initial parameters of the ETAS model were: b = 1.000, p = 1.200,
α = 0.800, K = 0.018, and c = 0.010; another parameters of spatial
window were: R = 50 km, Zmax = 20 km, R is radius and Z is depth. A
histogram of NND η* and the 2D distribution of the space-time
components of η* are shown in Figures 1B, C. Following the method
of Pei et al. (2004), seismic activity is considered to be two
superimposed normal distributions, so mixed density
decomposition was performed on the statistical results shown in
Figure 1D Finally, two weighted probability density functions
(PDFs) of normal distribution were obtained. The one on the left
can be regarded as the probability distribution of the background
event, and the other can be regarded as the probability distribution
of clustering earthquakes (Figure 1E).

Based on the GMM, we analysed the earthquake catalogue
simulated by the ETAS model. The GMM was used to solve the 2D

FIGURE 2
Contour map of PDFs of the GMMmodel for earthquakes shown
in Figure 1.

FIGURE 3
Distribution ofML ≥ 1.0 events (black dots) and faults (red lines) in south Yunnan, star denotes the JingguM6.6 earthquake, the faults name are given
on Figure 7; right panel shows the Gutenberg-Richter relationship of seismicity in the study area, pink line represents fitted result.
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distribution of the NND η* in Figure 1B (for results, see Figure 2).
Evidently, the GMM fits the spatiotemporal distribution of η* and
distinguishes background earthquakes from clustering earthquakes in
the statistical physics sense. The calculated relative weights were w1 =
0.582 and w2 = 0.418. In other words, within the given space-time scope
of the simulated catalogue, if an earthquake event occurred, the
probability of it being a background event caused by tectonic
activity was 58.2%, and the probability of it being a clustering event
influenced by an earthquake that had already occurred was 41.8%. We
used the probability corresponding to clustering seismicity as the
clustering ratio within this spatiotemporal range.

3 Data and study area

TheM6.6 Jinggu earthquake took place on 7 October 2014 in the
Lanping-Simao Basin on the west side of the Honghe fault zone in
southern Yunnan (Xu et al., 2014; Chang et al., 2016; Mao et al.,
2019). It was the only M ≥ 6.5 earthquake to occur in southern
Yunnan in the past decade. It was a highly significant seismic event,
but there has been little relevant research on the earthquake

(geophysical research includes Li et al., 2015; Sun et al., 2015;
Zhang et al., 2018), with particularly few studies on pre-
earthquake seismicity (only Luo et al., 2016; He et al., 2019).

Based on the method of analysing clustering earthquakes
proposed above, we analysed the clustering characteristics of
regional seismic activity before moderate and strong earthquakes
using the Jinggu earthquake as an example. Referring to the
numerical simulations by Zhou et al. (1994) and theoretical
analysis by (Mei et al., 1995; Mei et al., 1996) on deformation
field, Zhang and Jiang (1996) think the statistical area should be
200–300 km while study on seismic activities prior to a strong
earthquake. So we used the Jinggu earthquake epicentre as
the centre point with a radius R = 150 km and studied the seismic
records between 1 January 2009 and 30 September 2014 (Figure 3).

In the application of this paper, first, according to the
Gutenberg-Richter relation of the earthquake catalogue in the
study area, the minimum magnitude of completeness Mc = ML

1.5 of the area was determined (Figure 3B), and the b-values of the
selected area were determined using the least squares method. Then,
MapSiS was used to obtain the spatial fractal dimensions d of the
distribution of earthquakes and calculate the NND η* for each event.

FIGURE 4
Results of nearest neighbour algorithm ofML ≥ 1.5 seismic activities around 2014 JingguM6.6 earthquake (within a radius of 150 km). (A)Distribution
of spatial and temporal components of η*, (B) histogram and its fitted PDF of η*; (C) Density contour map ofη*; and (D) PDFs of fitted GMM model.
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Finally, GMM was calculated for the 2D distribution of the space-
time components (T, R) of η*; Here, an EM (Expectation
Maximization) algorithm is adopted to estimate the parameters
of GMM model. The results were then analysed.

4 Computation and analysis

With the Jinggu earthquake as the centre, we selected ML ≥
1.5 earthquakes within a radius of 150 km between 1 January

FIGURE 5
Plots of magnitude (D), fractal dimension (A), b-value (B), and clustering ratio (C) versus time. The blue horizontal dashed lines represent standard
deviation, and green lines are mean values.

FIGURE 6
(A) Change of average deformation velocity during the seismic cycle; (B) Cumulative Benioff strain energy (relative energy, take ML0.0 as 1) versus
time.
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2009 and 30 September 2014 and used the GMM approach above
to calculate the earthquake clustering ratio in the area (Figure 4).
The NND η* statistical results (Figure 4B) show that the area is
dominated by background seismic activity, but with a certain
proportion of clustering earthquakes. It can also be seen from the
spatiotemporal distribution of η* that background events are
concentrated in an ellipse around the straight line log10 T +
log10 R � 0.719 (Figures 4A, C), with some relatively dense
clusters in the lower left of the diagram. According to a
previous analysis, these correspond to clustering earthquakes.
We used the GMM to match the spatiotemporal distribution
shown in Figure 4A (see Figure 4D). It can be seen that two
Gaussian distributions can be used for a good fit of the
spatiotemporal distribution of η*. The probabilities of the two
types of earthquakes were calculated as w1 = 0.568 and w2 = 0.432.
We define the latter as the clustering ratio of seismic activities
within a spatiotemporal range.

4.1 Temporal variation of small earthquake
clusters

The seismic clustering ratio was calculated for each natural year
(window size: 365 days, and step size 30 days) of the earthquake
catalogue within a 150 km radius around the Jinggu earthquake
(Figure 5). According to the definition of η*, the b-value of the
Gutenberg-Richter relation and the fractal dimension d of the
epicentre distribution are required to calculate η*. As both are
related to the stress and the non-uniform nature of the fault
plane (Wyss et al., 2004), Figure 5 also shows changes in these
two intermediate parameters over time.

Figure 5 shows that the evolution of small earthquake activity
parameters before the Jinggu earthquake can be divided into three

clear stages. Stage I: In 2010–2011, the fractal dimension d of the
epicentre showed declined and then recovered, while the b-value
increased and clustering remained below the mean level; the
decrease in the fractal dimension indicated a strengthening of
the orderly spatial distribution of seismic activity, but the
simultaneous increase in b-value meant that the regional mean
stress was still low (Wyss et al., 2004). Stage II: From October
2011 to September 2013, the fractal dimension d recovered
somewhat, while the b-value was very low and continued to
decline; from the beginning of 2013, the b-value dropped to a
level lower than the background value of 0.809, which signalled an
increase in crustal stress in the study area; the degree of
earthquake clustering in the study area increased significantly
at this point as the b-value decreased. Stage III: After October
2013 and until the mainshock, the fractal dimension d did not
change significantly, the b-value increased and returned to its
mean level, and the clustering of small earthquakes declined to
around the mean value with some fluctuations.

4.2 Physical interpretation of small
earthquake cluster variation

Chinese and international scholars have proposed various
models of the seismogenic process of strong earthquakes, such as
the barrier model, dilatancy-diffusion model (DD model),
Institute of Physics of the Earth model (IPE model), and
integrated model (Liu and Cao, 2003). Soviet seismologist
Mjachkin (Mjachkin et al., 1975) proposed the IPE model
based on fracture mechanics and rock tests and divided the
seismogenic process of strong earthquakes into three stages, as
shown in Figure 6A. Combining the analysis of small earthquake
activity before the Jinggu earthquake in Section 4.1 and the
changes in Benioff strain energy in Figure 6B, we found that it
conforms closely with the IPE model. From 2010 to the first half
of 2011, the epicentral area had a random distribution of small
ruptures as well as low regional stress (a high b-value) and strain
release rate, with activity largely due to background events caused
by tectonic stress, so the clustering ratio remained below 0.3
(Figure 5). In the later part of this stage, the fractal dimension d
decreased, indicating that microfractures develop in an orderly
direction. In the second half of 2011, the acceleration stage may
have been reached, with a sharp increase in microfractures, an
increase in stress (lower b-value), an acceleration in strain release,
and a rapid increase in the clustering of small earthquakes to
above 0.4. From the end of 2013 onwards, Stage III was reached,
in which the growth of new microfractures stopped and the
number of active fissures decreased. Therefore, although the
fractal dimension d changed little, the clustering of small
earthquakes decreased significantly until the mainshock of
M6.6 occurred.

4.3 Spatial variation and physical
interpretation

Using the method above, spatial scanning was conducted of
seismic activity in the study area (Figure 3) in the 18 months

FIGURE 7
Spatial variation of clustering ratio in southern Yunnan Province.
F1 Nanting River Fault; F2 Lancang River Fault; F3 Wuliang Mountain
Fault; F4 Babian River Fault; F5 Amo River Fault; F6 Ailao Mountain
Fault; F7 Hong River Fault; F8 Shiping-Jianshui Fault; F9 Mujia-
Qianmai Fault; F10 Lancang-Mengzhe Fault; F11 Menglian Fault;
F12 Daluo Fault. [The names of the faults are from Chang et al. (2016),
and the star represents the epicentre of the M6.6 mainshock].
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before the Jinggu earthquake. A variable window length was
applied to ensure sufficient earthquakes for each scanning
window. The minimum window length radius l was 10 km. If
the number of earthquakes in the scanning window at a certain
location was less than 100, the scanning radius was expanded at a
step of 5 km until the number of earthquakes was sufficient to
satisfy the requirements, with a maximum l of 50 km. The results
are shown in Figure 7.

Figure 7 shows a high degree of clustering of small
earthquakes concentrated around the epicentre of the Jinggu
earthquake. This is particularly notable at the Lancang River
Fault (F2) and the west branch of the Wuliang Mountain Fault
(F3-4), which were close to the mainshock. It is even more
noteworthy that the epicentral area of the Jinggu earthquake
was unusually calm despite the concentration of small
earthquakes in its surrounding areas, which accords precisely
with the barrier model proposed by Mei et al. (1995). Geological
analysis has revealed that the Jinggu earthquake occurred on an
unknown secondary active fault outside the boundary fault zone
(Xu et al., 2014), which may indicate that the fracture intensity
at the epicentre was higher than that of the surrounding main
fault.

5 Discussion and conclusion

The minimum space-time distance η* proposed by Zaliapin
et al. can effectively distinguish background earthquakes from
clustering earthquakes from a statistical physics perspective. The
author used a statistical mixed model of two 2D Gaussian
distributions to fit the 2D distribution of the spatiotemporal
components (T, R) of η*. We used the probability corresponding
to clustering seismicity in the GMM model as the clustering ratio
within the spatiotemporal range.

Based on this method, we studied regional small earthquake
activity before the Jinggu earthquake in Yunnan Province, China on
7 October 2014 and discovered the following:

1. The seismogenic process of the Jinggu M6.6 earthquake can be
divided into three stages. Based on the stochastic activity of the
background earthquake, stress gradually increased, small
earthquakes were highly clustered, and the release of strain
energy accelerated markedly 3 years before the earthquake.
One year before the mainshock, the existence of a fault barrier
or hypocentre barrier causes calmer rupture activity near faults.
Following the accumulation of strain energy, the main shock
finally occurred. The seismogenic process of the Jinggu
earthquake accords with the theoretical model.

2. There was a high degree of clustering of small earthquakes
concentrated around faults near the Jinggu earthquake prior
to the earthquake, while the epicentral area was relatively
calm, which may indicate that the epicentral area was a
barrier with relatively high fracture strength and that was
locally locked. It was the fracture of this barrier that caused
the M6.6 Jinggu earthquake to occur.

Rock tests have shown that large fractures are preceded by
increased and concentrated microfractures (Stanchits et al., 2006;

Aben et al., 2019). The latest theoretical model of progressive
localization of deformation before large earthquakes (Kato and
Ben-Zion, 2021) states that before such an event, regional
weakening will gradually form localized deformation around
the eventual rupture zones, and regions containing faults of
various scales experience substantial clusters of seismicity
during localized deformation. Analysis of the Jinggu
earthquake in this paper revealed the spatiotemporal evolution
of clustering earthquakes can indeed reflect changes in tectonic
stress, which is connected to the seismogenic process of strong
earthquakes. Furthermore, approximately 1 year before the
Jinggu earthquake, the b-value of the seismogenic area
recovered and clustering decreased significantly, which was
similar to the conditions before the slip instability in rock
tests. Does this decrease in clustering of small earthquakes,
the recovery of the b-value, and reduction in the release of
strain energy after an acceleration indicate that the hypocentre
has entered the sub-instability stage? This could be the focus of
future studies.
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