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We present the first seismic imaging of the crustal volume affected by the March-
April 2021 Thessaly sequence by applying a 3D seismic tomography to the
aftershocks recorded by an unprecedented number of stations. The results, in
terms of VP, VS, and VP/VS ratio and earthquakes’ location parameters, depict blind
fluid-filled inherited structures within the Northern Thessaly seismic gap. The
tomographic images highlight the basal detachment accommodating the
Pelagonian nappe onto the carbonate of the Gavrovo unit. The high VP/VS

(>1.85) where most of the seismicity occurs increases from SE to NW, showing
possible fluid accumulation in the NW edge of the seismogenic volume that could
have contributed to the sequence evolution. The aftershock relocations correlate
well with the fault planes of the three mainshocks proposed by several geodetic
models, but also show additional possible faults sub-parallel and antithetical to the
main structures, not to be overlooked for future seismic risk mitigation.
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1 Introduction

The March-April 2021 Thessaly seismic sequence (hereafter TSS), with its maximum
moment magnitude of 6.3 and five events with Mw>5, represents one of the largest seismic
sequences affecting a continental extensional domain in Greece in the instrumental era
(Figure 1). The sequence started on 3 March 2021 (10:16:08 UTC) with the occurrence of an
Mw 6.3 earthquake, followed by anMw 6.0 event on 4March (18:38:19 UTC), and by anMw
5.6 on 12 March (12:57:50 UTC). Several works have investigated the TSS through joint
analyses of geodetic, seismological and geological data (De Novellis et al., 2021; Ganas et al.,
2021; Karakostas et al., 2021; Papadopoulos et al., 2021; Tolomei et al., 2021; Kontoes et al.,
2022; Yang et al., 2022). The location and focal mechanism of the three mainshocks have
been widely inferred by modern geodetic techniques that, exploiting the InSAR
measurements short satellite revisit time, allowed isolating the contribution of the major
earthquakes of the sequence and to investigate their interaction. Early geodetic models
(Ganas et al., 2021; Papadopoulos et al., 2021; Kontoes et al., 2022) indicate that the sequence
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was caused by unmapped blind normal fault segments. De Novellis
et al. (2021) and Yang et al. (2022) proposed four seismogenic faults
for the seismic sequence, consisting of two NE-dipping faults (one of
which is responsible for the Mw 6.3), another NE-dipping fault for
Mw 6.0 and a SW-dipping fault for Mw 5.6. Based on field
investigations, among the activated structures, only the
Vlachogianni fault segment (Figure 1) provided clear evidence of
linear morphogenic deformation along the surface (Ganas et al.,
2021; Koukouvelas et al., 2021; Kassaras et al., 2022; Kontoes et al.,
2022). Geological and geophysical information has also been
combined with the Robust Satellite Technique (RST) to detect
thermal anomalies associated with the MW6.3 event (Kouli et al.,
2021).

The interest in the area affected by the TSS is driven by the fact
that it has been recognized as a possible seismic gap (Caputo, 1995),
partially filled by the sequence (De Novellis et al., 2021), embedded
within one of the most seismically active areas in Greece, at the back-
arc area of the Aegean microplate (Caputo and Pavlides, 1993).
Despite the persistent tectonic activity (Caputo, 1993; Caputo et al.,
1994; 2004; Caputo, 1995; Caputo, 1996; Caputo and Helly, 2005a),
likely due to the relatively low strain rate characterizing the region,
the cumulative displacement on these progressively growing faults
has not yet been able to strongly affect the morphology of the area
where clear hydrographic anomalies could be still observed (Caputo
et al., 2021). Two major active fault systems have been recognized in
Thessaly (Caputo, 1995) with comparable evidence of late
Pleistocene and Holocene seismogenic activity. However, while
the southern zone has been struck by several strong earthquakes
during historical and instrumental recording periods
(Papadopoulos, 1992; Caputo and Helly, 2005a; Caputo et al.,

2006) (Figure 1), in northern Thessaly there is no instrumental
record of strong events over the last three centuries, with the only
exception of the 1941 Larissa event (M 6.3) (Papaioannou, 1988;
Ambraseys and Jackson, 1990; Caputo, 1995).

Therefore, the TSS represents an opportunity to improve our
knowledge about the tectonics of this seismic gap area. In this work,
we provide the first detailed image of the elastic properties and
aftershock hypocenter locations of the TSS crustal volume. To reach
this goal, we have performed a 3D P- and S-wave tomographic
inversion using a large number of the TSS aftershock events,
recorded by permanent and temporary seismic stations installed
during the sequence in the epicentral area. The new high-resolution
local 3D velocity models and aftershocks’ location are jointly
interpreted with the available geological information of the area,
with the recent InSAR measurements, and with the fault parameters
computed for the three strongest events of the sequence. Our results
give new insights into the TSS’s highly fluid-filled crustal volumes
characterized by inherited blind fault networks and could be used as
a benchmark for future seismic hazard assessments in Thessaly.

2 Data

The seismic catalogue consists of 1,853 earthquakes occurring
from 28 February 2021 to 26 April 2021 with moment magnitude
(Mw) ranging between 0.2 and 6.3, recorded at 116 seismic stations
within a maximum epicentral distance of 100 km. The earthquakes
of the sequence have been recorded by the broad-band and strong
motion stations of the Hellenic Unified Seismological Network
(HUSN; http://eida.gein.noa.gr/). Mainshocks and aftershocks

FIGURE 1
Study area and seismological data with main tectonic lineaments (white lines) redrawn after Caputo and Pavlides (1993). Historical earthquakes in
Thessaly area (Caputo and Helly, 2005b) are shown with white squares, including the maximum intensity, IMAX, of each event in brackets (data by Caputo
et al., 2006). The March-April 2021 aftershock sequence relocated through the 3D tomographic inversion is shown with magenta circles. Cyan triangles
represent the seismic network used in this study to perform the seismic tomography. Yellow stars are the three strongest events of the TSS. Traces of
the vertical tomographic cross-sections are shown with blue segments.
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have been previously located by De Novellis et al. (2021) by using a
1D velocity model proposed for an area to the South-East of
Thessaly (Papadimitriou et al., 2010). In order to obtain an
accurate tomographic image of the crustal volume affected by the
sequence, in the present study we selected the events and the stations
that fall within a volume extending 40×41×20 km3 around the
mainshock epicentral area. The selection reduced the initial
dataset to ~1,500 events, for a total number of 7,859 P- and
7,767 S-waves arrival times provided by NOA-IG (National
Observatory of Athens - Institute of Geodynamics) recorded at
11 seismic stations (Figure 1).

We note that 7 temporary seismic stations (TYR1-6) were
installed in the area on 5 March 2021 by AUTH (Department of
Geophysics of the Aristotle University of Thessaloniki; HT network;
doi:10.7914/SN/HT) and two other stations (VRKS and KANL)
were installed on the Northern edge of the sequence on 14 March by
the University of Patras Seismology Lab (UPSL; HP network; doi:
10.7914/SN/HP) (Figure 1). The lack of these temporary stations
within the focal area prevented us from reaching a sufficient number
of P- and S-wave first arrival times necessary for obtaining reliable
aftershock locations during the early phases of the sequence.
Consequently, all events that occurred in the first 2 days of the
sequence, including the early strongest earthquakes (Mw > 5),
cannot be considered in the present tomographic study.

3 Methods

Local earthquake 3D tomography is highly dependent on the
starting velocity model and the initial hypocenter locations (Kissling
et al., 1994). In order to achieve a reliable starting model, we first
determined an optimized 1D velocity model for the TSS area,
obtained solving the coupled hypocenter-velocity problem by
implementing the VELEST software (Kissling et al., 1995)
(Supplementary Figure S1). From the starting dataset, we selected
the best constrained 546 earthquakes on the basis of the following
quality criteria: azimuthal gap smaller than 150°; Root Mean Square
(RMS) smaller than 0.55 s; both horizontal and vertical hypocentral
location error lower than 0.7 km. The 1D P-wave velocity model
proposed by Papadimitriou et al. (2010) (cyan line in Figure S1) has
been used as the starting model. After 8 iterations, we retrieved the
best minimum 1D P-wave velocity model for the area (thicker blue
line in Supplementary Figure S1), achieving an RMS reduction of
83% relative to the initial model and an average station correction
value of 0.059 s.

The 1,500 events selected from the starting dataset have been
located using the Non-LinLoc software (Lomax et al., 2000),
considering the new minimum 1D P-wave model (Supplementary
Figure S1) and the VP/VS ratio of 1.78 provided by De Novellis et al.
(2021). We excluded all the events having less than 6 direct wave
arrival times, azimuthal gap higher than 220° and horizontal and
vertical location error larger than 1 km. The resulting dataset
consists of 1,100 well-constrained seismic events (Supplementary
Figure S2) that have been used as input for the 3D velocity
tomography and for the interpretation of the overall
seismotectonic setting of the area.

Both the 3D P- and S-wave velocity models, as well as the
obtained earthquakes’ location, were estimated using an iterative

linearized travel time inversion code (Latorre et al., 2004). This code
has been already successfully used in tectonic (Amoroso et al., 2014;
2017; Napolitano et al., 2021; De Landro et al., 2022), and volcanic
regions (Serlenga et al., 2016; De Landro et al., 2017). It has also been
applied in geothermal settings (Amoroso et al., 2018; 2022) and in
the feasibility study of offshore exploitation areas (De Landro et al.,
2020). The direct problem of first arrival travel times is handled on a
fine grid with nodes separated 250 m along the three orthogonal
directions by computing a finite-difference solution of the eikonal
equation (Podvin and Lecomte, 1991). The slowness along the rays is
numerically integrated to recalculate travel times. In order to
estimate VP, VS and earthquake hypocenter parameters, P- and
S-wave travel times are simultaneously inverted by using the least
squares root (LSQR) method of Paige and Saunders (1982). The
damping parameter resulting from the trade-off L-curve was set to
0.3 (Supplementary Figure S3).

A trilinear interpolation function, based on a grid of regularly
spaced nodes, finally describes the velocity distribution in a
continuous medium. The inversion mesh grid was set to
4×4×1 km3. We have a-posteriori verified that the convergence is
reached after 6 iterations, with a root mean square reduction of 50%
(Supplementary Figure S4). In order to assess the 3D spatial
resolution of the final velocity model, we performed the
checkerboard tests (Supplementary Figures S5, S6). We computed
the similarity between exact and recovered checkerboard anomalies
(resolvability) and displayed it on the final images (Zelt, 1998).

4 Results

We show in Figure 2 the horizontal slices at 0, 2, 3, 4, 5, 6, 7,
8 and 10 km depth of VP and VS models. Only those sectors where
the checkerboard tests semblance exceeds 0.7 (enclosed in dark gray
lines in Figures 2, 3, 4) are considered to be well resolved and
discussed. The obtained VP values span from 4.6 to 6.9 km/s,
whereas VS values range between 2.6 and 3.9 km/s. We also
provided 12 vertical cross-sections, 9 of which oriented NNE-
SSW (12-km long) and 3 along the WNW-ESE direction (28-km
long) (Figures 1, 2, 3, 4; Supplementary Figure S7), all reaching a
depth of 10 km.

Differently from Figure 2, the hypocenters shown in each
vertical cross-section are plotted by selecting a distance
of ±1,000 m from each slice. The VP/VS ratio maps (Figures 3, 4;
Supplementary Figure S7) have been obtained by dividing the value
of VP by VS at each node of the inversion grid. We centered the color
map to the average VP/VS value (1.78) computed by De Novellis
et al. (2021) and set the lower and the upper limit of the color scale at
1.5 and 2.1, respectively. This allows us to visually identify relatively
high and low VP/VS anomalies if compared with the average value.

The tomographic images show a sharp increase of VP between
3 and 4 km-depth. Considering the well resolved area, VP is quite
homogeneous between 1.5 and 3 km depth with values around
4.9–5.0 km/s, while at ~4 km-depth, VP is up to 6.3 km/s. Similar
velocity variations are observed for VS showing values of
2.6–2.8 km/s between 1.5 and 3 km-depth and 3.5–3.6 km/s
below 4 km-depth (Figures 2, 3, 4).

Higher VP values (~6.8 km/s) are observed in the NW portion of
the seismogenic volume at 4 km-depth progressively widening
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toward the southeast up to 6 km-depth and further deepening in the
central sector down to at least 8 km, which is the last well resolved
slice from our tomographic results (Figure 4). A second velocity
anomaly is observed in the eastern sector at depths between 5 and
7 km. It is noteworthy that the major high VP anomaly seems to be
paired with a slightly low VS anomaly (3.3 km/s), which corresponds
to a significant increase of the VP/VS ratio in this portion of the
seismogenic volume (Figures 3, 4). A high VP/VS anomaly (>1.9)
deepens from ~4 km depth in the NW sector to 10 km depth at the
southernmost tip of the TSS volume, following the relocated
seismicity depth. In each vertical section, this high VP/VS

anomaly is systematically topped by a low VP/VS anomaly
(1.55–1.65) (Figures 3, 4).

Based on the obtained velocity models, the relocated
earthquakes, obtained from the inversion procedure, are confined
within a 30×9×7 km3 seismogenic volume, suggesting the presence
of a complex fault network. The volume involved in the TSS appears
roughly elongated in a NW-SE direction (300°) and rotated towards
the WNW-ESE direction at the northernmost edge of the volume.
Almost all the analyzed and relocated aftershocks show a
hypocentral depth greater than 3 km and most of them fall
within high VP/VS volumes (Figures 3, 4). The relocated
aftershocks appear to be clustered into multiple seismogenic sub-
volumes of varying sizes likely representing not only the main
causative faults of the three mainshocks but also some sub-

parallel and antithetic faults reactivated during the seismic
sequence. These fault structures and the inferred main properties
combined with available geological and tectonic information will be
discussed in the following section.

5 Discussion

The reliable earthquakes’ location and the detailed new 3D P-
and S-wave velocity tomographic images obtained in the present
study enable us to constrain the main crustal properties and identify
the geometry of the fault network activated during the TSS. The first
result achieved is the sharp increase of the P-waves (from 5.0 km/s to
6.3 km/s), and S-waves velocity (from 2.6–2.8 km/s to 3.5–3.6 km/s),
revealed between 3 and 4 km depth (Figures 2, 3, 4). This feature
possibly corresponds to a low-angle shear zone representing the
basal detachment accommodating the overlying Pelagonian nappe,
mainly consisting of metamorphic rocks, onto the recrystallized
carbonate platform of the Gavrovo unit. The result is corroborated
by lithological succession in regions close to our study area (Makris
et al., 2001; Papoulia and Makris, 2010; Makris and Papoulia, 2018)
and in region characterized by similar geodynamic context, where a
similar succession has been inferred (Improta et al., 2000; 2014;
Amoroso et al., 2014; Napolitano et al., 2021). Currently, the latter
extensively outcrops in the Mount Olympus tectonic window about

FIGURE 2
Horizontal slices for 0–10 km depths showing P- and S- wave velocity models (left and right panels, respectively). The used seismic stations are
represented in the 0 km depth slice as cyan diamonds. Black dots represent the location of the seismic events achieved from the tomographic inversion
procedure. Each slice includes the events below and above 500 m from the selected depth. Well-resolved areas are contoured by solid dark gray lines.
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25 km east of the investigated area (Nance, 2010), corroborating the
presence of this nearly horizontal detachment and the consequent
rapid velocity increase with depth. Within the underlying carbonate
platform, the tomographic images show NW-SE elongated rock

volumes with high VP (6.5–6.8 km/s) and high VP/VS (>1.85) values
(Figures 3, 4, 5; Supplementary Figure S7). These volumes are likely
bounded by predominantly NE-dipping inherited structures, whose
geometry was previously unknown, that slightly deviate from the

FIGURE 3
VP, VS and VP/VS model and micro-earthquake locations projected onto the AA’, DD’, EE’ and GG’ cross-sections located in Figure 1. Well-resolved
areas are contoured by solid dark gray lines. The purple dashed ellipses represent the cluster of seismicity found in this work. Yellow stars represent the
mainshocks of the sequence.
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mainly ESE–WNW direction of the major active faults of Thessaly
(Caputo, 1995). We illuminate for the first time several clusters of
aftershocks, likely associated with these inherited structures. The
fault pattern and the structural architecture of the Thessaly crust,
illustrated in this work, is compatible with an older accretionary
complex related to the Oligo-Miocene Hellenic subduction, the
associated compressional regime followed by the WSW-wards
migration of the post-collisional orogenic collapse (Kilias et al.,
1991; Caputo and Pavlides, 1993).

The lack of temporary seismic stations in the focal area at the
very beginning of the sequence prevented us from relocating the
three mainshocks of TSS. In order to achieve a full picture of the
sequence, the source parameters of the mainshocks computed in
previous papers (Ganas et al., 2021; Kassaras et al., 2022) and the
fault planes inferred from surface deformations analysis using the
InSAR technique (De Novellis et al., 2021; Ganas et al., 2021;
Tolomei et al., 2021; Kontoes et al., 2022) have been combined
with the new 3D tomographic model, in terms of velocity and
earthquake relocation, provided in the present work.

Section GG’ in Figure 3 shows two clusters of seismicity achieved
by our analysis located in a high VP (6.7–6.8 km/s) and high VP/VS

ratio (1.85–1.9) region. The Mw 6.3 hypocentre is located at 10 km
depth (Table 1; Ganas et al., 2021), andmatches the deepest tip of the
northern cluster. The focal mechanisms provided by different

authors (Ganas et al., 2021; Kassaras et al., 2022; Kontoes et al.,
2022) indicate a NW-SE striking, NE-dipping, pure dip-slip normal
faulting (see Supplementary Table S1 for further details). In
addition, considering the suggested error on the dip angle (~10°)
the two recognized clusters match the F1a and F1b planes inferred
by De Novellis et al. (2021). In particular, the Mw 6.3 event occurred
at the deepest tip of F1b, which has been interpreted as causing a
rupture length of ~16 km from surface deformations analysis. The
lack of temporary stations in the early days of the sequence allows us
to image only part of the MW 6.3 fault plane (~8 km, Slices from EE’
to II’ in Supplementary Figure S7), preventing us from commenting
on the total rupture length of the seismogenic structure which
extend southward up to latitude 39.6°.

The location of the Mw 6.0 event (Table 1; Ganas et al., 2021) is
at depth of 8 km, at the deepest tip of the seismogenic volume shown
in slice DD’ (Figure 3), which is characterized by high VP

(6.7–6.8 km/s) and high VP/VS (1.9–1.95) values. The focus
volume of the Mw 6.0 event is instead characterized by
intermediate values of VP (6.3 km/s) and VP/VS (1.78). The
major seismogenic structure exactly coincides with the F2 plane
proposed by De Novellis et al. (2021) as the causative source of the
Mw 6.0. The agreement confirms the slightly counterclockwise
rotation of this volume if compared with the Mw 6.3 fault plane,
with a similar dip (30°–40°) and rupture length (~13–15 km) as the

FIGURE 4
VP, VS and VP/VSmodel andmicro-earthquake locations projected onto the TT’ cross-section located in Figure 1. Well-resolved areas are contoured
by solid dark gray lines. Earthquakes within 1 km from each side of the slice are shown with black circles.
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Mw 6.3, in accordance with recent geodetic models (De Novellis
et al., 2021; Tolomei et al., 2021). Focal mechanisms computed for
the Mw 6.0 corroborate our results (Table 1; Ganas et al., 2021;
Kassaras et al., 2022; Kontoes et al., 2022).

The source orientation of the Mw 5.6 event is still debated. Some
authors have proposed a SW-dipping fault plane (De Novellis et al.,
2021; Papadopoulos et al., 2021; Sarhosis et al., 2022; Yang et al.,
2022), while Kontoes et al. (2022) have recently proposed two
possible fault plane solutions. Our analysis seems to be able to fix
this point. From our relocations, the deeper NE-dipping cluster of

aftershocks (vertical section AA’ in Figure 3) appears as the most
likely source of the event along which, at a depth of 10 km, the event
appears to have occurred (Table 1; Ganas et al., 2021). Thus, our
results support the NE-dipping solution proposed by Kontoes et al.
(2022) and Kassaras et al. (2022) (see Table 1) as the most likely focal
plane for this event. This area is characterized by higher-than-
average VP (>6.8 km/s) and by the highest VP/VS (1.95–2.00) values,
even though these anomalies are at the edge of the well-resolved area
by the checkerboard tests.

Another remarkable result of the present study, that is
highlighted by the aftershocks relocations, concerns the central
volume involved in TSS where the seismicity seems to describe a
low-angle structure located between 7 and 10 km depth in
agreement with the major nearby Tyrnavos and Larissa Faults
(sections DD’, EE’ in Figure 3). The ellipse-shaped cluster of
seismicity associated with the Mw 6.0 event is clearly in the
middle of at least two (probably three) sub-parallel structures,
one less than 2 km to the east, and another about 5 km to the
west (section EE’ in Figure 3). Moving to the NW, a dense cluster of
seismicity is located within the hanging-wall block of the Mw
5.6 rupture (section AA’ in Figure 3). This cluster, also
characterized by one of the highest VP (>6.8 km/s) and VP/VS

(1.95) values, has not been identified in other works. These
inherited structures, revealed with our new detailed aftershock
relocations, must necessarily be taken into account in possible
future scenarios in the framework of seismic risk mitigation in
Thessaly.

High VP/VS values (>1.85), always topped by low VP/VS

anomaly (1.55–1.65), have been found in the whole
seismogenic volume from SE, at 10 km-depth, to NW, at 4 km-
depth (Figures 3, 4, 5; Supplementary Figure S7). In the same
direction the VP/VS value increases, reaching values around 2 in
the extreme NW of the sequence, while VS decreases from the
mean value at the same depths (Figure 3 and Slices RR’, SS’ and
TT’ in Supplementary Figure S7). A strong consistency between
the longitudinal sections with respect to the sequence is evident,
showing a progressive deepening of the low Vp/Vs anomaly
(nearly horizontal in the SS’ slice in Supplementary Figure S7
and deeper in the SE going toward the RR’ slice). It should be
noted that in the uppermost crust the VP/VS ratio is useful in
discriminating zones saturated with fluids (Nur and Booker,
1972) since the P- and S-wave velocities are differently
affected by the presence and physical state of fluids. Similar
high VP/VS values have been linked to the presence of fluids
in other comparable geological settings (Chiarabba et al., 2009;
Amoroso et al., 2014; Adinolfi et al., 2019; 2020; Napolitano et al.,
2021). Additionally, the calculated high VP/VS anomaly provides
a Poisson ratio of ~0.3, denoting a predominant water saturation
of rocks in the examined crustal volume (Dvorkin et al., 1999).

Since our analysis deals with aftershocks that occurred just
1 month after the occurrence of the Mw 6.3, our results suggest
the imprinting and redistribution of fluids after the sequence with a
likely fluid accumulation in the NW sector of the seismogenic
volume. This inference is also supported by recent works (De
Novellis et al., 2021; Yang et al., 2022) that show how the
evolution of the entire sequence is compatible with a mechanism
of pore fluid pressure diffusion likely due to the volume deformation
produced by the two main events.

FIGURE 5
3D high VP/VS anomaly (>1.85), relocated seismicity (yellow
spheres) and mainshocks hypocenters (red spheres), in (A) topped by
the topography of Northern Thessaly area; in (B) and (C) shown with
the addition of VP cross-sections (AA’ and TT’) from two different
view angles. VP increases at 4 km depth, showing the basal
detachment that accommodates the overlying Pelagonian nappe
onto the carbonatic Gavrovo unit.
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6 Conclusion

In conclusion, the present study provides the first 3D
seismic tomography of the Thessaly region and the relocation
of most of the aftershock events that occurred from March to
April 2021. The tomographic images have highlighted the
nearly horizontal basal detachment that accommodates the
overlying Pelagonian nappe, mainly consisting of
metamorphic rocks, onto the recrystallized carbonate
platform of the Gavrovo unit. The outcome is corroborated
also by the Gavrovo unit outcrop in the Mount Olympus
tectonic window, 25 km away from the focal area. Almost all
the aftershock hypocenters have been located within the
underlying carbonate unit and characterized by VP and VP/
VS values higher-than-background. The seismogenic volume
mainly develops along the NW-SE direction. The achieved
relocations depict clear ellipse-shaped clusters of events that
well correlate with the fault planes proposed for the three largest
events of the sequence (Mw 6.3, 6.0, 5.6) from several geodetic
models, but also show additional possible volumes sub-parallel
and antithetical to the main structures affecting Northern
Thessaly region.

High VP/VS values have been interpreted as the imprinting of
the redistribution of fluids during the TSS sequence. These results
are corroborated by the diffusivity analysis achieved in previous
papers, which inferred pore fluid pressure higher than hydrostatic
and fluid movement along the seismogenic volume as the most
likely contributors to the sequence evolution. Indeed, VP/VS

increases from SE to NW, showing a possible fluid
accumulation in correspondence of the NW edge of the
seismogenic volume. Our results give new insights into the
highly fluid-filled inherited blind fault network of the TSS and
could be a benchmark for future seismic hazard assessments in
Thessaly. Indeed, when single faults are not known, it is a common
practice in seismic hazard analyses to assume areal or volumetric
sources with uniform seismic potential and Poisson seismicity
model (e.g., Reiter, 1991). Conversely, the knowledge of single
faults or fault systems allows to refine seismic hazard estimations
since specific distance metrics (e.g., Joyner and Boore distance) as
well as seismicity recurrence models (e.g., Characteristic model,

Brownian Passage Time) can be considered (e.g., Convertito et al.,
2006; Pace et al., 2006).
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