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This study investigated the effects of various seasonal fitting techniques on the
spatial distribution of the common mode errors taking the coordinate time series
of the continuous GPS reference stations of the Crustal Movement Observation
Network of China (CMONOC) as an example. First, the seasonal term of
coordinate time series was calculated using constant amplitude harmonic
fitting (CAF), continuous wavelet transform (CWT), and smoothing spline fitting
(SPF). The seasonal term and linear trendwere then removed to obtain the residual
time series. Finally, to determine the commonmode errors of residual time series,
principal component analysis (PCA) was applied. The results indicate that 1)
smoothing spline fitting is superior to constant amplitude harmonic fitting and
continuous wavelet transform in its ability to fit short-term irregular seasonal
signals. In comparison to constant amplitude harmonic fitting, N/E/U has root
mean square error (RMSE) values of smoothing spline fitting that are lower by 25%,
20%, and 14.4%, respectively. Smoothing spline fitting also has a higher coefficient
of determination than continuous wavelet transform and constant amplitude
harmonic fitting. The coefficient of determination in the U direction is larger
than that in the N and E directions. 2) Each order PC of the residual series fitted by
smoothing spline fitting exhibits apparent spatial aggregation characteristics, with
PC1 having a uniform spatial distribution and presenting a largely positive
response. Nevertheless, the residual series obtained by constant amplitude
harmonic fitting and continuous wavelet transform exhibits scattered spatial
response distribution features in each order PC. Compared to N and E, U’s
spatial response distribution is distinct. From north to south, the spatial
response of PC1 in the U direction progressively diminishes. In addition to
being much lower than that in other locations, the Sichuan–Yunnan region’s
spatial response value of PC1 and PC3 also exhibits a clear negative reaction. The
root mean square error value of the residual series after smoothing spline fitting is
the least, and the filtering effect is the best when comparing the spatial filtering
effect based on the three fitting methods. We also compared the root mean
square error reduction ratio before and after spatial filtering, and the results
showed that the root mean square error reduction ratio before and after the
residual series obtained by smoothing spline fitting is slightly larger than that
obtained by other methods.

OPEN ACCESS

EDITED BY

Filippo Greco,
National Institute of Geophysics and
Volcanology (INGV), Italy

REVIEWED BY

Xiaoxing He,
Jiangxi University of Technology, China
Cataldo Godano,
University of Campania Luigi Vanvitelli,
Italy

*CORRESPONDENCE

Genru Xiao,
Xgr541@qq.com

RECEIVED 28 February 2023
ACCEPTED 03 May 2023
PUBLISHED 16 May 2023

CITATION

Miao P, Xiao G, Wang S, Zhang K, Bai B
and Guo Z (2023), Effects of different
seasonal fitting methods on the spatial
distribution characteristics of common
mode errors.
Front. Earth Sci. 11:1176241.
doi: 10.3389/feart.2023.1176241

COPYRIGHT

© 2023 Miao, Xiao, Wang, Zhang, Bai and
Guo. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 16 May 2023
DOI 10.3389/feart.2023.1176241

https://www.frontiersin.org/articles/10.3389/feart.2023.1176241/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1176241/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1176241/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1176241/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1176241&domain=pdf&date_stamp=2023-05-16
mailto:Xgr541@qq.com
mailto:Xgr541@qq.com
https://doi.org/10.3389/feart.2023.1176241
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1176241


KEYWORDS

GPS coordinate time series, principal component analysis, wavelet analysis, smoothing
spline, common mode errors

1 Introduction

There are some spatial correlation errors in the coordinate time
series of the GPS network; this type of geographically related noise is
known as common mode errors (CME). The CME presented in the
GPS coordinate time series is vital for the study of errors similar to
those caused by GPS technology as well as for assessing the effects of
environmental loading and GPS velocity uncertainty (Blewitt and
Lavallée, 2002; Bogusz and Klos, 2016; Abraha et al., 2017). By
effectively reducing the GPS common mode errors, the coordinate
time series signal-to-noise ratio may be improved and crustal
deformation features can be accurately predicted (He et al.,
2017). GPS coordinate residual common mode components do
not always represent errors; they might also contain regional
structural signals. CME can be caused by regional differences in
water and atmosphere, faults in the reference frame, errors in the
GPS satellite orbit, etc., (Wang et al., 2017) all of which are typically
removed by filtering methods in data processing. Numerous
researchers have recently suggested various CME filtering
methods, including the regional stacking filtering method, which
was first proposed by Wdowinski et al. (2017) and can significantly
increase the signal-to-noise ratio (SNR) of the series; it has
limitations when it comes to extracting CME because it requires
that each station have an equal CME, yet studies have shown that the
spatial distribution of CME is variable. Later, other researchers
enhanced the regional stacking filtering method by using the
inter-station distance and the series length as the pertinent
weights (Márquez-Azúa and DeMets, 2003). The stacking
filtering technique is more suited for small-area spatial filtering.
The commonly used technique for spatial filtering, principal
component analysis (PCA) with Karhunen–Leove (KLE), was
presented by Dong et al. (2006). However, it requires that the
GPS network has the same time scale. He et al. (2015) calculated
the coordinate displacements of atmospheric pressure, soil moisture,
snow depth, and non-tidal ocean-induced environmental loading
for the Cascadia and Southern California regions, respectively, and
then eliminated the regional CME of the residual series based on the
PCA method, demonstrating that the PCA-based territorial spatial
filtering can successfully eliminate the CME and reduce uncertainty.
Li et al. (2019) used PCA to extract CME from 41 GPS stations in
Southern California, proving that spatial filtering can effectively
lower GPS time series root mean square error and that getting rid of
CME can raise velocity field estimation believability. Tan et al.
(2020) used QOCA to remove offset, linear trend, annual, and semi-
annual term signals from coordinate time series over a period of
almost 6 years in the Sichuan–Yunnan region of China. They then
performed PCA decomposition on the residual series to obtain the
regional CME and evaluated the CME using power spectrum
analysis. Xu et al. (2022) demonstrated that CME is a non-
negligible component of velocity field extraction in the area by
using PCA and KLE methods to assess the CME of GPS residual
series in the Mount Everest region while eliminating the linearly
variable, annual, and semi-annual term signals. In addition to the
PCA method, independent component analysis (ICA) is another

option that can incorporate CME’s higher-order statistical data for
spatial filtering. Ming et al. (2017) removed the linear trend and
seasonal variation from the long-span time series of CMONOC by
spatially filtering the residual series using the methods of stacking,
PCA, and ICA, respectively. The results demonstrated the
effectiveness of the ICA method in identifying anomalous
stations and suggested an ICA-based definition of CME.

Seasonal signals and random noise present in the series have an
impact on velocity estimations obtained from coordinate time series
of continuous GPS stations. The time series cannot be effectively
characterized if the deterministic model of a linear trend and
periodic term is not sufficiently precise (Klos et al., 2018). The
series noise model will be judged in an unsatisfactory manner if the
seasonal signal is estimated incorrectly. Gu et al. (2017) compared
the vertical coordinate time series of 224 GPS stations in mainland
China with the ground load model and showed that the vertical
seasonal deformation could be partly explained by the redistribution
effect of environmental quality, but some unmodeled signals were
still retained in the residual series. Li et al. (2020a) focused on
seasonal mass changes in North China using GRACE data, surface
load model data, and coordinate time series of 30 GPS stations in
CMONOC. They found that although the annual and semi-annual
signals evaluated by least squares have a good correlation with the
vertical displacements of GRACE and surface loading models
(SLM), they are unable to accurately reflect the seasonal mass
changes. These studies demonstrate that the annual cycle and
semi-annual cycle of least squares estimation can approximately
characterize the seasonal variation of the time series to some extent,
but the seasonal fluctuation of the time series is not a simple
harmonic form, which will introduce new errors to the residual
series and affect the extraction of CME.

When obtaining seasonal term signals and CME, most
researchers often use the following three techniques: the first is
to model the seasonal term signal in the coordinate time series using
a harmonic model with constant amplitude, phase, and simple
parameters and then separate the CME for the residual series
after removing the trend and seasonal terms. However, this
method may result in inaccurate modeling of seasonal signals
because some seasonal signals enter the residual series, which
affects the CME extraction. The second is to eliminate the
seasonal signal component so that environmental loading can be
used to interpret it using GRACE data, environmental loading
models, etc. This approach will momentarily cause certain signals
that the geophysical model cannot account for, as well as error
signals produced by the inaccurate environmental loading model, to
enter the residual series, leading to an error in the CME extraction.
The third is removing the linear trend term from all the series,
finding the correct geophysical interpretation for the extracted main
components, then examining the relationship between the main
components and different loading models, and identifying the
primary geophysical factors influencing the seasonal fluctuations
of coordinate time series in a particular area. Wang et al. (2020)
demonstrated that the PCA approach could extract regional
common mode errors in China and increase the SNR of time
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series by performing common mode error analysis on residual series
after tectonic movement signals and seasonal signals were
subtracted. To predict the seasonal signals of GPS coordinate
time series, Liu et al. (2020) presented a method based on ICA
and variable coefficient regression, and they then applied it to the
vertical time series of 262 IGS stations around the world. The
findings demonstrated that this approach could successfully
replicate the seasonal fluctuations in vertical time series and was
noticeably superior to least squares fitting. Different fitting methods
can reflect seasonal signal fluctuations more accurately and obtain
more accurate residual series.

The Crustal Movement Observation Network of China
(CMONOC) is an observation network based on satellite
navigation and positioning system (GNSS) observation, which is

primarily used to track changes in the gravity field morphology,
crustal movement, and other phenomena on the Chinese mainland.
It has 260 continuous GNSS reference stations that can provide
observation data sampled every 30 s. Consequently, in this paper,
based on CMONOC data over 10 years in time, we employed
constant amplitude harmonic fitting (CAF), continuous wavelet
transform (CWT), and smoothing spline fitting (SPF) to estimate
seasonal components in time series after acquiring the coordinate
time series by PPP processing. After excluding seasonal variations,
CME is thought to be the most common error. The effects of
different fitting methods on the geographic distribution of CME
were examined and compared to the spatial filtering effects.

2 Data sources and preprocessing

We processed the GPS observation data carefully to get the
coordinate time series of each station based on ITRF2014 in this
study using the GIPSY-OASIS software package, which was created
by NASA’s Jet Propulsion Laboratory (JPL). We used continuous
observation data from 260 CMONOC continuous GPS stations
(Figures 1, 2). Due to the influence of the atmosphere and other
variables, the coordinate time series may contain some blatantly
incorrect data that plainly deviate from a linear trend or periodic
change. Using the 3σ criterion, we removed the gross error data
before conducting the linear fitting. The GPS time series can be
stated generally as (Nikolaidis, 2002)

yt � a + bt + csin 2πt( ) + dcos 2πt( ) + esin 4πt( ) + fcos 4πt( )

+∑nj
j�1
giH t − Tg( ) + vt (1)

where yt is the coordinate time series of a single station, t is the time,
b is the linear change in coordinate, c, d are the coefficients of the
annual term, e, f are the coefficients of the semi-annual term, and
H(t − Tg) is the step function. To obtain the time series that can be
used to fit seasonal terms, the linear term and step term processing
was removed from the coordinate time series with the removal of the
gross error.

3 Seasonal term fitting

The GPS continuous stations coordinate time series comprises
structural data, seasonal term data, co-seismic displacement brought
on by earthquakes, and post-earthquake displacement signals,
among others (Zhao et al., 2015). The trend term and step signal
have been removed by the aforementioned data preparation process.
In this work, CWT, SPF, and CAF each will be used to match the
seasonal term signal.

3.1 Constant amplitude harmonic fitting

According to earlier research, the annual and semi-annual term
signals in the GPS coordinate time series were frequently
represented as harmonic functions with constant amplitude and
phase as follows:

FIGURE 1
Distribution of 260 stations.

FIGURE 2
Coordinate time series of YNYL station and its linear fitting. Blue
indicates that the coordinate time series removed the error data, and
red line indicates least square linear fitting.
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Ut � csin 2πt( ) + dcos 2πt( ) + esin 4πt( ) + fcos 4πt( ) + vi (2)
Here, c, d are the coefficients of the annual term, e, f are the

coefficients of the semi-annual term, t is the time, and vt is the
residual error. The amplitude levels of seasonal factors in GPS time
series, however, exhibit time-varying properties, as demonstrated by
some studies. Seasonal signals will be partially included in the
residual series if we merely apply simple harmonic fitting.

3.2 Continuous wavelet transform

Wavelet analysis, an analysis method with both time and frequency
characteristics, can be applied to fit seasonal terms of GPS coordinate
time series (Pugliano et al., 2016). The wavelet transform, which
approximates the continuous signal with finite resolution as a step
function and conveys the signal through a wavelet function system, is
the foundation of wavelet analysis. The fundamental wavelets are scaled
and displaced to produce all wavelets. Let φ(t)ϵL2(R), L2(R) denote
the space of squared basis real numbers, which is the energy-limited
signal space, whose Fourier transform is φ(t), when the following
conditions are met (Aram et al., 2007):

∫+∞

∞
φ t( )dt � 0, Cφ � ∫

R

φ t( )∣∣∣∣ ∣∣∣∣2
ω| | dω<∞ (3)

We refer to this fundamental wavelet φ(t) as having a good
frequency-domain attenuation property. The basic wavelet can be
translated or stretched to obtain a wavelet sequence:

φab t( ) � 1���
a| |√ φ

t − b

a
( ), a, bϵR, a ≠ 0 (4)

where a is the contraction expansion factor and b is the translation
factor. Continuous wavelet transform is defined as

WTf a, b( )≤f t( ),φab t( ) � 1���
a| |√ ∫

R
f t( )φ t − b

a
( )dt (5)

To deconstruct the time series data in this paper with the trend
term and step term eliminated, we chose coif 5, one-dimensional
wavelet. A total of eight layers are then decomposed to produce
detailed signals. The symmetry of the wavelet coif 5 is superior. The
fitting value for the residual series is the sum of the seventh layer (d7)
and the eighth layer (d8). Figure 3 illustrates the wavelet
decomposition of the YNLJ station using this method as an example.

3.3 Smoothing spline fitting (SPF)

Seasonal signals are also fitted using the smoothing spline fitting
approach in addition to the continuous wavelet transform.
Smoothing spline can be used to fit discrete functions. The value
of the following formula can be minimized by selecting the most
appropriate function among all the functions with second
continuous derivatives. RSS can be understood as the penalty
coefficient:

RSS f, λ( ) � ∑N
i�1

yi − f xi( ){ }2 + λ∫ f″ t( ){ }dt, f x( ) � ∑N
j�1
Nj x( )θj

(6)
where λ is a smoothing factor. The first part of the formula is

used to measure the degree of approximation between the fitted
curve and the original data, and the second part is the curvature of
punishment. When λ � 0, the fitted curve goes through all the
sample points, and the value of RSS(f, λ) is 0. When λ � ∞, the
fitted curve becomes a straight line, which is equivalent to the least
squares linear fitting. We use the smoothing spline function in
MATLAB to fit the seasonal terms. The fitting function is as follows:

FIGURE 3
Continuous wavelet decomposition diagram of YNLJ station. The gray point represents the detrended time series, the red line represents the fitting
value of CWT, and the green line represents the signals of the seventh and eighth layers of the wavelet decomposition.
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y � p∑
i

wi yi − s xi( )( )2 + 1 − p( ) ∫ d2x

dx2
( )2

, pϵ 0, 1[ ] (7)

In the fitting process, wi is 1 by default and p is equivalent to the
smoothing coefficient in Eq. 6. The smaller the value of p is, the
smoother the fitting effect is. The larger the value of p is, the more
likely the fitting result is to pass through all the sample points. In this
study, the time series were fitted using p � 0.99, p � 0.999, and
p � 0.9999, respectively, after the trend item was eliminated. Taking
the YNLJ station as an example, as shown in Figure 4, when p � 0.99,
the annual and semi-annual period fluctuations of the time series could
be fitted, but the fitting amplitude value was noticeably smaller than the
genuine value at several moments. When p � 0.999, SPF can fit part of
short-time irregular seasonal signals. Since the seasonal signals of the
GPS time series are mainly composed of annual and semi-annual period
signals, p � 0.9999 will lead to over-fitting of seasonal terms of the time
series. The standard deviation σ is used to measure the dispersion of the
fit value and residual series: the greater the σ, the more fragmented the
data. The standard deviations of theU direction fitting series at the YNLJ
station were 4.17, 6.17, and 7.14 when the smoothing coefficient
p � 0.99, 0.999, 0.9999, respectively, indicating that with the increase
of the smoothing coefficient, the discreteness of the series fitting value
gradually increased. Based on the fitting of the three smoothing
coefficients, the standard deviation σ of the residual series is 5.51,
4.37, and 3.63, respectively. When we chose p � 0.99, it is clear the
residual series still exhibits a strong period signal, and the tiny smoothing
coefficient is unable to adequately capture the annual and semi-annual
period fluctuations of the GPS coordinate time series. Through the
spectrum diagram analysis of the original series and the residual series, it
can be seen that when the smoothing coefficient is large, SPF can better
suppress the annual and semi-annual term signal, but at the same time, it

suppresses the signals between 100 and 101 frequencies in the whole
series. Therefore, p � 0.999 was selected in this paper for SPF of all
stations in China. Taking YNLJ as an example, Figure 5 displays the
seasonal term fitting of YNLJ. From the fitting of theUdirection between
2020 with 2022 (purple box), the fitting value of CAF and CWT is
significantly smaller than the seasonal term, and SPF is more consistent
with the seasonal term changes reflected by the time series.

3.4 Comparison of fitting effects

To evaluate the fitting effects, the commonly used indicators are
the coefficient of determination R2 and root mean square error
(RMSE). In this article, the fitting impacts of the three fitting
methods will be compared using R2 and RMSE.

3.4.1 Coefficient of determination R2

The coefficient of determination R2 is a measure of how well the
regression equation fits the data, commonly referred to as “goodness of
fit,” and it is the ratio of the sum of squares from the regression to the
sum of all squares. The statistic used to assess the degree of fit has a
range of values between [0, 1]. The better the fitting effect, the closer the
R2 value is to 1. R2 is calculated as follows (Wang et al., 1992):

R2 � ∑n
i�1 ŷi − �y( )2∑n
i�1 yi − �y( )2 � 1 − ∑n

i�1 yi − ŷi( )2∑n
i�1 yi − �y( )2 (8)

Here, ŷi indicates the regression values, yi indicates
observations, and yi is the mean value of observation. The
coefficient of determination R2 of CAF, CWT, and SPF is
statistically analyzed as shown in Figure 6.

FIGURE 4
SPF of YNLJ in the U direction. (A) Fitting value in the U direction of the YNLJ station when the smoothing coefficients are 0.99, 0.999, and 0.9999,
respectively; (B) power spectrum of the residual series of the YNLJ station in the U direction after removing the seasonal term by SPF; (C) residual series of
the YNLJ station after fitting seasonal terms with the smoothing coefficients of 0.99, 0.999, and 0.9999, respectively, where σ is the standard deviation.
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The coefficient of determination R2 of a seasonal term fitting in the
N/E/U direction of each station is determined using Eq. 8. The results
revealed that in the N direction, the coefficient of determination based
on CAF is approximately 80% in the interval (0, 0.3), the coefficient of
determination based on CWT is approximately 80% in the interval (0.1,
0.4), and the coefficient of determination based on SPF is approximately
80% in the interval (0.3, 0.7), meaning that the fitting effects of SPF in
N are the best, followed by CWT, and the fitting effect of CAF is poor.
The three approaches of fitting effects in E are comparable to that in N.
The coefficient of determination values of the three methods in the U
direction are higher than those in the N/E direction to a certain extent,
indicating that their effects are superior to those of the N/E direction.
The U direction coefficient of determination based on CAF is
approximately 84% in the interval (0.2, 0.5), the coefficient of
determination based on CWT is approximately 89% in the interval
(0.2, 0.5), and the coefficient of determination based on SPF is

approximately 89% in the interval (0.3, 0.7). In conclusion, SPF,
which is superior to CWT and CAF, provides the best degree of
fitting overall for the seasonal term fitting of the GPS coordinate
time series.

3.4.2 Root mean square error
The N/E/U direction time series of more than 260 stations in

CMONOC are fitted by the aforementioned three methods, and the
fitting effect is measured by the RMSE value, which is expressed as:

RMSE �
������������
1
N

∑N
i�1

ŷi − yi( )2√√
(9)

Here, yi indicates i moment of observation, ŷi indicates the
fitted value of i moment, and N indicates observation times. The

FIGURE 5
Seasonal time series fitting of YNLJ. Red line indicates CAF, shifted upward by 20 mm; green line indicates CWT; blue line indicates SPF, shifted down
by 20 mm in N/E. The distance parallel to the U direction is 40 mm.

FIGURE 6
Cumulative probability graph of the coefficient of determination R2. From left to right, the figure represents coefficient of determination R2 values in
the N/E/U direction. The color indicates the range of the coefficient of determination.
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smaller the RMSE value, the better the fitting effect. Figure 7 displays
the RMSE values for each station that were fitted in the N/E/U
direction. The RMSE average values of the three fitting methods in
the N/E/U direction of each station are shown in Table 1, with the
RMSE of SPF being the smallest among them.

The RMSE value of each station in Figure 7 ranges from 0 to 4 mm
in the N/E directions and from 0 to 10 mm in U. The average RMSE
values of the N/E/U directions were, respectively, 2.21, 2.09, and
1.56 mm; 2.06, 2.05, and 1.64 mm; and 5.73, 5.48, and 4.69 mm. In
the N/E directions, the fitting effect of CAF and CWT is close, and the
RMSE value of CWT is slightly smaller than that of CAF in the
Sichuan–Yunnan area. The RMSE value of SPF is the smallest,
which indicates that SPF in the N/E direction can better fit the
seasonal fluctuations of the station coordinates. In the U direction,
the proportion of stations with RMSE in the range of 5~7 mm and

7~10 mm inCAFwas 54.6% and 17.5%, respectively. The proportion of
stations with RMSE in the range of 5~7 mmand 7~10 mm inCWTwas
48.2% and 13.2%, respectively. The RMSE values of SPF in the
aforementioned range of sites are 26.7% and 1.2%, respectively,
indicating that SPF is significantly better than CWT and CAF.

4 The correlation of residual series

Generally, time series consist of the long-term trend term, the
seasonal term, and the irregular residual term:

Y � YK + YT + vi (10)
where YK indicates the long-term trend, which can be obtained by
the least square linear fitting (Kreemer and Blewitt, 2021), YT

FIGURE 7
RMSE value of each station in the N/E/U direction. The first row from left to right is the RMSE of CAF, CWT, and SPF in N, respectively; the second row
from left to right is the RMSE of CAF, CWT, and SPF in E, respectively; the first row from left to right is the RMSE of CAF, CWT, and SPF in U, respectively. The
color indicates RMSE values.

TABLE 1 Mean RMSE of the three fitting methods for each station in the N/E/U direction.

Direction CAF CWT SPF CWT/CAF (%) SPF/CAF (%) SPF/CWT (%)

N 2.21 2.09 1.56 94.6 70.6 74.6

E 2.06 2.05 1.64 99.5 79.6 80.0

U 5.73 5.48 4.69 95.6 81.8 85.6
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indicates the seasonal term, which is obtained by CAF, CWT, and
SPF, respectively, and vi indicates various residual errors. The
correlation between two series can be represented by the
correlation coefficient r. In statistics, the Pearson correlation
coefficient is frequently used to assess the strength of a
relationship between two variables. It may also be applied to
assess how similar the GPS station residual series are to one
another. The time series of the common epoch of two stations is
used to calculate the correlation coefficient (Hu et al., 2022):

r � ∑n
i�1 xi − �x( )2����������������������∑n

i�1 xi − �x( )2∑n

i�1 yi − �y( )2√ (11)

In the aforementioned formula, n represents the number of
common epochs, x and y represent the observations, and �x and �y
represent the average value of the observations. If two series conform
to the normal distribution, the Pearson correlation coefficient
reflects the linear correlation between the two series. In this
study, the residual series normal distribution status was assessed
using the histogram in conjunction and standard P–P plot
(probability–probability plot). The normal P–P plot is a scatter
plot which is created using the variable cumulative probability and
the normal distribution cumulative probability. When the data are
more close to the trend line, it indicates that the data conform to the

normal distribution. The histogram and standard P–P diagram for
the residual series column in the N direction of the YNLJ station are
displayed in Figure 8. The residual series that result from fitting the
three seasonal variables all conform to the normal distribution, as
can be observed.

The Pearson correlation coefficient was used to calculate the
inter-station correlations. Taking 20 stations in the first phase of the
CMONOC as an example, the inter-station correlation is shown in
Figure 9. The inter-station correlation coefficient of the residual
series of the other stations is positive, whereas it is negative for the
residual series of CHUN-DLHA, BJFS-KMIN, DLHA-HRBN,
DLHA-JIXN, and KMIN-LHAS. The correlation coefficients of
the residual series between stations are relatively close when the
seasonal factor is fitted with CAF and CWT. The residual series tend
to be more stable when using SPF because it is better able to account
for the amplitude modulation phenomenon in the seasonal term of
coordinate time series. This increases the inter-station correlation
coefficient of some station residual series, and the calculated inter-
station correlation coefficient is greater than 0.3, indicating that
there is some pertinence between the reference stations.

The inter-station correlation of the residual coordinate time
series is usually related to the environment of the reference station,
the data processing method, and other factors (Yuan et al., 2018). As
shown in Figure 9A, we determined the residual series inter-station

FIGURE 8
Histograms and normal P–P plots for YNLJ in N direction. The first row shows histograms, with the red line indicating the normal distribution; the
second row shows the normal P–P plots, with the red dashed line indicating the normal trend line.
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distance and inter-station correlation coefficient in the N/E/U
direction for each station. The correlation coefficient between the
residual series of stations showed a downward trend as the distance
between stations increased overall, but not all stations followed this
rule; the correlation coefficient between a few stations is less than
zero in places where the distance between stations is less than
500 km, demonstrating that factors other than distance play a
role in determining the correlation between stations. By
comparing the effects of the residual series obtained by the three
different seasonal term fitting methods on the calculation of inter-
station correlation, the correlation of the residual series obtained
after SPF fitting the seasonal term is more aggregative, and the inter-
station correlation of the residual series obtained by SPF in the N/E/
U directions is greater than the inter-station correlation of the two
other methods.

Following various seasonal term fitting methods in N/E/U,
Table 2 displays the inter-station correlations of the residual
series. In the N/E direction, more than 50% of inter-station
correlations are more than 0.3, and most inter-station
correlations in the U direction fall between 0 and 0.3. The
percentage of negative inter-station correlations in the three
directions can be greatly decreased using the residual series
acquired using the seasonal term fitting approach with SPF. The

inter-station correlation of the residual series is significantly
increased by SPF methods in the N/E direction, and the inter-
station correlation coefficient is decreased when SPF increases the
proportion of inter-station correlation between 0 and 0.3 in the U
direction.

5 Common mode error extraction

5.1 PCA fundamentals

Principal component analysis (PCA) is typically used to adjust
for CME in residual coordinate series. The calculation of CME is
based on inter-station correlation; the greater the correlation, the
higher the value of CME. The elimination of CME can weaken the
inter-station correlation of the GPS network. We select the PCA
approach as the spatial filtering method to extract CME because it
can directly extract CME from each station without the need for a
priori assumptions (Shen et al., 2014; Zheng et al., 2021). The PCA
method is a decomposition method that constructs an orthogonal
basis based on the data itself. Reducing dimensionality while
retaining as many of the dataset variation characteristics as
possible is the main goal of the spatial filtering of the PCA

FIGURE 9
Correlation coefficients between different stations in the N direction. The first row shows the inter-station correlation based on CAF and CWT from
left to right, and the second row shows the inter-station correlation based on SPF. (A)Correlation coefficients between the residual time series of different
stations. The inter-station correlation coefficients of CAF/CWT/SPF are shown as blue/red/yellow dot marks, respectively. Moreover, they are smoothed
and shown as the black straight line, black dot crossed line, and black dotted line, respectively.
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method. A coordinate time series can be divided into several
mutually orthogonal modes using the PCA approach, which is
based on second-order statistics. If the time series for each
station are aligned, the following matrix can be obtained:

X �

x1 t1( ) x2 t1( )
x1 t2( ) x2 t2( )

/ /
/ /

xn−1 t1( ) xn t1( )
xn−1 t2( ) xn t2( )

/ /
/ /

/ /
/ /

/ /
/ /

x1 tm−1( ) x2 tm−1( )
x1 tm( ) x2 tm( )

/ /
/ /

xn−1 tm−1( ) xn tm−1( )
xn−1 tm( ) xn tm( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (12)

Decompose the aforementioned matrix as follows:

X � USVT (13)
where S is the diagonal matrix of eigenvalues si, i � 1, 2,/, k

and k is the number of eigenvalues. The vector in V is called the
principal direction:

P � X × V � U × S × VT � U × S (14)
The column vector in P is the principal component C. U and V

are orthogonal normalized matrices. At this point, m> n, and the
rank of X is n. The variance matrix of X can be expressed as

C � XTX � VΛVT,Λ � STS (15)
where Λ forms the orthogonal base of X. X can be expanded on the
orthogonal base as

X ti, xi( ) � ∑n
k�1

ak ti( )vk xj( ) (16)

By arrangingU andV in the order of the magnitude of the values
in S, and considering the first few principal components of PCAwith
large variance as the CME of the residual series, PCA calculates the
CME according to the following equation:

CMEPCA � ∑k0
i�1
PiV

T
i (17)

where Pi is the ith PC, VT
i is the spatial response (SR)

corresponding to Pi, and k0 is the number of PCs used to
calculate the CME. The CME of PCA extraction is related to the
number of PCs selected. To obtain the normalized spatial response,
the spatial vector value of each order PC of each station was divided
by the maximum spatial vector, resulting in a range of −100% to
100% for the SR value across all stations. If the value of k0 is too
small, some information will be lost; conversely, errors will be
introduced.

5.2 CME spatial distribution characteristics

The PCA method decomposes the time series into temporal
principal components and spatial eigenvectors. The variation
characteristics of the first few principal components can reflect
the common variation of the residual series over time at each
station, and the eigenvectors can reflect the spatial distribution
characteristics of the strength of the variation over time. The
CME of GPS continuous time series in mainland China was
obtained by the PCA method. We analyze the effects of various
seasonal term fitting methods on the extraction of the CME and
analyze the spatial response distribution characteristics of the CME
of the CMONOC. The concept of CME has been widely used in GPS
networks, but there is no clear definition of CME, and we regard the
spatial noise after removing the constructive and seasonal signals as
CME. From among the more than 260 stations in the CMONOC, we
chose stations with data integrity rates of more than 85% (223) and
used the cubic spline interpolation approach to complete the missing
residual series data. PCA was used to process the residual series of
4,064 epochs between 2010.8015 and 2021.9829 to determine CME.

TABLE 2 Correlation coefficient between the residual time series based on different fitting methods in the N/E/U directions.

Correlation coefficient N E U

CAF (%) CWT (%) SPF (%) CAF (%) CWT (%) SPF (%) CAF (%) CWT (%) SPF (%)

0.7~1.0 0.3 0.9 0.5 0.3 0.2 0.4 0.1 0.2 0.1

0.3~0.7 43.6 72.2 84.7 41.1 38.5 58.1 22.8 38.5 17.6

0.0~0.3 49.7 25.1 14.8 51.6 53.3 39.4 71.0 53.3 80.2

<0.0 6.4 1.8 0 7.0 8.0 2.1 6.1 8.0 2.1

FIGURE 10
Top 30 major component cumulative contribution rate in the N/
E/U direction. The figures in the top, middle, and bottom rows,
respectively, represent the cumulative contribution rates of each
order of PC to the residual series after fitting seasonal signals
based on CAF, CWT, and SPF. Blue, red, and yellow denote the N, E,
and U directions, respectively.
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Figure 10 represents the cumulative contribution rate of the first
30 orders of PC extracted from the PCA of the residual series in the
N/E/U direction, where the cumulative contribution rate of the PCA
of the residual series is obtained by fitting the seasonal term to the
CAF. The contribution rate of PC1, PC2, and PC3 was 41.39%,
6.23%, and 4.30% in the N; 28.94%, 8.76%, and 5.76% in the E; and
22.55%, 7.72%, and 6.16% in the U. The contribution rate of PCA of
residual series obtained by fitting seasonal signal with CWT was
40.54%, 6.76%, and 4.50% in the N; 27.68%, 9.64%, and 5.42% in the
E; 22.52%, 7.47%, and 5.73% in the U. The contribution rate of PCA
of residual series obtained by fitting seasonal term with SPF was
43.61%, 3.11%, and 2.47% in the N; 36.11%, 6.59%, and 4.34% in the
E; and 21.18%, 6.79%, and 4.87% in the U. Comparatively, N is the
largest, followed by E, and U is the smallest among them in the
relationship of the contribution rate of each order of PC in three
directions. The variance contribution rate of the first three orders of
PC is greatly increased by the seasonal term fitting approach with
SPF in the E direction. Due to the small cumulative contribution

rate, the first fifth-order PC is chosen to calculate the commonmode
errors in the U direction.

CME is a kind of error with spatial characteristics. If the
principal components are only calculated based on the variance
contribution rate, some PCs with low eigenvalues but clear spatial
responses will be overlooked (Xu et al., 2022). Therefore, we
examined the corresponding spatial responses of each order of
primary components. The SR and PC series for the first three
orders of PCs at each station, using the N direction as an
example, are displayed in Figure 11. The PC series represent
changes in time, and the SR indicates the degree of response of
that station. A positive SR shows a positive response of a station to a
particular PC, whereas a negative SR value indicates that the station
responds negatively to a particular PC. The first three orders of PC
retrieved by CAF and CWT are comparable in terms of the time
domain: PC1 fluctuates less than PC2 and PC3, and PC2 and
PC3 exhibit nonlinear variation characteristics. The first three
order PCS that SPF was able to extract are all depicted as quite

FIGURE 11
First three PCs and their corresponding SR after fitting the seasonal terms with three methods in the N direction. From the top to the bottom: in the
first row, PC1, PC2, PC3 and their SR based on constant amplitude harmonic fitting (CAF), respectively, are given; in the second row, PC1, PC2, PC3 and
their SR based on continuous wavelet transform (CWT) fitting, respectively, are given; in the third row, PC1, PC2, PC3 and their SR based on smoothing
spline fitting (SPF), respectively, are given.

Frontiers in Earth Science frontiersin.org11

Miao et al. 10.3389/feart.2023.1176241

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1176241


stable series. A rather uniform positive spatial response was seen in
PC1 produced by CAF, CWT, and SPF, with mean response values
of 71%, 71%, and 76%, respectively, and no discernible variation in
the magnitude of response values. The spatial responses of PC2 and
PC3 of CAF and CWT exhibit relative heterogeneity without
obvious spatial clustering phenomena. The SR values of PC2 and
PC3 of SPF show spatially complementary distributions, with the SR
values of PC2 showing a positive response in the western block and a
larger negative response in the coastal region, and the SR values of
PC3 showing a positive response in the Sichuan–Yunnan region and
southern Qinghai–Tibet and a significant negative response in the
northeastern block. These two-order PCs show small spatial
responses at the junction of positive and negative SR values.
Using the N direction as an example, the analysis shows that the
residual series obtained by SPF are able to obtain the spatial
distribution characteristics of the common mode errors by PCA.
The investigation reveals that the residual series acquired by SPF are
capable of obtaining the spatial distribution properties of CME
by PCA.

Figure 12 represents a histogram of the normalized spatial
response values for the first fifth-order PC of the residual series
after fitting the seasonal term by the three fitting methods in the N
direction, where it can be seen that all stations have positive SR
values for PC1, mostly within the range of 50%–100%. According to

the statistical histograms and spatial distribution maps of SR2 and
SR3 for each station, the CAF and CWT exhibit high symmetry,
whereas SPF shows poor symmetry, which suggests that the
statistical histogram is smaller and less symmetrical when SR has
a distinct spatial distribution. In Figure 12, we can see that SR2 and
SR3 extracted by SPF combined with the PCA method have spatial
classification characteristics, and they have histograms with SR
values for PC4 primarily around 0, indicating that PC4 should
not be included in the CME of the stations. By analyzing the N
direction, we can see that the method of SPF to obtain the residual
series has better spatial clustering characteristics by calculating the
SR value of each order of PC through PCA. Since the CME itself is a
spatially comparable noise, the SPF approach is selected to prevent
the seasonal signal from influencing the residual series. To create the
residual series for the E and U directions, we also fit the seasonal
term using SPF. PCA was then used to create the principal
component series and the spatial response values for each station.

Figure 13 shows the first three orders of PC and SR values
extracted by PCA in E direction. Principal component series showed
strong temporal stability, with the PC1 series value being
significantly higher than PC2 and PC3. Space-wise, SR values in
the E and N directions exhibit comparable patterns of spatial
distribution: SR1 is positive, indicating that PC1 is a common
component of CME. The spatial distribution of SR2 reveals a

FIGURE 12
SR statistical histogram of first fifth-order PC in the N direction. From the top to the bottom: in the first row, SR1, SR2, SR3, SR4, and SR5 based on
CAF, respectively, are given; in the second row, SR1, SR2, SR3, SR4, and SR5 based onCWT, respectively, are given; in the third row, SR1, SR2, SR3, SR4, and
SR5 based on SPF, respectively, are given.
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gradient change from coastal to inland, with the SR values showing a
negative spatial response and a greater degree of response the closer
the coastal area. The SR value shifts from negative to positive as the
longitude shrinks, and the degree of spatial responsiveness gradually
reduces before trending bigger. In SR3, the Sichuan–Yunnan region
exhibits a positive spatial response, while the northeast and western
regions exhibit a negative spatial response.

Figure 14 shows the first fifth-order PC and SR values extracted
by PCA in the U direction. In the time domain, the magnitudes of
the first 5 orders of PC series values are in the following order: PC1 is
the largest, followed by PC2/PC3, and PC4/PC5 is the smallest.
Spatially, the distribution of SR values in the U direction shows

different spatial distribution characteristics from those in the N and
E direction. SR1 exhibits an overall positive response, and unlike the
N/E direction, the response values in the U direction gradually
decrease from north to south, with a noticeably smaller response to
PC1 in the Sichuan–Yunnan area. In SR2, only the western block
shows a significant positive spatial response. In SR3, the
northeastern block exhibits a large positive spatial response, while
the Sichuan–Yunnan block exhibits a large negative spatial response.
In SR4, the northern and coastal regions of the western block exhibit
a largely negative response, and areas such as Gansu and Ningxia
show a largely positive response. In SR5, the northeastern region
exhibits a relatively large negative spatial response. With no

FIGURE 13
First three order of PCs and their SRs in the E direction. From the left to the right, PC1, PC2, PC3 and their SRs in E based on SPF, respectively, are
given. The diagrams in the top row show the PC series diagram, and the diagrams in the bottom row show the spatial distribution of SR.

FIGURE 14
First five PCs and their SRs in the U direction. From the left to the right, from the top to the bottom, PC1, PC2, PC3, PC4, PC5 and their SR in U
direction based on SPF, respectively, are given. The diagrams in the top row show the PC series diagram, and the diagrams in the bottom row show the
spatial distribution of SR.
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particularly large and homogeneous SR values in the first five orders
of PC, the spatial response of each order of PC in the U direction for
the Sichuan–Yunnan area is completely different from the
distribution features in the N/E direction. Since CME is an error
with spatial characteristics, the distribution of spatial responses
should be considered together with the variance contribution.

5.3 Comparison of spatial filtering effects

In this paper, CAF, CWT, and SPF are used to fit the seasonal
term signals in the coordinate time series, and the three kinds of
residual series are spatially filtered using the PCA method. The
RMSE value is used to measure the discretization of residual series,
and the RMSE reduction value is used to measure the spatial filtering
effect of PCA method. The RMSE reduction can be calculated using
the following equation (Li et al., 2020b):

RMSEreduction � RMSEoriginal − RMSEfiltered

RMSEoriginal
× 100% (18)

The RMSE reductions are depicted in Figure 15.With an average
RMSE reduction of 24.3%, 8.19%, and 7.34% in the N/E/U direction
of the residual series after CAF, 17.6%, 22.5%, and 7.45% in the N/E/
U direction of the residual series after CWT, and 26.8%, 24.2%, and
7.78% in the N/E/U direction of the residual series after SPF, the
spatial filtering somewhat reduced the RMSE in all the directions.
Among the three fitting methods, SPF has the best fitting effect and
the smallest RMSE value, and the reduction ratio of RMSE value
after PCA spatial filtering is higher than that of the other two fitting
methods. The RMSE value of residual series after filtering is the
smallest. Compared with the spatial filtering effect of the PCA
method on the three directions, the RMSE reductions in the N/E
direction are mostly in the range of 10%–40%, and the RMSE
reductions in the U direction are mostly in the range of 0%–15%,
indicating that the spatial filtering effect of the PCA method on

residual series in the U direction is slightly worse than that in the
N/E direction.

6 Conclusion

In this paper, high-precision data processing is carried out to
obtain coordinate time series from CMONOC, and the seasonal
terms are fitted using constant amplitude harmonic fitting,
continuous wavelet transform, and smoothing spline fitting,
respectively, after which CME is extracted from the residual
series by PCA, and the effects of different seasonal term fitting
methods on the spatial distribution of the CME are analyzed. The
following conclusions are obtained:

(1) To take into account the seasonal amplitude modulation, the
fitting effects of the three fitting methods were compared. By
comparing the coefficient of determination R2 of the three
fitting methods, the coefficient of determination of the SPF is
significantly larger than that of CWT and CAF, and the
coefficient of determination in the U direction is greater than
that in the N/E direction at the same station. The results show
that the effect of CWT is better by 5.4%, 0.5%, and 4.4% than
that of CAF in the N/E/U direction, and the fitting effect of SPF
is better by 25.4%, 20.0%, and 14.4% than that of CAF,
respectively. Combined with the coefficient of determination
R2 and RMSE value, SPF can better fit the amplitude
modulation phenomenon of seasonal term and reflect the
time-varying characteristics of seasonal term amplitude in
time series.

(2) Following the removal of the trend term, seasonal term, and step
signal from the time series, the residual series was obtained, and
the correlation between the residual series and the distance
between the stations was examined. As the distance between two
stations increases, the correlation between stations of the

FIGURE 15
Cumulative probability graph of RMSE reduction for residual series using three methods in each direction. The graph represents the ratio of the
number of stations to the total number of stations within the range of RMSEreduction . From the left to the right: CAF, CWT, and SPF in the N direction; CAF,
CWT, and SPF in the E direction; CAF, CWT, and SPF in the U direction, respectively.
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residual series gradually declines. There are stations with small
distance between them but are negatively correlated, indicating
that the distance between stations is not the only factor affecting
the correlation between stations. Among the three seasonal term
fitting methods, the correlation between stations after SPF in the
N/E direction is greater than that in the other two methods, but
the correlation in the U direction is the opposite.

(3) We analyzed the spatial characteristics of CME extracted by
PCA. The residual series obtained by CAF and CWT were
obtained by PCA to obtain the spatial response values of each
order; PC1, PC2, and PC3 did not have obvious spatial
distribution characteristics, while each order PC obtained by
SPF had spatial classification characteristics. In the N and E
directions, PC2 and PC3 showed similar spatial classification
characteristics. In the U direction, SR1 in the Sichuan–Yunnan
region was significantly smaller than that in other regions, and
PC2 to PC5 showed negative responses. It is necessary to
eliminate the stations with small spatial responses to get
good spatial filtering effects. The incentive of the partition
characteristics of the spatial response distribution of PC of
each order remains to be studied in the future.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

Data curation: PMandGX; formal analysis: PM, BB, and ZG; funding
acquisition: GX and SW;methodology: PM,GX, andKZ;writing—original
draft: PM; writing–review and editing: PM, GX, and KZ. All authors
contributed to the article and approved the submitted version.

Funding

This research was supported by the Open fund of the Key
Laboratory of Marine Environmental Survey Technology and
Application, Ministry of Natural Resources (MESTA-2020-A002),
the Jiangxi Science and Technology Plan Project (20212BBE53031),
and the East China University of Technology Graduate Student
Innovation Fund (YC2022-s602).

Acknowledgments

The GPS observable data were obtained from the China
Earthquake Administration. The authors are grateful to JPL for
providing GIPSY6.0 software.

Conflict of interest

Author GX was employed by Nanjing Zhixing Map Information
Technology Co., Ltd.

The remaining authors declare that the research was
conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of
interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abraha, K. E., Teferle, F. N., Hunegnaw, A., and Dach, R. (2017). GNSS related
periodic signals in coordinate time-series from Precise Point Positioning. Geophys.
J. Int. 208 (3), 1449–1464. doi:10.1093/gji/ggw467

Aram, M., El-Rabbany, A., Krishnan, S., and Anpalagan, A. (2007). Single frequency
multipath mitigation based on wavelet analysis. J. Navigation 60 (02), 281–290. doi:10.
1017/s0373463307004146

Blewitt, G., and Lavallée, D. (2002). Effect of annual signals on geodetic velocity.
J. Geophys. Res. Solid Earth 107, ETG 9-1–ETG 9-11. doi:10.1029/2001jb000570

Bogusz, J., and Klos, A. (2016). On the significance of periodic signals in noise analysis
of GPS station coordinates time series. GPS solutions 20 (4), 655–664. doi:10.1007/
s10291-015-0478-9

Dong, D., Fang, P., Bock, Y., Webb, F., Prawirodirdjo, L., Kedar, S., et al. (2006).
Spatiotemporal filtering using principal component analysis and Karhunen-Loeve
expansion approaches for regional GPS network analysis. J. Geophys. Res. solid earth
111, 3806. doi:10.1029/2005jb003806

Gu, Y., Yuan, L., Fan, D., You, W., and Su, Y. (2017). Seasonal crustal vertical
deformation induced by environmental mass loading in mainland China derived from
GPS, GRACE and surface loading models. Adv. Space Res. 59 (1), 88–102. doi:10.1016/j.
asr.2016.09.008

He, X., Hua, X., Yu, K., Xuan, W., Lu, T., Zhang, W., et al. (2015). Accuracy
enhancement of GPS time series using principal component analysis and block spatial
filtering. Adv. Space Res. 55 (5), 1316–1327. doi:10.1016/j.asr.2014.12.016

He, X., Montillet, J. P., Fernandes, R., Bos, M., Yu, K., Hua, X., et al. (2017). Review of
current GPS methodologies for producing accurate time series and their error sources.
J. Geodyn. 106, 12–29. doi:10.1016/j.jog.2017.01.004

Hu, S., Chen, K., Zhu, H., Xue, C., Wang, T., Yang, Z., et al. (2022). A comprehensive
analysis of environmental loading effects on vertical GPS time series in yunnan,
southwest China. Remote Sens. 14 (12), 2741. doi:10.3390/rs14122741

Klos, A., Olivares, G., Teferle, F. N., Hunegnaw, A., and Bogusz, J. (2018). On the
combined effect of periodic signals and colored noise on velocity uncertainties. GPS
solutions 22 (1), 1–13. doi:10.1007/s10291-017-0674-x

Kreemer, C., and Blewitt, G. (2021). Robust estimation of spatially varying common-
mode components in GPS time-series. J. geodesy 95 (1), 13–19. doi:10.1007/s00190-020-
01466-5

Li, S., Huang, S., Chen, Q., Dam, F., Fok, Z., Zhao, F., et al. (2020b). Quantitative
evaluation of environmental loading induced displacement products for
correcting GNSS time series in CMONOC. Remote Sens. 12 (4), 594. doi:10.
3390/rs12040594

Li, S., Shen, W., Pan, Y., and Zhang, T. (2020a). Surface seasonal mass changes and
vertical crustal deformation in North China from GPS and GRACE measurements.
Geodesy Geodyn. 11 (1), 46–55. doi:10.1016/j.geog.2019.05.002

Li, Z., Yue, J., Li, W., Lu, D., andHu, J. (2019). Comprehensive analysis of the effects of
common mode error on the position time series of a regional GPS network. Pure Appl.
Geophys. 176 (6), 2565–2579. doi:10.1007/s00024-018-2074-8

Liu, B., Xing, X., Tan, J., and Xia, Q. (2020). Modeling seasonal variations in vertical
GPS coordinate time series using independent component analysis and varying
coefficient regression. Sensors 20 (19), 5627. doi:10.3390/s20195627

Márquez-Azúa, B., and DeMets, C. (2003). Crustal velocity field of Mexico from
continuous GPS measurements, 1993 to June 2001: Implications for the neotectonics of
Mexico. J. Geophys. Res. Solid Earth 108. doi:10.1029/2002jb002241

Frontiers in Earth Science frontiersin.org15

Miao et al. 10.3389/feart.2023.1176241

https://doi.org/10.1093/gji/ggw467
https://doi.org/10.1017/s0373463307004146
https://doi.org/10.1017/s0373463307004146
https://doi.org/10.1029/2001jb000570
https://doi.org/10.1007/s10291-015-0478-9
https://doi.org/10.1007/s10291-015-0478-9
https://doi.org/10.1029/2005jb003806
https://doi.org/10.1016/j.asr.2016.09.008
https://doi.org/10.1016/j.asr.2016.09.008
https://doi.org/10.1016/j.asr.2014.12.016
https://doi.org/10.1016/j.jog.2017.01.004
https://doi.org/10.3390/rs14122741
https://doi.org/10.1007/s10291-017-0674-x
https://doi.org/10.1007/s00190-020-01466-5
https://doi.org/10.1007/s00190-020-01466-5
https://doi.org/10.3390/rs12040594
https://doi.org/10.3390/rs12040594
https://doi.org/10.1016/j.geog.2019.05.002
https://doi.org/10.1007/s00024-018-2074-8
https://doi.org/10.3390/s20195627
https://doi.org/10.1029/2002jb002241
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1176241


Ming, F., Yang, Y., Zeng, A., and Zhao, B. (2017). Spatiotemporal filtering for regional
GPS network in China using independent component analysis. J. Geodesy 91 (4),
419–440. doi:10.1007/s00190-016-0973-y

Nikolaidis, R. (2002). “Observation of geodetic and seismic deformation with
the global positioning system,” Ph.D. Thesis. (San Diego: University of
California).

Pugliano, G., Robustelli, U., Rossi, F., and Santamaria, R. (2016). A new method for
specular and diffuse pseudorange multipath error extraction using wavelet analysis.GPS
solutions 20 (3), 499–508. doi:10.1007/s10291-015-0458-0

Shen, Y., Li, W., Xu, G., and Li, B. (2014). Spatiotemporal filtering of regional GNSS
network’s position time series with missing data using principle component analysis.
J. Geodesy 88 (1), 1–12. doi:10.1007/s00190-013-0663-y

Tan, W., Chen, J., Dong, D., Qu, W., and Xu, X. (2020). Analysis of the potential
contributors to common mode error in chuandian region of China. Remote Sens. 12 (5),
751. doi:10.3390/rs12050751

Wang, F., Dong, D., and Zhang, P. (2020). Common mode error analysis based on
GPS station of Chinese mainland. Earthq. Res. China 36 (04), 843–844. doi:10.3760/
cma.j.cn112140-20200310-00210

Wang, J. C. M., Gan, F. F., and Koehler, K. J. (1992). A goodness-of-fit test based on
P-P probability plots. J. Qual. Technol. 24 (2), 96–102. doi:10.1080/00224065.1992.
12015233

Wang, L., Chen, C., Du, J., and Wang, T. (2017). Detecting seasonal and long-term
vertical displacement in the North China Plain using GRACE and GPS.Hydrology Earth
Syst. Sci., 21(6), 2905–2922. doi:10.5194/hess-21-2905-2017

Wdowinski, S., Bock, Y., and Wu, S. (2017). An enhanced singular spectrum analysis
method for constructing of daily positions for estimating coseismic and postseismic
displacement induced by the 1992 Landers earthquake. Geophys Res. Solid Earth 102,
18057–18070.

Xu, W., Chen, G., Ding, K., Yang, D., and Yang, X. (2022). Analysis of the common
model error on velocity field under colored noise model by GPS and InSAR: A case
study in the Nepal and everest region. Geodesy Geodyn. 13(4), 399–414. doi:10.1016/j.
geog.2022.01.005

Yuan, P., Jiang, W., Wang, K., and Sneeuw, N. (2018). Effects of spatiotemporal
filtering on the periodic signals and noise in the GPS position time series of the crustal
movement observation network of China. Remote Sens. 10 (9), 1472. doi:10.3390/
rs10091472

Zhao, B., Huang, Y., Zhang, C., Wang, W., and Tan, K. (2015). Crustal deformation
on the Chinese mainland during 1998–2014 based on GPS data. Geodesy Geodyn. 6 (1),
7–15. doi:10.1016/j.geog.2014.12.006

Zheng, K., Zhang, X., Sang, J., Zhao, Y., Wen, G., and Guo, F. (2021). Common-mode
error and multipath mitigation for subdaily crustal deformation monitoring with high-
rate GPS observations. GPS Solutions 25 (2), 67–15. doi:10.1007/s10291-021-01095-1

Frontiers in Earth Science frontiersin.org16

Miao et al. 10.3389/feart.2023.1176241

https://doi.org/10.1007/s00190-016-0973-y
https://doi.org/10.1007/s10291-015-0458-0
https://doi.org/10.1007/s00190-013-0663-y
https://doi.org/10.3390/rs12050751
https://doi.org/10.3760/cma.j.cn112140-20200310-00210
https://doi.org/10.3760/cma.j.cn112140-20200310-00210
https://doi.org/10.1080/00224065.1992.12015233
https://doi.org/10.1080/00224065.1992.12015233
https://doi.org/10.5194/hess-21-2905-2017
https://doi.org/10.1016/j.geog.2022.01.005
https://doi.org/10.1016/j.geog.2022.01.005
https://doi.org/10.3390/rs10091472
https://doi.org/10.3390/rs10091472
https://doi.org/10.1016/j.geog.2014.12.006
https://doi.org/10.1007/s10291-021-01095-1
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1176241

	Effects of different seasonal fitting methods on the spatial distribution characteristics of common mode errors
	1 Introduction
	2 Data sources and preprocessing
	3 Seasonal term fitting
	3.1 Constant amplitude harmonic fitting
	3.2 Continuous wavelet transform
	3.3 Smoothing spline fitting (SPF)
	3.4 Comparison of fitting effects
	3.4.1 Coefficient of determination R2
	3.4.2 Root mean square error


	4 The correlation of residual series
	5 Common mode error extraction
	5.1 PCA fundamentals
	5.2 CME spatial distribution characteristics
	5.3 Comparison of spatial filtering effects

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


