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High-amplitude changes in sedimentary δ13C characterize the Cretaceous system
and have been proven useful for supra-regional chemostratigraphic correlation. In
the Cretaceous, these δ13C perturbations indicate large shifts between the global
carbon reservoirs that are usually caused by volcanic activity of large igneous
provinces, the widespread deposition of thick organic carbon-rich sequences
and/or changes in orbital parameters. Here, we present an upper Berriasian to
lower Coniacian (c. 142–88 Ma) composite carbon isotope record based on
14 drill cores, 2 outcrops, and almost 5,000 samples. The total record
comprises a composite thickness of more than 1,500 m. All cores and
successions are located in the larger Hanover area, which represents the
depocenter of the North German Lower Saxony Basin in Early to mid-
Cretaceous times. In Northern Germany, Boreal Lower Cretaceous sediments
are predominantly represented by CaCO3-poor mud and siltstones of up to
2,000m thickness, which become more carbonate-rich during the
Albian–Cenomanian transition and even chalkier in the upper Cenomanian to
Coniacian interval. The carbon isotope record reveals a number of global key
events, including the Valanginian Weissert Event, the Oceanic Anoxic Events
(OAEs) 1a and d, and the Kilian Event (Aptian–Albian boundary, part of OAE 1b).
For the early Late Cretaceous, the Mid-Cenomanian Event, the OAE 2
(Cenomanian–Turonian Boundary Event), and the Navigation Event, among
others, have been identified. The Kilian Event represents the Aptian–Albian
boundary and has been identified herein for the first time in Northern Europe.
Based on the evaluation of its relative position to the Vöhrum boundary tuff, we
tentatively propose a slightly older age for the Aptian–Albian boundary of c.
113.65 Ma instead of 113.2 Ma. The observed chemostratigraphic events enable a
detailed stratigraphic comparison with Tethyan and other Boreal records and
associated paleoenvironmental data. Thus, this new detailed chemostratigraphy
provides a unique opportunity to potentially overcome many still existing
Boreal–Tethyan correlation issues. The presented record can be considered
almost complete, albeit a 2-Myr gap during the early Albian is likely, and
condensed intervals occur specifically during the lower Aptian.
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1 Introduction

Chemostratigraphy has been proven to detect synchronous
changes in element abundances and/or isotope ratios that can be
used for stratigraphic correlation. Specifically, stable carbon
isotopes (δ13C) of carbonates and oxygen isotopes of
foraminiferal tests are powerful tools allowing for high-
resolution chemostratigraphy in the Cenozoic (e.g., Maslin
and Swann, 2006; Cramer et al., 2009; Westerhold et al., 2020)
and the Mesozoic (e.g., Martinez et al., 2015; Batenburg et al.,
2018) down to orbital time scales or even beyond. Nearly half a
century ago, systematic changes in the δ13C composition of
Cretaceous marine carbonates (δ13Ccarb) were documented for
the first time (e.g., Weissert, 1979; Scholle and Arthur, 1980). In
the subsequent years and decades, the temporal resolution of
these records increased continuously (e.g., Renard, 1986;
Schlanger et al., 1987; Lini et al., 1992; Jenkyns et al., 1994;
Erbacher et al., 1996; Herrle et al., 2004; Jarvis et al., 2006; Voigt
et al., 2008; Kim et al., 2022). Our understanding of the
underlying mechanisms in the Earth system and the global
carbon cycle driving these contemporaneous, globally observed
swings in δ13C at various timescales has been significantly
improved based on such high-resolution datasets.

Carbon isotope-based chemostratigraphy is considered the most
reliable method in pelagic carbonates. Major fluctuations in δ13C
have also been documented in shallow marine successions, organic
carbon, and terrestrial settings (e.g., Wortmann and Weissert, 2000;
Erbacher et al., 2005; Gröcke et al., 2005; Weissert et al., 2008; Huck
et al., 2011), allowing land–sea correlations and, thus, reflecting
global shifts between Earth’s carbon pools. Specifically, δ13C
measurements on organic matter (δ13Corg) were successfully
applied to high-resolution chemostratigraphy in organic-rich,
carbonate-poor marine Cretaceous sediments (e.g., Menegatti
et al., 1998; Erbacher et al., 2005).

The mid-Cretaceous period (~125–80 Ma) witnessed a
number of widespread black shale occurrences that are named
Oceanic Anoxic Events (OAEs). These OAEs are associated with
dramatic changes in climate and biota (e.g., Erbacher et al., 1996;
Leckie et al., 2002; Erba, 2006). These OAEs are attributed to
intermittent global carbon cycle perturbations in the
ocean–atmosphere system (e.g., Jarvis et al., 2006; Jenkyns,
2010). The influx of huge amounts of greenhouse gases such
as CO2 and/or CH4 of predominantly volcanic origin has been
considered the most important reason for global warming and
oceanic anoxia. In turn, the widespread marine deposition of
organic carbon during the OAEs, together with intensified
chemical weathering, has been linked to the drawdown of
atmospheric pCO2 and global cooling (McAnena et al., 2013;
Jenkyns, 2018; von Strandmann et al., 2020) and left their imprint
in the global carbon cycle as reflected by δ13C. Potential causes for
Cretaceous δ13C anomalies associated with widespread black
shale deposits are summarized by Jenkyns et al. (1994). On
the contrary, carbon isotope events such as the Valanginian
Weissert Event and the Hauterivian Faraoni Event show a

δ13C response but no unequivocal evidence for widespread
black shale deposits.

Over the years, for the Cretaceous system, several multi-
million-year records of temporal high-resolution have been
generated from the Tethyan Realm, specifically from Italy and
SE France (e.g., Weissert et al., 1998; Herrle et al., 2004; Sprovieri
et al., 2006; Gyawali et al., 2017). For the Boreal Realm, the Upper
Cretaceous is represented by the Chalk successions (e.g., Jenkyns
et al., 1994; Mitchell et al., 1996; Jarvis et al., 2006), whereas the
Early Cretaceous is almost exclusively covered by bits-and-pieces
from the North Sea area, Northern Germany, and the high Arctic
(e.g., Mitchell et al., 1996; Rückheim et al., 2006; Bottini and
Mutterlose, 2012; Herrle et al., 2015; Möller et al., 2020; Thöle
et al., 2020; Eldrett and Vieira, 2022). So far, a comprehensive
high-resolution long-term record from the Early Cretaceous of
the Boreal Realm is still pending.

In this study, drill sites from the larger Hanover area have
been combined to construct an almost complete Boreal record
covering the upper Berriasian to the lowermost Coniacian
(Figure 1). New datasets, specifically from the Aptian–Albian
interval, fill important gaps when comparing the new Boreal
composite to another composite record from previously
published Tethyan successions of SE France. This kind of
Boreal–Tethyan correlation is crucial to resolve long-lasting,
general issues, such as floral and faunal endemism,
diachronous appearances or extinctions of taxa, and
differences in the abundance of biostratigraphic important
taxa and taxonomic uncertainties that might hamper a reliable
biostratigraphic correlation between the different provinces at a
reasonable high resolution.

2 Geological setting

All studied cores and successions are from the eastern central
part of the Lower Saxony Basin (LSB). In Early Cretaceous times, the
LSB represented a northwest/southeast-oriented sedimentary basin
surrounded by the Pompeckj High in the north and the Rhenish
Massif in the south (Mutterlose and Bornemann, 2000). Late Jurassic
to Cretaceous salt tectonic movements have controlled the spatial
sedimentation pattern during the Cretaceous, leading to
considerable differences in sequence thicknesses also on small
regional scales (Voigt and Wagreich, 2008). Due to the long-term
eustatic sea-level rise during the Albian and Cenomanian (Haq,
2014), the Pompeckj Block became inundated, and a large uniform
sedimentation area along the epicontinental shelf, the North
German Basin (NGB), developed that connected the Tethys in
the southeast with the North Sea in the northwest (Voigt and
Wagreich, 2008). At the same time, the NGB experienced a
lithological change from a siliciclastic-dominated to a carbonate-
dominated sedimentary regime. A more detailed description of the
basin evolution of North Germany is provided by Mutterlose and
Bornemann (2000) and Voigt and Wagreich (2008) and references
therein.
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FIGURE 1
Geological map (base layer) of the study area (General Geological Map of the Federal Republic of Germany 1:250,000, GÜK250; BGR, 2019),
showing the geographic positions of the studied cores and sections. The inlet map shows the positions of the studied successions in Germany.

TABLE 1 Overview of studied or discussed drill cores and outcrops (in stratigraphic order).

Core/outcrop (c/o) Coordinate (°lon E/°lat N) Stratigraphic range Data source

Scharnhorst 3 (c) 9.541632/52.529999 Berriasian–Valanginian Thöle et al. (2020)

Scharrel 10 (c) 9.572881/52.522544 Valanginian–Hauterivian Thöle et al. (2020)

Frielingen 9 (c) 9.533782/52.455967 Valanginian–Lower Aptian Thöle et al. (2020)

Hoheneggelsen KB9 (c) 10.193503/52.196078 Lower Aptian Bottini and Mutterlose (2012)

Dolgen 2 (c) 10.022247/52.325693 Middle–Upper Aptian This study

Dolgen 3 (c) 10.153599/52.329202 Upper Aptian–Lower Albian This study

Vöhrum 4 pit (o) 10.1535/52.32541666 Lower Albian Mutterlose et al. (2003), Selby et al. (2009)

Kirchrode 2 (c) 9.818667/52.369333 Lower–Upper Albian Nebe (1999) and this study

Kirchrode 1 (c) 9.831167/52.3725 Upper Albian J. Thurow and this study

GB-1 (c) 9.859135/52.414389 Middle Albian Erbacher et al. (2011)

Anderten 1 (c) 9.853563/52.368641 Upper Albian–Lower Cenomanian Bornemann et al. (2017)

Anderten 2 (c) 9.843592/52.370842 Upper Albian–Lower Cenomanian Bornemann et al. (2017)

Wunstorf 2011/8 (c) 9.48264/52.40444 Cenomanian Erbacher et al. (2020)

Wunstorf 2011/2 (c) 9.484863/52.396364 Cenomanian Erbacher et al. (2020)

Wunstorf core (c) 9.480392/52.39903 Cenomanian–Turonian Voigt et al. (2008)

Söhlde (o) 10.244923/52.180669 Turonian Voigt and Hilbrecht (1997)

Salzgitter-Salder (o) 10.329713/52.124373 Turonian–Lower Coniacian Voigt and Hilbrecht (1997); Voigt et al. (2021)
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3 Material and methods

More than 5,000 δ13C analyses from 14 drill cores and 2 outcrops
are presented and compiled in this study, from which more than
800 analyses are from unpublished records (see Table 1;
supplementary data). For the upper Berriasian to lower Albian
drill cores (Scharnhorst 3, Scharrel 10, Frielingen 9,
Hoheneggelsen KB9, Dolgen 2 and 3, lower part of Kirchrode 2;
Figure 2; Table 1), δ13Corg has been analyzed because of the general
low carbonate contents in the Lower Cretaceous sediments
(Mutterlose and Bornemann, 2000; Thöle et al., 2020). Based on
a palynofacies study by Thöle (2017), the composition of organic
particles of the Valanginian to lower Aptian mudstones has been
assigned to a heterolithic oxic shelf environment (following the
Tyson, 1995, palynofacies classification). Furthermore, the
composition of the organic carbon has been considered to be
relatively stable throughout this time interval. The geologically
younger cores and sections (Table 1; Figure 2), which are
characterized by a carbonate content above 20 wt% δ13C, have
been measured on the carbonate fraction (δ13Ccarb). Only for the
lower part of Kirchrode 2, both δ13Ccarb and δ13Corg were analyzed.

Many sites of this compilation have previously been published
elsewhere, such as the late Berriasian to early Aptian interval by
Thöle et al. (2020), the Albian–Cenomanian transition (Bornemann
et al., 2017), and the Cenomanian–Turonian transition recorded in

the Wunstorf cores (Voigt et al., 2008; Erbacher et al., 2020).
Unpublished data are specifically from the Aptian–Albian
interval (Dolgen 2/3 and Kirchrode 1/2). An overview of the
studied cores and sections, including the data sources, is given in
Table 1. Tie points among the studied cores have been defined based
on multiple criteria, including litho-, chemo-, and biostratigraphy,
and are documented in Supplementary Table S1.

New δ13Corg data from the Dolgen 2/3 and Kirchrode 1/2 cores
were analyzed at the Federal Institute for Geosciences and Natural
Resources (BGR) after decalcification with HCl, using a
ThermoFlash EA 1112 elemental analyzer coupled via a Conflo
IV interface to an Isotope Ratio Mass Spectrometer (Thermo Delta
V Advantage). All isotope values are reported in ‰ VPDB. For all
δ13C analyses, the reproducibility of repeated standard
measurements was in all records better than 0.1‰.

As the principle of carbon isotope stratigraphy is largely based
on wiggle matching, a good biostratigraphic age control is
indispensable for a reliable chemostratigraphic correlation. In
order to achieve this, German sections have been dated by
calcareous nannofossil biostratigraphy, in addition to other
existing biostratigraphic schemes. The applied age model,
including new unpublished biostratigraphic datum levels, is listed
in Supplementary Table S2.

For the Boreal–Tethys comparison, a composite record of
sections from the Vocontian Basin has been compiled based on

FIGURE 2
Stratigraphic ranges of the studied cores (in red) and outcrops (in blue), including core lengths and section thicknesses. Geological timescale
according to GTS 2020 (Gale et al., 2020).
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published data and stratigraphies (Morales et al., 2013: Montclus;
Gréselle et al., 2011: Vergol, La Charce; Hennig et al., 1999: La
Charce; Kujau et al., 2012: Vergol; van de Schootbrugge et al., 2000:
La Charce, Angles/Vergons; Godet et al., 2006: Angles; Kuhnt et al.,
1998: Cassis–La Bédoule, Les Sardons, Camping; Herrle et al., 2004:
Serre Chaitieu, Gaubert, Tarondol, Pré-Guittard, Les Oustous,
L’Arboudeysse, Col de Palluel; Reichelt, 2005: Serre Amande, Col
de Palluel; Bornemann et al., 2005: Col de Palluel; Gale et al., 1996:
Mont Risou; Gyawali et al., 2017: Moriez, Hyèges, Angles, Vergons,
Lambruisse). Age models for both records from Northern Germany
and Southeast France follow the Geological Timescale 2020 (GTS
2020; Gale et al., 2020).

4 Results and discussion

4.1 Factors controlling δ13C and their
chemostratigraphic significance

If δ13C events are reproducible in both terrestrial and marine
systems, absolute values, amplitude, and the shape of isotope shifts
might vary between these two systems or different sections.
Covariance between terrestrial organic and marine records is
considered to reflect a significant coupling of the
ocean–atmosphere system (e.g., Gröcke et al., 2005), and that
between marine δ13Ccarb and δ13Corg is usually interpreted to
show that both carbonate and organic matter were derived from
oceanic surface water displaying the original δ13C composition (e.g.,
Kump and Arthur, 1999). On the contrary, decoupled δ13Ccarb and
δ13Corg records might indicate diagenetic alteration (Meyer et al.,
2013; Han et al., 2018).

In carbonates, meteoric waters can alter the carbon isotope
signature of the near-surface rocks (Swart and Eberli, 2005).
However, this effect is likely neglectable in cored material, but an
early diagenetic meteoric influence cannot be fully ruled out. Other
early diagenetic processes, such as aragonite–calcite transformation
in shallow marine carbonates or degradation of organic carbon and
subsequent re-precipitation of secondary carbonate, or burial
diagenesis might have an effect on δ13Ccarb (Wendler, 2013, and
references therein). The latter has been considered to be minor in
(hemi)pelagic sediments for paleoceanographic and
chemostratigraphic studies (e.g., Marshall, 1992; Weissert et al.,
2008). However, the addition of isotopically lighter cement in
hemipelagic sediments often leads to generally lighter values than
in pelagic deposits with higher carbonate contents (Voigt and
Hilbrecht, 1997). Moreover, the source of carbonate (biogenic-
abiogenic, fossil groups, taxa, detrital) due to vital effects
depending upon the calcifying organism and organic matter
(marine, non-marine, detrital) has an impact on the absolute
values of δ13C (e.g., Wefer and Berger, 1991; Hayes, 1993) and,
thus, controls data variability and the shape and magnitude of the
δ13C shifts. Considering the microbial activity, such as sulfate
reduction or methanogenesis in organic-rich sediments, is
important when interpreting δ13Corg.

In addition, in semi-restricted epicontinental seas, the carbon
isotopic composition of seawater might differ from the open ocean
due to a low rate of water exchange and regional control of the
analyzed source material. All these factors might influence the shape

and absolute values between different sections and sites within the
same basin or on a supra-regional scale. For bulk epicontinental
carbonate analyses, a margin of uncertainty of ~1‰may be assumed
(e.g., Halverson et al., 2005), for species-specific foraminiferal
Cenozoic curves ~0.5‰ (e.g., Cramer et al., 2009). Nevertheless,
our record (Figure 3) clearly shows that all major δ13C events are
outpacing any alteration processes so that they are still prominent
features in the records compiled fromNorthern Germany. However,
a diagenetic influence causing minor changes in δ13C shifts cannot
be fully excluded.

4.2 The German long-term δ13C record and
its supra-regional significance

A more than 1500-m-thick composite δ13C record from
Northern Germany has been compiled for the Berriasian to
Coniacian interval based on the existing and newly generated
stratigraphic framework primarily based on calcareous
nannofossils (see Supplementary Table S2) for the studied cores
and sections (Figure 3A). The data demonstrate that almost all
major carbon isotope perturbations, previously described mostly
from low latitudes, are also typical features in semi-restricted basins
of the Boreal realm and can thus be considered global
chemostratigraphic events. In the following, the key events and
their potential causes, identified in the North German composite
record, are briefly described.

4.2.1 Valanginian “Weissert Event”
The non-marine upper Berriasian strata are characterized by

high variability of δ13Corg. With the onset of full marine conditions
in the early Valanginian, carbon isotope values become more
uniform and follow global trends with an earliest Valanginian
minimum interval (Figure 4), which is also characteristic of other
key records from, for example, SE France (e.g., Martinez et al., 2015;
see also Figure 4, and detailed information in the Material and
Methods chapter) and the Atlantic Ocean (e.g., Bornemann and
Mutterlose, 2008).

In the Scharrel 10 drill core, the δ13C values rise from −27‰
to −24‰ during the mid-Valanginian (Figure 3A), giving way to
the >2.3 My-long (Sprovieri et al., 2006; Martinez et al., 2015)
positive δ13C excursion of the “Weissert Event” (Erba et al., 2004).
The Weissert Event has originally been described from Tethyan
successions (Lini et al., 1992; Weissert et al., 1998), as well as from
Atlantic and Pacific drill cores (e.g., Erba, 1994; Wortmann and
Weissert, 2000). Only recently have the first records of the event
been documented from the Boreal Realm (Galloway et al., 2020;
Möller et al., 2020; Thöle et al., 2020) and mid-southern latitudes
(Cavalheiro et al., 2021). The associated global carbon cycle
perturbation was often related to the Parana–Etendeka volcanism
and co-occurring carbonate platform drowning (e.g., Wortmann
and Weissert, 2000; Martinez et al., 2015). In contrast to younger
similar events as the mid-Cretaceous OAEs, the Weissert Event is
associated with only minor occurrences of organic-rich sediments.
An anoxic interval has recently been identified by Giraldo-Gómez
et al. (2022) based on benthic foraminifera faunas at the onset of the
Weissert Event in the Weddell Sea, tentatively suggesting that the
Southern Oceanmight have acted as a potential major carbon sink in
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the Valanginian. However, the lack of documented organic carbon-
rich rocks of the mid-Valanginian age, possibly due to the
incomplete stratigraphic record in many places worldwide, leaves
open the role of organic carbon burial in explaining the positive δ13C
excursion.

4.2.2 Late Hauterivian “Faraoni Event”
In the uppermost Hauterivian of numerous Tethyan

successions, a minor black shale bed, the Faraoni Event, has
been reported since the mid-1990s (e.g., Cecca et al., 1994;
Baudin and Riquier, 2014). The event bed is situated at the
base of the maximum of a positive δ13C excursion (Martinez
et al., 2015), which likely corresponds to ~80 m depth of the
Frielingen 9 core (963 mcd; Figure 3A). The stratigraphic
position in the Frielingen 9 core is also supported by
calcareous nannofossil biostratigraphy. In the Tethys, the
Faraoni Event usually corresponds to the last appearance
datum (LAD) of Lithraphidites bollii, which is situated
somewhat below the LAD of Clepsilolithus maculosus in the
Boreal biozonations, which is in line with our data from the
Frielingen 9 core. No major lithological changes are apparent
during this interval, but one sample at 80.25 m (963.25 mcd)
shows significantly higher TOC values of more than 1 wt% above
the background (Thöle et al., 2020). It is hard to judge whether

this level finally represents the Faraoni Event in Northern
Germany. However, the chemostratigraphic position is
intriguing.

4.2.3 Mid-Barremian Event (Hauptblätterton)
The uppermost Valanginian and Hauterivian show a high

δ13Corg variability between −27.4‰ and −24.6‰ with a distinct
increase in the upper Barremian, directly below a prominent
negative excursion of about 3‰–4‰ (Figure 3A). The latter is
associated with an organic-rich, paper-shale-like clayey deposit
named Hauptblätterton in Northern Germany and the Munk
Shale in the North Sea area (Mutterlose and Böckel, 1998; Wulff
et al., 2020; Ineson et al., 2022). In the Tethys, this Mid-
Barremian Event (MBE) is less prominent and shows only a
minor expression in δ13C of less than −0.5‰ (Coccioni et al.,
2003). In the LSB, oxygen deficiency and lamination, indicating
the absence of macrobenthic activity, are often explained by
thermohaline stratification probably caused by either high
surface water temperatures (Mutterlose et al., 2009) or
enhanced run-off in this semi-restricted basin or both, leading
to a reduced surface water salinity (Mutterlose and Böckel, 1998).
For a long time, it has been suggested that this event is associated
with a transgressive sea-level trend. However, detailed recent
studies by Thöle et al. (2020) and Ineson et al. (2022) found

FIGURE 3
(A) Composite record of all studied sites in NW Germany, (B) close up of the Aptian–lower Albian interval, showing the positions of the “Vöhrum
boundary tuff” (tuff) and the Kilian Level in the Dolgen 3 core. Lithological colors of three unpublished cores (Dolgen 2 and 3, Kirchrode 2) represent the
carbonate content and rock color of this monotonousmudstone–marlstone succession. Small greyish horizontal bars along the biostratigraphic column
indicate the positions of the studied biostratigraphy samples.
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evidence that the Hauptblätterton or Munk Shale is characterized
by a regressive sea level change in the Boreal. Higher up, δ13Corg

values steadily increase from −27‰ to −24‰ across
the remaining Barremian und until another paper-shale
horizon named Fischschiefer, which was deposited in the
lower Aptian.

4.2.4 Oceanic Anoxic Event 1a (Fischschiefer)
Beside the OAE 2, the OAE 1a is the most pronounced black

shale event and one of the most intensively studied intervals of the
Cretaceous. In Northern Germany, this event is lithologically
represented by an organic carbon-rich, laminated mudstone
(Fischschiefer). Here and in other places worldwide, the OAE 1a
is introduced by a sharp negative δ13C excursion (in this study,
minimum values of −29.7‰) followed by a ~1 My-lasting positive
excursion (e.g., Leandro et al., 2022; in this study maximizing
at −23‰; Figure 3).

As the primary trigger for this event, the activity of large igneous
provinces (LIP) like the High Arctic LIP (Polteau et al., 2016) or the
Ontong Java Plateau has been proposed, of which the latter has
recently been suggested as more likely (Percival et al., 2021). Carbon
modeling suggests that the release of 13C-depleted carbon, maybe
thermogenic or biogenic methane from sill intrusions, into the
global carbon system has caused a negative spike in deposited
δ13C (Adloff et al., 2020). Afterward, carbon release might have
shifted toward a dominantly more 13C-enriched volcanic source.
Furthermore, mantle-derived carbon emissions are also supported
by Os isotope data. The following long-term positive excursion is
most likely the consequence of the widespread preservation and
removal of 13C-depleted organic carbon from the global carbon
system. Although the negative peak at the onset of the event is well
pronounced in many German sections and cores (Bottini and
Mutterlose, 2012; Thöle et al., 2020; this study >5‰ in δ13Corg),
the following positive excursion is rather muted in both δ13Ccarb and

FIGURE 4
Comparison of Northern Germany (A) and SE France (B) composite records plotted against age (GTS 2020, Gale et al. (2020)). For details of the age
model for the German sites/sections, see Supplementary Table S2. For Northern Germany, only those data are included within the tie point ranges given
in Supplementary Table S1. Furthermore, two records with different age models are shown in (A). Gray symbols represent a primarily calcareous
nannofossil-based age model, whereas black symbols represent a chemostratigraphic-adjusted age model, which shows a better match to the
Tethyan data in the Valanginian (B). Loess smoothing is indicated by the orange line; the corresponding 95% confidence level is marked by the translucent
yellow area.
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δ13Corg (this study, ~2.5‰) compared to Tethyan and open ocean
data (see discussion; Figure 4).

4.2.5 Kilian Event (Oceanic Anoxic Event 1b)
The 90 to 120 ky-lasting Kilian Event (Leandro et al., 2022) is

considered one of the several black shale events associated with the
OAE 1b during the Aptian–Albian transition, as defined by Arthur
et al. (1990) and Coccioni et al. (2014), especially in the Tethyan
realm. Furthermore, the Kilian Event serves as a marker of the
Aptian–Albian boundary (Kennedy et al., 2017). In our record, this
level is represented by a negative >1.5‰ excursion in δ13Corg

between approximately −23‰ and −25‰ (Figure 3B). In
addition to the Kilian Event, the lower Albian Paquier Level is
another prominent black shale event of the OAE 1b interval, which
is not covered by our record and is probably hidden in the early
Albian gap. A detailed discussion of the stratigraphy of the
Aptian–Albian boundary interval is given in the following
paragraph. The cause of these black shale deposits is not well
understood. In the past, a number of reasons have been inferred
to explain these events, such as the enhanced volcanic activity of the
Kerguelen Plateau in the Southern Indian Ocean (Matsumoto et al.,
2022), a major transgression during the earliest Albian and
enhanced surface ocean stratification during OAE 1b black shale
deposition (Erbacher et al., 2001; Herrle et al., 2003).

The remaining lower to lower upper Albian strata are
characterized by an interval of high δ13C variability that mostly
lacks any clear trends over ~6 My. Only in the middle upper Albian,
a more than −2‰ δ13Ccarb decline is observed, followed by the
Albian–Cenomanian boundary interval (ACBI). The ACBI consists
of up to four positive δ13C excursions across this stage boundary and
is introduced by the OAE 1d.

4.2.6 Oceanic Anoxic Event 1d and the
Albian–Cenomanian boundary interval

The best-studied unequivocal records of the OAE 1d have been
documented from SE France (Gale et al., 1996; Bréhéret, 1997;
Bornemann et al., 2005), the Atlantic Ocean (Wilson and Norris,
2001), and recently the southern Indian Ocean (Fan et al., 2022).
Similar to the OAE 1b interval, the cause of OAE 1d is not well
constrained. In the western North Atlantic, the event has been
considered to reflect a major breakdown of surface ocean
stratification (Wilson and Norris, 2001). In SE France, it might
be associated with orbitally induced changes in nutrient input and
stratification changes (Bornemann et al., 2005). In Northern
Germany, Bornemann et al. (2017) described the OAE 1d
equivalent in the Anderten 1 core, which is part of the composite
record presented herein. Evidence is predominantly coming from a
sharp negative δ13Ccarb excursion preceding the long-term ACBI
positive excursion resembling the Tethyan records and, to a lesser
extent, from enhanced concentrations of reducing elements and the
observation of faint lamination.

4.2.7 Mid-Cenomanian Event
Following the ACBI, δ13Ccarb in the north German composite

record increases from 1.4‰ to 3‰ culminating in the Mid-
Cenomanian Event (MCE). The MCE consists of a double peak
within a positive δ13C excursion of about 1‰ (Figure 3A). The MCE
has been described from a number of settings in England, France

(Figure 4B), Italy, and the North Atlantic (Paul et al., 1994; Coccioni
and Galeotti, 2003; Friedrich et al., 2009; Giraud et al., 2013) and has
been previously documented at Wunstorf (Wilmsen, 2007; Erbacher
et al., 2020, data used herein). Usually, it is interpreted as a high-
productivity event possibly associated with a climatically controlled
reorganization of ocean circulation and a shift toward a nutrient-
rich deep-water source (Zheng et al., 2016). Furthermore, Batenburg
et al. (2016) proposed that the MCE is related to the very long
eccentricity cycle of 2.0–2.4 My.

4.2.8 Oceanic Anoxic Event 2
The OAE 2 black shale event, also known as the

Cenomanian–Turonian Boundary Event (CTBE), has been
globally documented with a pronounced positive δ13Ccarb

excursion. In Wunstorf, the δ13Ccarb values rise from 1.5‰ to
5.1‰ (Figure 3A) with the most negative values at the base of
the black shale sequence and subsequently follow the positive event;
for details, see Voigt et al. (2008). OAE 2 has been linked to the
emplacement of large igneous provinces, most likely the
Caribbean–Colombian igneous province (Turgeon and Creaser,
2008; Du Vivier et al., 2014). Intense volcanic activity, in turn,
caused massive CO2 outgassing, leading to global warming (Forster
et al., 2007; Papadomanolaki et al., 2022) and enhanced ocean
fertilization. The latter is considered to have induced high
primary production and oxygen depletion of the oceans, which
supported massive global organic carbon preservation on the sea
floor (e.g., Blumenberg and Wiese, 2012; Gangl et al., 2019).

4.2.9 Post-OAE 2 carbon isotope events
Between the OAE 2 and the Navigation Event, the youngest

observed carbon isotope event in our data, a number of other δ13C
excursions are evident (Figure 3A)—the Round Down, Glynde,
Pewsey, Bridgewick, and Hitch Wood Events—mostly named
after regional lithological units in the UK by Gale (1996) and
Jarvis et al. (2006). Post-OAE 2 δ13Ccarb values in our dataset
range between 1.6‰ and 3.5‰, with most positive values
represented by the positive anomalies of the prominent Round
Down and Hitch Wood Events, with a less pronounced Pewsey
Event slightly above the Round Down interval. The negative δ13C
Bridgewick and Navigation Events are also well developed.

The Turonian events are not distinctly related to black shale
events but were linked to sea-level changes by Jarvis et al. (2006),
Jarvis et al. (2015), and others. Furthermore, a potential orbital
forcing of carbon cycle changes by the long eccentricity cycle has
been proposed (e.g., Laurin et al., 2014). The Navigation Event
marks the base of the Coniacian (Walaszczyk et al., 2021) and is well
described from the Boreal sections, specifically at Salzgitter-
Salder—the Global Stratigraphic Section and Point (GSSP) for
the Turonian–Coniacian boundary. The event has also been
identified in SE France and the North Atlantic (Voigt et al.,
2021, and references therein).

4.3 Boreal–Tethys comparison

In order to test both the validity of our record and a
Boreal–Tethys correlation, a long-term record from SE France
has been compiled from previously published datasets (for
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details, see the Material and Methods section). Comparing the
French record to the one from the LSB reveals various
similarities and dissimilarities. Both basins from the different
realms display expected δ13C responses to the major events, albeit
of different magnitudes and excursion shapes. Furthermore, during
certain intervals in the LSB record, the data are a bit noisy, and it has
to be considered that the compilation for Northern Germany relies
on both δ13Corg and δ13Ccarb and that for SE France solely on
δ13Ccarb. This together complicates the correlation of some short-
term shifts in δ13C.

During the Berriasian stage in SE France and other low
latitudinal successions, the δ13C curve is relatively stable below
the Valanginian Weissert Event (Weissert and Erba, 2004;
Martinez et al., 2015), whereas the LSB data display a high
variability. This is probably caused by different aquatic and
terrestrial organic carbon sources for δ13Corg, which have been
deposited in the rather small, restricted, non-marine LSB.
Blumenberg et al. (2019) observed high abundances of organic
compounds of Botryococcus algae and sulfur bacteria, but also
dinoflagellates, which might have contributed to the high δ13Corg

variability. The basin became fully marine with a dominant
marine organic carbon source after the earliest Valanginian
transgression (Mutterlose and Bornemann, 2002), resulting in
more uniform δ13C values that are well in line with the Tethyan
δ13Ccarb data (Figure 4).

The δ13C excursion of the mid-Valanginian Weissert Event and
the preceding basal Valanginian minimum is well developed in both
records and is of similar magnitude. However, applying the
calcareous nannofossil-based age model according to
GTS2020 leads to a 1–2 My younger position of the Weissert
Event in the LSB compared to the Vocontian Basin record
(Figure 4). The Tethyan record that is based on stratotype
sections is, therefore, much better stratigraphically constrained,
and a comparison between both basins underlines the potential
diachronity of biostratigraphic zonations between different marine
basins. Therefore, the δ13C excursion of the Weissert Event has been
used as an additional age tie point (according to Martinez et al.,
2015) instead of applying a pure biostratigraphic age model. This
example shows that there are still substantial intercalibration issues
between the Boreal and Tethyan Realms that can be improved with
the help of chemostratigraphy.

Following the Weissert event, the δ13C values decrease with
decreasing time across the base of the Hauterivian in both realms. A
distinct minimum occurs in the basal lower Hauterivian in SE
France and is also recorded by the Boreal data. The Hauterivian
trend is less clear in the LSB due to a higher data variability.
Moreover, the minimum is more discreet and seems to be
skewed again toward a younger age by 1–2 My compared to SE
France.

The high δ13C variability in the Hauterivian might result from
various mechanisms. The LSB remained a relatively small and
restricted basin with limited water mass exchange with the open
ocean during this time interval. Sedimentary δ13C from
epicontinental seas records carbon from water masses that did
not have unrestricted circulation with the ocean (Holmden et al.,
1998) and was potentially regionally affected by terrestrial carbon
sources. Such a restriction may cause larger amplitudes and
higher variability of δ13C than the global ocean reservoir.

Thus, pelagic carbonates are likely to record less variability
than epicontinental sea carbonates (Saltzman and Thomas,
2012). Such a scenario is supported by numerous phases of
Tethyan influence that have been documented for this stage by
Mutterlose and Bornemann (2002), suggesting at least episodical
openings of gateways to the Tethys. This, in turn, also implies
phases of decoupling from the Tethyan system and a stronger
impact of local mechanisms controlling the organic carbon δ13C
due to the input of terrestrial organic matter and primary
production. Moreover, the Hauterivian experienced a long-
term sea-level rise (Haq, 2014), which might have increased
the extension of the LSB. Flooding of large continental areas
might also cause a larger influx of different organic carbon
sources into the basin, leading to the observed noise in the
dataset. However, even if it remains difficult to correlate
minor shifts with the Tethyan records, the potential of a high-
resolution intrabasinal correlation was demonstrated by Thöle
et al. (2020).

A minor positive excursion occurs in both records in the
uppermost Hauterivian. At the base of this peak, the Faraoni
Event has potentially been observed. This maximum is followed
by a pronounced negative shift in δ13C associated with the
Hauptblätterton in the LSB that is substantially larger than in the
Tethys, but, again, it has to be considered that excursions in δ13Corg

are generally higher than those in δ13Ccarb (Jenkyns, 2010). This is
also evident from Figure 3A when comparing the amplitudes of the
δ13Corg (Berriasian to lower Albian) and δ13Ccarb (lower Albian and
above) shifts.

The Barremian Hauptblätterton consists of up to 8 wt% of
organic carbon in Lower Saxony (Mutterlose and Böckel, 1998;
4 wt% in the Frielingen 9 core, Thöle et al., 2020) and might be
prone to early diagenetic alteration due to organic matter
degradation by selective preservation of isotopically light lipid-
rich and refractory material or metabolic isotope fractionation
processes (e.g., Hayes, 1993; Tyson, 1995; Freudenthal et al.,
2001). Increased input or selective preservation of terrestrial
organic matter, which might also shift δ13Corg toward lighter
values (e.g., Tyson, 1995), can be ruled out because organic
geochemical data by Littke et al. (1998) suggested a
dominance of marine organic matter for the Hauptblätterton.
This interpretation is in agreement with Mutterlose et al. (2009)
and Pauly et al. (2013), who suggest that the negative δ13C values
previously documented for Hauptblätterton reflect a regional or
diagenetic signal in the semi-restricted LSB.

The interval between the Hauptblätterton and the Aptian
Fischschiefer displays a steady increase in δ13C values, but both
records have a very low data resolution. This argues either for low
sedimentation rates in both basins or more likely for an age-
model artifact due to a recent multi-million-year shift of the
Barremian–Aptian boundary in the GTS2020 compared to
previous time scales (GTS2012–126.3 Ma, GTS2020–121.4 Ma).

The comparison of the North German record with SE France
further demonstrates numerous clear shifts, which stratigraphically
differ from each other during the upper Aptian and Albian. Both
intervals are characterized by outstanding longevity of many
biozones of calcareous nannofossils, planktic foraminifera, and
ammonites in both the Tethys and Boreal, which often last for
several million years. In addition, a reliable stratigraphy framework
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is also hampered by the lack of geomagnetic reversals during the
Cretaceous Normal Superchron interval (e.g., Ogg, 2020). This
results in a high degree of stratigraphic uncertainties, making it
difficult to reliably constrain the stratigraphic position and the
duration of δ13C shifts, which becomes apparent in the
Boreal–Tethys correlation (Figure 4).

δ13Ccarb is showing a high variability of up to 4‰ in the lower
to lowermost upper Albian and of 1‰–1.5‰ above,
superimposed by a million-year long-term trend to lighter
values in the upper Albian, but without any unequivocal
short-term trends. The large data spread is not unique to the
δ13Ccarb records from the Kirchrode I and II cores but is also
apparent in the δ13Corg data and supported by the GB-1 core. GB-
1 has not been included in the long-term record because it fully
overlaps with the Kirchrode cores, but both records show the
same high variability (Figure 3). Similar to the Hauterivian, we
speculate that the combination of a major sea-level rise and the
input of various carbon sources either from the leached
hinterland or episodical mixing with other water masses might
have contributed to the high data variability. However, in Albian
times, the LSB has evolved toward the North German Basin with
a continuous, relatively wide connection to the proto-North Sea
(Mutterlose and Bornemann, 2000).

Finally, in both records, the ACBI with the OAE 1d at its base
has been identified (see also Bornemann et al., 2017). During the
remaining Late Cretaceous, the observed trends and excursions are
very similar without any apparent stratigraphic discrepancies
between the LSB, the Tethys, and the English chalk reference
curve (Jarvis et al., 2006); nevertheless, the magnitudes of the
excursions are somewhat different. To summarize, as the major
events are all present in the presented records, it is unlikely that
diagenesis or regional differences in the composition of bulk organic
carbon are significant factors controlling the long-term changes in
δ13Ccarb and δ13Corg in the studied succession.

4.4 New stratigraphic implications for the
Aptian–Albian boundary interval

The Aptian–Albian interval of the Dolgen 3 core provides
new, crucial results for the stratigraphic position of this stage
boundary in the Boreal realm. The clayey sediments of this
interval are poor in carbonate (Schwicheldt-Subformation),
and calcareous plankton is usually rare and partly dissolved.
This often hampers the biostratigraphic assignments of some
samples. Due to provincialism, classical ammonite stratigraphy is
hard to correlate with Tethyan records (Mutterlose et al., 2003;
Mutterlose et al., 2009). A tuff horizon at Vöhrum, once proposed
as a GSSP marker bed for the Aptian–Albian boundary
(Mutterlose et al., 2003), has been dated at 113.1 ± 0.3 Ma
using 206Pb/238U (Selby et al., 2009), which is why the
Aptian–Albian boundary is currently placed at 113.2 Ma since
the Geological Timescale 2016 has been released. However, due
to the outcrop conditions at the Vöhrum 4 section, the record
presented by Mutterlose et al. (2003) is limited and does not allow
identifying other events typical for the Aptian–Albian transition
elsewhere; also, globally accepted microfossil markers for the
Aptian–Albian boundary event have not been documented.

In this study, we present new stable isotope and biostratigraphic
data from the Dolgen 3 drill core (Lenz et al., 1986), which was
drilled ~500 m north of the Vöhrum 4 pit (Figure 1). Dolgen
3 covers both the mentioned tuff horizon close to its top (5.2 m)
and the δ13C excursion representing the Kilian Event (onset at
26.49 m) that marks the Aptian–Albian boundary (Kennedy
et al., 2017). In this core, the event is represented by a
negative >1.5‰ excursion and biostratigraphic changes that
resemble Tethyan records (Kennedy et al., 2017) (Figure 3).
Biostratigraphically, the stage boundary is defined by planktic
foraminifera with the first appearance datum (FAD) of
Microhedbergella renilaevis, which are not studied herein, and
approximated by the FAD of the calcareous nannofossil
Prediscosphaera columnata (base BC23, Bown et al., 1998;
Kennedy et al., 2017). The latter has been observed right at the
excursion (24.67 m), but the real FAD might be potentially slightly
below the Kilian Event due to a lack of calcareous nannofossils
between 31 and 25 m (Bornemann, 2020). This occurrence is
directly followed by the FAD of Broinsonia viriosa, showing that
the development of events is similar to the observations from the Col
de Pré Guittard, the approved GSSP for the Aptian–Albian
boundary (Kennedy et al., 2017). These findings document for
the first time the Aptian–Albian boundary in the Boreal realm.

Both chemo- and biostratigraphic data from the Dolgen 3 core
suggest that the Vöhrum tuff is well situated in the lower Albian,
questioning the applicability of the 206Pb/238U age of 113.1 ± 0.3 Ma
by Selby et al. (2009) as a reference for the correct age for the
Aptian–Albian boundary. There are 20 m of core between the tuff
horizon and the peak of the δ13C excursion. Considering an average
sedimentation rate of 3.62 ± 0.08 cm/ky for this interval as
delineated from BC calcareous nannofossil datum levels
(according to Bown et al., 1998) and their ages given by GTS
2020 (base BC21: 118.83 Ma, mid-point: 881.46 ± 1.2 mcd; base
BC23: 113.17 Ma, mid-point: 676.34 ± 3.5 mcd), the Kilian Event
might be 552 ± 13 ky older than the tuff bed.

This sedimentation rate is similar to the 3.84 cm/ky suggested by
Nebe (1999) based on a cyclostratigraphic analysis of the lowermost
part of Kirchrode 2 (lower Albian), which is located ~20 km further
west. This represents a rather conservative estimate as Nebe (1999)
also studied two additional cores with sedimentation rates between
2.69 cm/ky (Hoheneggelsen KB52) and 3.03 cm/ky (Hoheneggelsen
KB36), which are situated ~10 km south of the Dolgen 3 drill site.
Both would result in an even older age for the boundary. However, a
~500 ky age offset can also be derived by comparing our δ13C data to
the δ13Ccarb changes at the top of the Poggio le Guaine core (Italy,
Leandro et al., 2022). We, therefore, tentatively suggest an
Aptian–Albian boundary age of c. 113.65 Ma instead of 113.2 Ma
(Gale et al., 2020).

Finally, a lower Albian gap has been identified in our record
between the top of Dolgen 3 and the base of Kirchrode 2 cores. The
gap duration has been estimated by about 2 My based on
cyclostratigraphically derived average sedimentation rates as
given by Nebe (1999) for the basal Kirchrode 2 core and the
GTS2020 age of base BC24 (109.96 Ma) as observed in the
Kirchrode 2 core and the age of the tuff in Vöhrum 4 (Selby
et al., 2009). This seems to be the only apparent gap in the long-
term record besides an interval of potentially low sedimentation
during the lower Aptian.
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5 Conclusion

A high-resolution δ13C stratigraphy is presented for the LSB in
Northern Germany, covering the Berriasian to Coniacian stages (c.
142–88 Ma). This composite record based on 14 drill cores and
2 outcrops is correlated with a Tethyan reference compilation of the
Vocontian Basin in SE France. The new boreal reference curve
record can be considered almost complete except for a likely 2-Myr
gap in the early Albian.

Most of the major global δ13C events, such as theWeissert Event,
the Aptian–Albian OAEs 1a/b/d, and the Cenomanian–Turonian
OAE 2, among many others, are present in the record and serve as
useful tie points for supra-regional stratigraphic correlations. Based
on this, some biostratigraphic inconsistencies between the LSB and
SE France are pointed out for the mid-Valanginian, that is, the
position of the Weissert Event, and the late Aptian–Albian interval.
Furthermore, some carbon isotope events are recorded for the first
time in Northern Europe, such as the Kilian Event and likely the
Faraoni Event. The Kilian Event, which represents the
Aptian–Albian boundary, allowed for the correct positioning of
the boundary in the Boreal realm. The stratigraphic position of the
Vöhrum boundary tuff and the age of the boundary could be better
constrained, suggesting a boundary age that might be slightly older
with c. 113.65 Ma than the official age of 113.2 Ma.
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