
Micro-seismic events detection
and its tectonic implications in
Northeastern Hainan Province

Zeyu Ma1, Hongyi Li1*, Min Liu1, Yafen Huang1,
Shengzhong Zhang2 and Yuejun Lv3

1School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing,
China, 2Network Information Center, China University of Geosciences (Beijing), Beijing, China, 3National
Institute of Natural Hazards, Beijing, China

In this paper, we combine the U-net-based phase pickingmethod (PhaseNet) with
Graphics Processing Unit-Based Match and Locate technology (GPU-M&L) and a
deep-learning-based seismic signal de-noising method (DeepDenoiser) as a
workflow for automatically extracting micro-seismic information from
continuous raw seismic data. PhaseNet is first used to detect missed seismic
phases by scanning through the 5-year continuous waveform data recorded at
five broad-band stations in Hainan province. Then Rapid Earthquake Association
and Location method (REAL), VELEST program (1-D inversion of velocities and
hypocenter locating) and HypoDD (a double-difference locating method) are
applied to associate seismic phases with events and to locate, respectively. This
initially established catalogue can be served as the template for the following
match-filter work. We choose events with a high signal-to-noise ratio (SNR) as
templates and apply GPU-M&L to detect more small earthquakes which are
difficult to pick by routine methods due to the low SNR. Then, a deep
learning-based noise reduction technique named DeepDenoiser is applied to
extract seismic signal fromnoise to provide a better picking of arrival time and then
to improve the relocation effects. Finally, we use HypoDD to relocate these events
with P- and S- wave arrival times picked by PhaseNet. Compared with the five
events listed in the China Earthquake Networks Center routine catalogue, in this
study, we detect and locate 977 earthquakes by following the above procedure.
Our relocation results illustrate quite a complex distribution pattern of events due
to the complicated fault system in the northeastern part of Hainan Province.
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1 Introduction

The identification and location of small earthquakes play a key role in studying the
nucleation of large earthquakes, the geometry of fault zones, the monitoring of tremors, low-
frequency earthquakes, and micro-earthquakes caused by hydraulic fracturing. However,
how to quickly extract small earthquake information from the massive raw continuous
waveform data still poses a challenge to seismologists. The traditional phase-picking method
is not sufficiently competent in detecting low-magnitude events due to the low signal-to-
noise ratio (SNR). In recent years, various techniques for microearthquake detection and
phase picking have been proposed, and they can be generally sorted into twomain categories:
waveform based and pick-based seismic detection.
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The operation principle of waveform-based seismic detection is
to scan continuous waveforms based on earthquake waveform
similarity for finding missing seismic events. For earthquakes
with similar focal mechanisms that occurred in adjacent areas,
their waveforms show a high degree of similarity. Therefore,
using identified seismic events a priori as the templates to scan
over the continuous waveforms can effectively detect events with
low SNR. Matching filter technology (MFT) based on waveform
cross-correlation and stacking (Gibbons et al., 2006; Shelly David
et al., 2007; Peng and Zhao, 2009), has been proposed and then
widely used to detect low-magnitude seismic events. Shelly David
et al., 2007 used MFT to detect non-volcanic tremor and low-
frequency earthquake swarms and their results reveal the deep
structure of seismogenic faults. Meng et al. (2013) applied the
MFT method to the 2003 San Simeon earthquake, focusing on
aftershock-triggering mechanisms and discussed the subsequent
screening principle of the MFT detection events. This technique
can detect more seismic events compared with conventional
methods, however, its detection performance significantly
depends on seismic template events.

In recent years, machine learning, especially deep learning, has
been widely used in various scientific fields and has shown great
efficiency (Ross et al., 2018; Bergen et al., 2019; Kong et al., 2019;
Reichstein et al., 2019; Zhang et al., 2019; Zhou et al., 2019; Zhu and
Beroza., 2019; Zhang et al., 2022; Mousavi and Beroza, 2022).
Seismologists also apply the deep learning algorithm to the
research of earthquake such as event identification, association,
and classification. Compared with traditional calculation
methods, the deep learning method has the advantages of high
efficiency and time and labour saving. Machine learning builds a
neural network through a large number of samples, either labelled
or not.

Using the deep learning algorithm to identify and associate
earthquake phases through the raw continuous waveforms, and then
using theMFT algorithm to scanmissing events recently has become
a highly recognized workflow. Liu et al. (2020a) first combined MFT
with deep learning phase-picking methods to construct a high-
precision seismic catalogue of the 2019 Ridgecrest earthquake
sequence. Zhang et al. (2022) integrated this set of methods into
an automatic and pervasive end-to-end workflow (LOC-FLOW).
Zhou et al. (2021) have proposed a similar automatic and systematic
workflow, PALM, which is also based on different machine learning
methods and MFT.

However, both machine learning and MFT techniques may
produce false detections since the criteria of picking are based on
probability value or cross-correlation threshold which are artificially
set and may not be optimal in specific problems. In this study, we
propose a new workflow which combines PhaseNet with GPU-M&L
technology and DeepDenoiser to extract seismic event signals from
continuous raw data. PhaseNet is first used to detect event signals by
scanning through raw continuous data . The REAL (Zhang et al.,
2019), VELEST (Kissling et al., 1995) and HypoDD (Waldhauser
and Ellsworth, 2000) are applied to associate seismic phases with
events and locate events, respectively. We select events with a high
SNR as templates from the initial catalogue constructed by following
the above procedure and apply the GPU-M&L to detect more small
earthquakes which are difficult to detect by traditional methods.
Then, DeepDenoiser is applied to further confirm the detection of

seismic events and simultaneously to provide a better phase picking.
Finally, HypoDD is utilized again to relocate these events.

In 1,605, an earthquake of magnitude 7.5 occurred near
Haikou in the northeastern part of Hainan Province. This
earthquake occurred near the east-west Maniao-Puqian fault
system (MPF) and the NNW-trending Puqian-Qinglan fault
system (PQF) which are both composed of several faults as
shown in Figure 1. These two faults were very active in the
Quaternary and controlled the development of the Cenozoic
basin and the extent of Quaternary volcanism up to at least the
Late Pleistocene (Wang, et al., 2021). The crustal movement in this
area has been characterized by strong vertical rise and fall since the
Neogene. Uneven subsidence under the control of the NNW
trending faults has led to the formation of graben-horst
structures. The MPF is a system of deeply extended faults that
runs nearly east-west and has been active since the late Cenozoic.
The MPF is cut by several NNW-oriented faults, including hidden
and exposed faults. Based on the results of gravity measurements
and seismic surveys, the faults in the PQF spread horizontally in
parallel, in a complex graben-horst configuration. The seismicity
of this fault system is weak in the south and strong in the north
(Wang et al., 2021). Studying the long-term seismicity of these two
faults and their surrounding area can help provide a data basis for
analyzing the seismogenic mechanism and tectonic environment
of the 1,605 Haikou paleo earthquake.

Based on the results of previous imaging of the subsurface
structure in the area, there is a clearly tilted low-velocity anomaly
in the crust. This low-velocity anomaly may be associated with the
magma and fluids which have a deep root connected with the mantle
plume (Lei et al., 2009; Lin et al., 2022). The study of seismic activity
in this area will also provide a basis for studying the Hainan hotspot.

In this study, we apply our proposed new workflow to northeast
Hainan to study the complex fault system by detecting the seismicity
from 2014 to 2018.

2 Methods

The three-component continuous waveform data from January
2014 to December 2018 with a 100 Hz sampling rate recorded by
5 stations are provided by Hainan Earthquake Administration. Only
5 earthquake events are provided from the CENC catalogue around
the fault zone area within 5 years.

Firstly we use PhaseNet, an algorithm for identifying seismic
phases based on deep learning, to pick up P- and S- phase signals.
Secondly, based on the arrival of seismic phases, we use the REAL
algorithm to associate them as seismic events. Thirdly, we use the
absolute location method VELEST and the double-difference
relative location algorithm HypoDD to locate events. Fourthly,
we apply GPU-M&L which introduces a weighting factor of SNR
on different traces of waveforms, to calculate the cross-correlation
coefficient between each template with the 5-year continuous
waveform. Fifthly, we use DeepDenoiser, a deep learning denoise
algorithm to extract the noise from the signal to further confirm
detections. Finally, we use HypoDD again to relocate all the
remained earthquakes. The complete workflow is demonstrated
in Figure 2 and the principles and technical details of the
methods are described.
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The phase-picking method based on deep learning - PhaseNet
uses a large number of manually labelled seismic waveforms as its
training set, providing a model that can label P- and S-wave arrivals
with probability peaks. Considering the lack of a large number of
seismic events in the Hainan region as training samples for transfer

learning, we used the North California model trained by Zhu et al.
(2019). This model has been widely applied to different countries
and regions and has shown good results. Yen et al. (2021) applied
PhaseNet with this model to build a high-resolution catalogue for
the central Italy seismic sequence. Li et al. (2023) applied this model

FIGURE 1
Map of the study area and fault systems. The insets in the upper left corner show the study area on a large map of Hainan Province and of China.

FIGURE 2
Schematic diagram of the workflow.
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in Northeastern China to build a complete small earthquake
catalogue to study the Magmatic system and seismicity of the
Arxan volcanic group.

The continuous seismic waveform is rearranged as two groups
with 15-second-interval and 30-second-long (i.e. 3,000 data points)
windows for scanning. Before scanning, to optimize the scanning
results and better apply themodel, all the original seismic waveforms
were temporally normalized without filtering or changing the
sampling rate.

It is worth mentioning that we usually set a selection criterion
for PhaseNet, which is called the threshold of probability. But this
threshold itself does not represent the true positive detection
possibility. We regard it as the degree of similarity between the
actual processed data and the training set.

The Rapid Earthquake Association and Location technology
(REAL) can be used to associate seismic phases and locate seismic
events quickly and automatically. Combining the advantages of
arrival time picking and waveform-based detection and location
methods, the REAL method associates the arrival times of one event
from different stations and determines the epicenters by calculating
the number of P-wave and S-wave arrival times and travel time
residuals.

Based on continuous waveform data recorded by 5 stations in
northeast Hainan Province, we used the REAL method to perform
association and preliminary location Considering that the 5 fixed
stations have a wide distribution range and the average distance
between stations is more than 50 km, when at least 5P and 3S phases
of a certain earthquake have been recorded, respectively, they will be
associated as an event. VELEST, an absolute locating method based
on a 1D velocity model and HypoDD, a double-difference locating

method were applied to the REAL results to refine the location.
VELEST can give an updated 1D velocity model by iteration. Our
initial model incorporates previous tomography studies (Lei et al.,
2009; Huang, 2014) in the Hainan region and this 1D model is
further updated using VELEST to provide better-locating results.

The M&L technology developed by Zhang and Wen. (2015) can
give the locations of the events while running the template cross-
correlation scanning. While the waveform is being slide-scanned,
M&L will search the gridded 3D space in the limited detection area.
At each potential position, the travel time difference will be
calculated to revise the superimposition result of the cross-
correlation waveform. On this basis, Liu et al. (2019) optimized
the original M&L program and parallelized processing based on
GPU acceleration. The difference between GPU-M&L and M&L is
1) to add a weight factor to each component of the template to
improve the detection ability; 2) to implement the M&L method on
the GPU to speed up the calculation. The data-trace with a high
signal-to-noise ratio will be given higher weight in the step of cross-
correlation and superposition.

The operation of the MFT requires that a template is provided
and its sensitivity is also highly dependent on the consistency of the
waveform between the template and the event to be detected. The
application of PhaseNet and REAL to the original waveform can
supplement template events for the template matching method,
thereby improving the ability to detect missing small earthquake
events. In this study, in addition to the earthquake catalogue
provided by the Hainan Earthquake Administration, the
earthquakes detected by the PhaseNet and REAL methods were
also screened and supplemented as template events to improve the
detection capabilities of GPU-M&L.

FIGURE 3
PhaseNet picking diagrams showing a new detected event with picked P (green) and S (purple) phases.
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DeepDenoiser is a seismic signal de-noising program developed
by Zhu et al. (2019) based on a convolution neural network. After
the training of a large number of samples, this program shows good
de-noising ability and can perform well in many cases with a low
signal-to-noise ratio. DeepDenoiser identifies the time-spectrum
image of the input window signal, suppresses the signal which is
considered as noise and provides a lossless effective seismic signal. In
addition, the event phases after DeepDenoiser are easier to be picked
by PhaseNet, so we use PhaseNet to re-mark the de-noised events
again. This can provide more accurate and reliable arrival
information for event relocation. It is worth mentioning that in
previous studies, deep-learning-based frequency-domain seismic

signal de-noising usually follows training using specific data
(Saad and Chen, 2021; Dahmen et al., 2022; Dong et al., 2022;
Yang et al., 2022). The re-trained models have better noise reduction
for the data in the specific regions. In our case, we directly use the
DeepDenoiser with the North California model without re-training
because of the insufficiency of the seismic event data. Since the noise
statistics are automatically learned from the data without any
assumptions (Zhu et al., 2019), DeepDenoiser can correctly
handle various noise signals, hence providing a generalization in
the data from different area. It is still recommended to use fine-
tuning and re-training models for denoising when sufficient data is
available.

FIGURE 4
An example of template matching scan result. (A). Correlation function for template event with a 3,000-s continuous waveform. (B). A histogram of
average correlation values is shown. (C). Continuous waveforms are shown in grey and template event waveforms are in red for each component of
5 CENC stations.
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3 Results

We applied PhaseNet to scan the 5-year continuous waveforms
from 2014 to 2018 at 5 stations in northeast Hainan province to pick
the seismic phases. PhaseNet effectively detected the P-wave and
S-wave phases in continuous seismic data as shown in Figure 3.

To make the data more suitable for the trained neural network
parameter model, we applied the Z-score to normalize the data. The
data are rearranged as two groups with 15-second-interval and 30-
second-long (i.e. 3,000 data points) windows for scanning. From all
continuous waveforms, a total of about 102P-wave and 60 S-wave
arrivals have been detected.

The REAL earthquake association and the initial location are
then calculated by grid search based on the travel time residual
(Zhang et al., 2019). In this study, the horizontal direction of the
search area is set to 0.4 × 0.4°with grid size of 0.02 × 0.02, and the
depth ranges from 0 to 20 km with a grid size of 2 km. The grid
centre is located at the station. Only events associated with over 3P-
phases and over 5P- or S- phases will be retained, The selection
criterion depends on the number of stations and the quality of the
data. Their location will be initially determined on the grid with the
largest number of phases. When there are the most identical choices,
the grid with the smallest travel time will be selected. Then the

absolute locating algorithm VELEST and double-difference
relocation method HypoDD is applied to refine the location results.

In the study area, a total of 9 events were scanned and
successfully associated. These events include all 5 events
recorded in the routine catalogue provided by CENC. 7 of the
events detected by the workflow with high SNR and clear phase,
whose magnitudes range from 2.3 to 3.4 were relocated and used as
template events. The determination of the magnitude of the
detected events is calculated based on the widely used
relationship between amplitude and local magnitude (Hutton
and Boore, 1987).

We then applied the GPU-M&L to the continuous waveform
data recorded by the five stations QSL, QXL, DAN, CHM and HSK
around the fault. To improve the effect of the template matching
process and the reliability of the processing results again, we make
certain pre-processing for the waveforms of the continuous
waveform and the template event, which includes down-sampling
to 20 Hz, de-meaning, de-linearizing trend and filtering to 1–10 Hz.
In addition, for the template events, the arrival time information of
the P-wave and S-wave is given by the phase information picked up
by PhaseNet. Based on this time information marking, the signal-to-
noise ratio of each component of the template event is calculated.
The data with high SNR are attached to higher weighting factors in
the step of template matching, cross-correlation and stacking.

1,450 events have been detected by GPU-M&Lwith a magnitude
larger than −1.0. The events with a weighted average cross-
correlation coefficient greater than a threshold are selected as
positive detection. Figure 4 shows a schematic diagram of cross-
correlation threshold selection.

We first use the conventional Tau-P calculated theoretical
arriving time to mark the P- and S- phases on event files. Then
we apply DeepDenoiser to extract seismic signals. After that, we
update the P- and S- marks with the arrival times provided by
PhaseNet (Figure 5). Figure 6 shows the time-magnitude diagram of
all the events scanned by GPU-M&L and those further confirmed
with DeepDenoiser and PhaseNet.

Then we use HypoDD to constrain and relocate events. In the
HypoDD algorithm, we set the weights of the arrival of P waves and
S waves as 1.0 and 0.5, respectively. A catalogue of 977 events is
finally confirmed with a reliable location. Figure 7 shows the final
relocation results of events. A large number of small earthquakes
were detected along the boundary of the MPF and PQF zones.
228 out of 977 (23.34%) events of the catalogue are detected by the
new template events by PhaseNet. They also fill a large portion of the
seismic catalog spatially, providing a big database to delineate the
fault feature.

The three-dimensional relocation results of the final complete
catalogue show a complex geometry. As we can see, both MPF and
PQF are composed of a series of parallel or oblique secondary faults
with similar inclinations. We notice that there are inclination
differences between the deep and shallow events. Combined with
the historical seismic observation records (Wang et al., 2021), it can
be inferred that the fault strike in the deep part of the PQF is
inconsistent with the shallow part, and it is closer to the north-south
direction in the deep. The fault zones in the study area are
heterogeneous in seismicity accompanied by complex fault
subsidence activity.

FIGURE 5
An event detected with a CC of 0.37. The arrival time has been
revised by DeepDenoiser and Phasenet and the waveform signal is
much clearer after de-noising.
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FIGURE 6
Time-magnitude diagram of all the events detected by GPU-M&L (blue) and those confirmed with DeepDenoiser and PhaseNet (red).

FIGURE 7
Final relocation result of microseismic events. The colour of the circles represents the source depth. And the size of the circles is proportional to the
magnitude.
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4 Discussion and conclusion

A key issue of automated small earthquake identification and
detection technology based on machine learning and template
matching is how to evaluate its accuracy. The identification
performance of MFT for small earthquakes is powerful, but how
to ensure that detected events are earthquake events is very
important. Most of the constraints on detected events in the past
work are limited to the setting of the cross-correlation coefficient
threshold and the absolute median deviation threshold. A
sufficiently high threshold usually represents higher detection
reliability. However, on the other hand, it also means probably
more events will be missed due to the high threshold. For different
research areas and research purposes, the setting of this threshold is
different. Different cross-correlation coefficient thresholds and
MAD thresholds have been used in numerous previous works on
MFT (Gibbons et al., 2006; Shelly David et al., 2007; Peng and Zhao,
2009; Meng et al., 2013; Liu et al., 2020b; Zhang et al., 2022; Zhou
et al., 2021). These adjustments were derived from the experience of
the data processors and feedback on the evaluation of the results.

This has led to difficulties in establishing a systematic workflow and
selecting criteria for specific research questions in specific regions.
There have been some previous studies on the confirmation of the
accuracy of the template matching results. Liu et al. (2019) used the
methods of waveform envelope and spectrum analysis to
preliminarily evaluate the robustness of event detection over a
period of time. In our research, we used the DeepDenoiser
method to de-noise and the PhaseNet method to re-mark,
combined with the location process, to finally determine all the
detection events. It seems that there is no evidence that events with
higher cross-correlation values have higher credibility. The cross-
correlation value only makes a certain degree of mathematical
judgment on the similarity of signals. Higher than a certain
cross-correlation threshold can only indicate that the event is
similar to the template event to some extent, instead of proving
that the event is more like an earthquake. We found a few false
events with high cross-correlation values—many of which are just
pulse-shaped noise. This requires us to be vigilant when using
technologies like MFT. We still need to consider the application
scenarios of various technologies and optimize them.

FIGURE 8
Final 3D relocation results of 977 events. The red dash lines indicate the distribution of the fault system. (A, C) and (B, D) have different viewpoints of
the location results. In (C) and (D), grey dashed lines are used to indicate the fault position and the dip angles inferred from the fault surface locations and
the distribution of the detected events.
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The mechanism of the Qiongshan M7.5 earthquake and the
environment for the formation of the structure has always been a
concern of scientists. According to Wang et al. (2021), this
paleoseismic event influenced the terrestrial subsidence in
northeastern Hainan, which is mainly controlled by the MPF and
PQF systems. The tectonic activity of subsidence in this region is
heterogeneous, characterized by significant differential lifting and
subsidence. Our results show that the spatial distribution of small
earthquakes is strongly correlated with these two faults and their
secondary branches. As we have seen from our relocation, the
network of conjugate faults consisting of the MPF and PQF
zones plays a crucial role in the seismic activity which leads to a
complex distribution of small earthquakes without a typical linear
trend. In addition, the rise of these faults constitute a graben-horst
structure, which also makes the distribution of small earthquakes
have no dominant focal depth. Earthquakes that occurred on the
MPF indicate that the fault system is more active in the eastern
section which is influenced by the intersection with the PQF.

Lei et al. (2009) discussed in detail the effects of hot spots on
Hainan Island and mantle plume activities. According to the previous
subsurface velocity structure tomography (Huang, 2014; Lei et al., 2019;
Lin et al., 2022) in the Hainan area, low-velocity anomalies are
distributed from the lower mantle to the crust in this area, which is
inferred to be related to themantle plume. As seen in Figure 8, there is a
gap zone of small earthquakes along the PQF in the range of 10–20 km.
As given in Figure 7, there is a strike difference in the linear distribution
of small earthquakes between the deep and shallow parts, that is, the
small earthquakes in the deep part (red circles) tend to occur more in
the north-south direction. We infer that may be related to fluids which
could influence the tectonic activity in this area.

In summary, this study proposes a systematic and automated
small earthquake detection and location workflow. We introduce
DeepDenoiser into the workflow to improve the reliability of
detection which has not been addressed in traditional MFT and
machine learning methods for identifying small earthquakes. We
applied this method to a set of fault zones in Hainan, and by
scanning with only 7 templates we finalized a catalogue of 977 events
over a 5-year period. These earthquakes are generally distributed
along the strike direction of the MPF and PQF, meanwhile also
exhibit some much smaller branch faults which reveal a complex
multiple conjugate fault system beneath the study area.
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