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Introduction: To provide constraints on the Triassic tectonic setting of Eastern
Tianshan, an integrated study was conducted on the geochronological and
geochemical data for granodiorites, monzogranites, and two-mica granites
from the Yamansu area on the northernmargin of theCentral Tianshan, NWChina.

Geochronlogy Method and Results: Zircon U–Pb dating indicated the
crystallization ages of ca. 250–241 Ma.

Geochemistry Results: The granodiorites (ca. 250 Ma) were medium-K calc-
alkaline I-type granitoids, with crust-derived geochemical elements ratios (e.g.,
Ti/Zr, Ti/Y, and Nb/Ta), low Sr/Y ratios, and moderate negative Eu anomalies (Eu/
Eu* = 0.56–0.57), suggesting their derivation from the partial melting of crustal
materials with plagioclase as a major residual phase at <12 kbar. The
monzogranites (ca. 247 Ma) showed adakitic characteristics, with high SiO2 and
low MgO, Cr, and Ni contents and low Nb/Ta ratios, indicating an origin from the
melting of thickened mafic lower crusts at relatively high pressure (12–15 kbar).
The ca. 244 Ma and ca. 241 Ma two-mica granites were high-K calc-alkaline and
showed geochemical features of highly fractionated I-type granites. They were
generated by melting medium-to-high-K mafic to intermediate crustal rocks at
pressures <5 kbar, accompanied mainly by feldspar fractional crystallization. All
granitoids had zircon εHf(t) values of +7.8 to +2.1, with corresponding TDM2 of
1132–773 Ma, suggesting juvenile crustal rocks as possible sources.

Discussion: Geochronological investigations of the studied granitoids, together
with published data, suggest that the Triassic was an important period for granitic
magmatism in Eastern Tianshan. Considering all the available geological data, we
suggest that the Triassic granitoids were formed in an intracontinental
environment possibly controlled mainly by far-field effects of the Paleo-Tethys
system, with contemporaneous compression and extension at deep and
shallower lithosphere depths, respectively, during the Triassic.
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1 Introduction

The Eastern Tianshan in Xinjiang, NW China, situated on the
southern margin of the Central Asian Orogenic Belt (CAOB)
(Figure 1A; Su et al., 2011), underwent a complex tectonic
evolution involving subduction, accretion, collision, post-
collisional/orogenic extension, and ensuing intracontinental
process during the evolution of the Paleo-Asian Ocean system
(Zhou et al., 2010; Xiao et al., 2013; Han and Zhao, 2018).
Corresponding to the different tectonic stages, granitic intrusions
with different geological and geochemical features were produced
(Zhou et al., 2010; Wang et al., 2014; Zhang et al., 2015; Zhao et al.,
2019; Long et al., 2020). These provide important constraints on the
geodynamic environment during their emplacement, informing our
understanding of the tectonic evolutionary history of Eastern
Tianshan and its adjacent areas (Zhou et al., 2010; Dong et al.,
2011; Ma et al., 2014). Most studies of this region have focused on
the rocks formed in the Late Paleozoic (Dong et al., 2011; Ma et al.,
2014; Zhang et al., 2015; Li et al., 2016), while those that occurred in
the Triassic have received little attention. This restricts
understanding of the Mesozoic magmatic-tectonic processes of
Eastern Tianshan.

Recently, several Triassic granitic intrusions were identified
in Eastern Tianshan (Zhang et al., 2017; Zhao et al., 2019; Muhtar
et al., 2020; Lei et al., 2021; Zhi et al., 2021; Chen et al., 2022).
However, the detailed geodynamic setting for the Triassic
magmatism remains controversial, with various possible

models including 1) a transition from subduction to post-
subduction continental collision (Xiao et al., 2008; Mao et al.,
2022), 2) a continental collision regime (Wu et al., 2013), 3) a
tectonic transition from collisional crust shortening and
thickening to post-collisional extension and thinning (Deng
et al., 2017), 4) a post-collisional/orogenic extensional setting
subsequent to termination of the Paleo-Asia Ocean (Li et al.,
2013; Han et al., 2014; Wang et al., 2016; Wu et al., 2017), and 5)
intra-continental extension or compression (Zhang et al., 2008;
Wu et al., 2010; Wang et al., 2015a; Zhang et al., 2015; Zhang
et al., 2017; Zhao et al., 2017; Chen et al., 2018; Zhao et al., 2019;
Feng and Zheng, 2021; Lei et al., 2021; Chen et al., 2022).
Therefore, further research on Triassic granitoids is urgently
needed to constrain the geological setting of the region.

Recent field geological observations have suggested the
existence of several Triassic granitoid intrusions in the
southern part of Eastern Tianshan (south of the Yamansu area
in Xinjiang, NW China) (Figure 1B; BGMRXUAR (Bureau of
Geology and Mineral Resources of Xinjiang Uygur Autonomous
Region), 2013). We present the first systematic study of the
geology, whole rock geochemistry, zircon U–Pb, and Lu–Hf
isotopic compositions for these granitoids. Furthermore, we
use these data to constrain their ages, petrogenesis, and
tectonic settings. In combination with previous findings, this
study also provides new insights into the Triassic magmatism and
the poorly constrained Triassic geological setting of Eastern
Tianshan.

FIGURE 1
(A) Simplified geological map showing the location of Eastern Tianshan relative to the Central Asian Orogenic Belt [modified after Jahn et al. (2000)].
(B) Regional geological map of Eastern Tianshan showing the location of the study area [modified after Zhang et al. (2016a) and Zhi et al. (2021)].
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2 Geological background and sampling

Bounded by the Junggar terranes to the north and the Tarim
Block to the south, the Eastern Tianshan occupies the eastern part of
the E-W trending Chinese Tianshan Orogenic Belt (Zhang et al.,
2016b). From north to south, it can be divided into the North (NTS),
Central (CTS), and South (STS) Tianshan orogenic belts, separated
by the Aqikuduk and Kumishi–Xingxingxia faults, respectively
(Xiao et al., 2004) (Figure 1B).

The NTS is mainly composed of the Early Carboniferous ophiolite
belt and Devonian–Carboniferous island arc, including the
Bogda–Harlik, Dananhu, Kangguertage, and Yamansu arcs (Han and
Zhao, 2018). The arc regions are occupied mainly by Paleozoic
sedimentary-volcanic stratas and magmatic intrusions, with an
unverified basement (Zhang et al., 2016b; Han and Zhao, 2018). The
CTS is characterized by a Precambrian basement, overlain by Paleozoic
volcanic-sedimentary successions (Lei et al., 2011; Zhang et al., 2016b;He
et al., 2018). The Precambrian basement is mainly composed of
Paleoproterozoic–Neoproterozoic schists, gneisses, migmatites, and
marbles (Huang et al., 2015; Du et al., 2018; Lei et al., 2021), which
have experienced greenschist-to amphibolite-facies metamorphism (Hu
et al., 1998). The Paleozoic volcanic-sedimentary stratas are dominated
by greenschists, slates, limestones, and volcanic-siliciclastic rocks (Han
and Zhao, 2018). The STS is bounded between the CTS and the northern
margin of the Tarim Craton. It is composed dominantly of ophiolitic
mélanges and Early Paleozoic sedimentary successions that experienced
deformation and localized metamorphism (Wang et al., 2014).

A remarkable feature of Eastern Tianshan is the occurrence ofmulti-
stage ultramafic to granitic intrusions, which were most intensive in the
Late Paleozoic and became less frequent and scattered in the Triassic
(Zhou et al., 2010). The Triassic intrusions are dominated by granitoids
with rare mafic rocks, distributed in the Dananhu, Kangguertage,
Yamansu arcs and CTS, with U–Pb zircon ages of ca. 250–223Ma
(Wu et al., 2010; Zhou et al., 2010; Lei et al., 2013; Wang et al., 2015b;
Deng et al., 2017; Wu et al., 2017; Zhang et al., 2017; Zhao et al., 2017;
Chen et al., 2018; Zhao et al., 2018; Muhtar et al., 2020; Lei et al., 2021;
Mao et al., 2021; Zhi et al., 2021; Chen et al., 2022). Some of the Triassic
granitoids show adakitic features such as Hongshanliang monzogranite
(Zhao et al., 2019) and Baishan granite porphyry (Wang et al., 2015b),
interpreted as partial melts mainly derived from thickened lower crusts.

This study collected 12 samples from the southern part of the
Yamansu area, located about 130 km southeast of the city of Hami,
Xinjiang, and proximal to the regional Aqikuduk Fault on the
northern margin of CTS belt (Figures 1B, 2). The detailed sample
locations are depicted in Figure 2. Samples YA1–YA3 and
YB1–YB3 were collected from two granitic plutons located ca.
12 km northeast of the Yuxi Ag deposit (Figure 2). These plutons
are surrounded by the Precambrian basement but their contacts
were not observed. Samples YC1–YC3 and YD1–YD3 were taken
from two small intrusions located ca. 3 km northwest of the deposit
(Figure 2). They intrude the Carboniferous granitoids, which, in
turn, intrude the Precambrian Tianhu Group (Figure 2).

These samples are undeformed granitoids. Samples
YA1–YA3 were medium to fine-grained granodiorites, consisting
mainly of plagioclase (30–35 vol.%), K-feldspar (25–30 vol.%),
quartz (20–25 vol.%), biotite (8–10 vol.%), and hornblende
(5 vol.%) (Figures 3A, E), with accessory amounts of sphene,
apatite, and zircon. Samples YB1–YB3 were medium to coarse-
grained monzogranites, composed mainly of quartz (25 vol.%),
plagioclase (30–35 vol.%), K-feldspar (30–35 vol.%), and biotite
(5 vol.%) (Figures 3B, F), with accessory minerals of zircon,
apatite, and Fe–Ti oxides. Samples YC1–YC3 and
YD1–YD3 were medium to coarse-grained two-mica granites
(Figures 3C, D), composed mainly of quartz (30 vol.%),
K-feldspar (30–35 vol.%), plagioclase (25–30 vol.%),
biotite (5–8 vol.%), and muscovite (3 vol.%) and trace amounts of
zircon, apatite, and Fe–Ti oxides as an accessory (Figures 3G, H).

3 Methods

3.1 Zircon U–Pb dating and Hf isotope
analysis

Zircons were extracted from samples YA1, YB1, YC1, and
YD1 using heavy liquid and magnetic techniques at Langfang
Geological Service Ltd., China. Representative zircon crystals
were selected under a binocular microscope, mounted in epoxy
resin, and finally polished to expose their centers.
Cathodoluminescence (CL) imaging of all zircons was conducted

FIGURE 2
Simplified geological map of the study area [modified after BGMRXUAR (2013)].
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to investigate their internal structures and to guide U–Th–Pb and
Lu–Hf isotope analysis. Zircon U–Pb dating was performed using
laser ablation multi-collector inductively coupled plasma mass
spectrometry (LA-MC-ICP-MS) in the Institute of Mineral
Resources, Chinese Academy of Geological Sciences, Beijing. A
spot size of 20 μm with a laser ablation rate of 10 Hz was
employed for all analyses. The detailed analytical procedure is
similar to those reported by Hou et al. (2009). The isotopic ratios
were calculated using ICPMSDataCal (Liu et al., 2010), and common
Pb correction was made according to Andersen (2002). The
concordia diagrams and weighted mean U–Pb ages were
obtained using Isoplot (v.3.0) (Ludwig, 2003).

In situ zircon Lu–Hf isotopic analyses were also performed using
LA-MC-ICP-MS at the same lab. Analytical spots for Lu–Hf isotopes

were located on the previously dated zircon domains or in similar
growth domains as inferred from CL images. The detailed analytical
method was described by Hou et al. (2007). The analyses were
undertaken with a spot diameter of 40 μm, a laser repetition rate of
8 Hz, and a laser energy of 60 mJ. The initial 176Hf/177Hf ratios and εHf(t)
values were calculated relative to the chondritic reservoir using a 176Hf/
177Hf ratio of 0.282772 and a 176Lu/177Hf ratio of 0.0332 (Blichert-Toft
and Albarède, 1997), along with a 176Lu decay constant of 1.865 × 10−11

yr−1 (Scherer et al., 2001). Single-stage Hf model ages (TDM) were
calculated relative to the depleted mantle with a 176Hf/177Hf ratio of
0.279718 at 4.55 Ga and 0.28325 at present, as well as a 176Lu/177Hf ratio
of 0.0384 (Griffin et al., 2000). Two-stage model ages (TDM2) were
calculated using an assumed 176Lu/177Hf ratio of 0.015 for the average
continental crust (Griffin et al., 2002).

FIGURE 3
Photographs showing the mineralogy and textural features of representative samples of Triassic granitoids in the Yamansu area. Mineral
abbreviations: Qtz, quartz; Pl, plagioclase; Kfs, K-feldspar; Bt, biotite; Spn, sphene; Ms, muscovite.
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3.2 Major- and trace-element analysis

Whole-rock major- and trace-element analyses were performed
at ALS Chemex Co. Ltd. in Guangzhou, China. For major elements,
the prepared samples were first fused with lithium borate flux and
then poured into a platinum mold. The resultant disk was then
analyzed by X-ray fluorescence spectroscopy. The analytical
precision was better than 2%. For trace elements, the prepared
samples were added to lithium metaborate flux, mixed well, and
fused in a furnace at 1025°C. The resulting melt was then cooled and
dissolved in an acid mixture containing nitric, hydrochloric, and
hydrofluoric acids. This solution was then analyzed by inductively
coupled plasma-mass spectrometry (ICP-MS). The analytical
uncertainty is generally <5%.

4 Results

4.1 Zircon U–Pb and Lu–Hf results

The LA-MC-ICP-MS zircon U–Pb results are listed in
Supplementary Table S1 and plotted on concordia diagrams,
inserted by representative zircon CL images (Figure 4). In situ,
zircon Lu–Hf isotope data are given in Supplementary Table S2 and
plotted in Figure 5.

Zircon grains from the granodiorite (YA1), monzogranite
(YB1), and two-mica granite (YC1 and YD1) samples were all

transparent and had euhedral to subhedral prismatic shapes.
They were 60–230 μm in length with length/width ratios of 1:
1–4.5:1 and showed oscillatory zoning (Figure 4), indicating
magmatic origin (Corfu et al., 2003). Some zircon grains
exhibited core-rim structures. All analyzed spots had Th of 45 ×
10−6−1067 × 10−6, U of 64 × 10−6, and −2142 × 10−6, with Th/U ratios

FIGURE 4
Zircon U–Pb concordia diagrams inserted with representative CL images. The smaller line circles show U-Pb dating spots, and the bigger circles
show Lu–Hf isotope analysis. Black scale bar is 50 μm.

FIGURE 5
Zircon εHf(t) versus age (Ma) diagrams for Triassic granitoids from
Eastern Tianshan. The field for Permian mafic-ultramafic rocks in
Eastern Tianshan is from Lei et al. (2021) and references therein. The
crustal evolution region of the Central Tianshan is from He et al.
(2018).
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of 0.32–1.34. The weighted mean 206Pb/238U ages were interpreted as
the magma crystallization ages.

Eleven analyses of zircons from sample YA1 yielded 206Pb/238U
ages of 247 Ma to 257 Ma, giving a concordant population with a

weighted mean 206Pb/238U age of 250 ± 2 Ma (MSWD = 0.76)
(Figure 4A). The Lu–Hf isotopic compositions of the dated ten
zircons exhibited positive εHf(t) values of +4.6 to +2.5, with TDM2

varying from 1115 Ma to 981 Ma (Figure 5).
Ten analyses of zircons from sample YB1 showed similar

apparent 206Pb/238U ages ranging from 240 Ma to 251 Ma and
yielded a weighted mean 206Pb/238U age of 247 ± 2 Ma (MSWD =
0.57) (Figure 4B). All the dated grains were analyzed for their Hf
isotopic composition. They had εHf(t) values of +7.8 to +2.2, with
TDM2 varying from 1133 Ma to 773 Ma (Figure 5).

Twelve analyses on zircons from sample YC1 had 206Pb/238U
ages ranging from 237 Ma to 250 Ma, forming a tight cluster on a
concordia diagram with a weighted mean 206Pb/238U age of 244 ±
3 Ma (MSWD = 0.50) (Figure 4C). Eleven spots on the dated
grains analyzed for their Hf isotopic composition showed εHf(t)
values of +7.0 to +2.7 and TDM2 ranging from 1098 Ma to 824 Ma
(Figure 5).

Eleven analyses of zircons from sample YD1 had 206Pb/238U
ages ranging from 236 Ma to 244 Ma, producing a concordant
population with a weighted mean 206Pb/238U age of 241 ± 3 Ma
(MSWD = 0.15) (Figure 4D). Ten dated zircons were analyzed
for Hf isotopic composition, producing εHf(t) values of +5.9 to
+2.1, corresponding to TDM2 values of 1132 Ma to 892 Ma
(Figure 5).

Collectively, the zircon U–Pb dating results indicated that the
studied granitoids were emplaced in the Early Triassic. The zircon
Lu–Hf isotope compositions suggested that their parental magmas
were mainly derived from juvenile sources.

4.2 Major and trace elements

The whole-rock major- and trace-element compositions of the
Triassic granitoids from Eastern Tianshan are given in
Supplementary Table S3 and plotted in Figures 6 and 7. All
samples had a low loss on ignition (LOI) values (<0.95) and were
not correlated with the mobile element contents (e.g., K, Rb, and Ba,
not shown), indicating insignificant alteration.

4.2.1 Granodiorites
The granodiorite samples (YA1–YA3) had SiO2 contents of

64.62–65.04 wt.%, with Na2O of 4.33–4.47 wt.%, K2O of
2.15–2.43 wt.%, and K2O/Na2O ratios of 0.48–0.56, belonging to
the medium-K calc-alkaline series (Figures 6A, B). Their FeOt and
MgO contents ranged from 3.81 to 3.92 wt.% and from 1.63 to
1.69 wt.%, respectively, resulting in Mg# values of 43–44. The
samples had Al2O3 contents of 16.59–16.71 wt.% and CaO of
3.79–3.87 wt.%, corresponding to A/CNK ratios of 1.00 (Figure 6C).

The trace element compositions showed lower Cr (59 ×
10−6–69 × 10−6), and Ni (6.9 × 10−6–7.2 × 10−6) concentrations
compared to mantle-derived magmas (Baker et al., 1995). They also
had high Sr (479 × 10−6–494 × 10−6) and low Rb (116 × 10−6–124 ×
10−6) contents, corresponding to low Rb/Sr ratios (<1). In the trace
element spider diagrams (Figure 7A), the granodiorites showed
negative Ba, Nb, Ta, Sr, and Ti anomalies. They also had
fractionated chondrite-normalized REE patterns ((La/Yb)N =
14–18) and moderate negative Eu anomalies (Eu/Eu* =
0.56–0.57) (Figure 7B).

FIGURE 6
(A) K2O+Na2O versus SiO2 diagram [after Le Bas et al. (1986)]. (B)
K2O versus SiO2 diagram [after Peccerillo and Taylor (1976)]. (C) A/NK
versus A/CNK diagram [after Maniar and Piccoli (1989)]. Major oxides
are in wt.% (water-free). A/NK, molar Al2O3/(Na2O + K2O); A/
CNK, molar Al2O3/(CaO + Na2O + K2O).
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4.2.2 Monzogranites
Compared with the granodiorites, the monzogranites (samples

YB1–YB3) had higher SiO2 (71.64–71.81 wt.%) and K2O
(3.60–4.27 wt.%) and lower Al2O3 (14.17–14.33 wt.%), MgO
(0.53–0.60 wt.%), CaO (1.67–1.86 wt.%), and Na2O
(3.61–3.85 wt.%) contents, with higher K2O/Na2O ratios of
0.94–1.18. In the plot of K2O versus SiO2 (Figure 6B), they fall
within the field of the high-K calc-alkaline series. Their A/CNK
values ranged from 1.04 to 1.07, indicating that they were weakly
peraluminous (Figure 6C).

Trace element data revealed that these monzogranites had Cr
contents of 29 × 10−6–38 × 10−6 and Ni of 1.6 × 10−6–2.1 × 10−6. They
also had Sr contents of 367 × 10−6–404 × 10−6, with Y contents of
5.6 × 10−6–12.5 × 10−6, yielding high Sr/Y ratios of 31–66. In the trace
element spider diagrams (Figure 7A), they showed enrichment of
large ion lithophile elements (LILE) (e.g., Rb, Ba, Th, and U) and
depletion of Nb, Ta, and Ti. The chondrite-normalized REE patterns
showed heavy REE depletion with high (La/Yb)N ratios (21–50) and
slightly negative Eu anomalies (Eu/Eu* = 0.80–0.89) (Figure 7B).

4.2.3 Two-mica granites
The ca. 244 Ma and ca. 241 Ma two-mica granites (samples

YC1–YC3 and YD1–YD3) had similar whole rock geochemical
compositions. Compared to the aforementioned samples, they
exhibited higher SiO2 (75.58–76.78 wt.%), Na2O (3.93–4.26 wt.%),
and K2O (4.28–4.50 wt%) and lower TiO2 (0.02–0.04 wt.%), FeOt
(0.77–0.83 wt.%), MgO (0.01–0.07 wt.%), and CaO
(0.51–0.75 wt.%). They showed high-K calc-alkaline affinity
(Figure 6B) and weakly peraluminous character (A/CNK =
1.01–1.05) (Figure 6C).

The trace element compositions showed strong enrichments of
Rb, Th, and U, and significant depletions of Ba, Sr, and Ti
(Figure 7A). The concentrations of high field strength elements
(HFSE, e.g., Nb, Ta, and Zr) were low (e.g., Zr = 47 × 10−6–78 × 10−6).
They also had high Y/Ho (30–34) and low Zr/Hf (12–20), Nb/Ta
(<10), and K/Rb (122–154) ratios, significantly different from the
chondrite values (Y/Ho = 28, Zr/Hf = 36, Nb/Ta = 18, and K/Rb =
235, (Sun and McDonough, 1989)). Additionally, they displayed flat
chondrite-normalized REE patterns ((La/Yb)N = 1.30–2.90) with

pronounced negative Eu anomalies (Eu/Eu* = 0.08–0.25)
(Figure 7B) and REE contents (35 × 10−6–58 × 10−6) obviously
lower than the average value of granite worldwide (288 × 10−6) (Wu
et al., 2015).

5 Discussion

5.1 Petrogenesis

5.1.1 Granodiorites
The granodiorites had higher SiO2 (64.62–65.04 wt.%) and

lower Mg# (43–44), Cr (59 × 10−6–69 × 10−6), and Ni (6.9 × 10-
6–7.2 × 10−6) contents compared to mantle-derived magmas (Baker
et al., 1995), excluding an M-type origin. Furthermore, the absence
of typical Al-rich minerals (e.g., cordierite and garnet) in the
samples, in combination with their high Na2O (>4.3 wt.%), CaO/
FeOt (>0.98) but low Rb/Ba (0.15–0.16) and Rb/Sr (0.24–0.25)
values, excluded them as S-type granitoids (Zhang et al., 2017).
In addition, samples YA1–YA3 contained amphibole and biotite
(not a late crystallizing phase, Figure 3E) but lacked pyroxene or
fayalite, and had relatively low Na2O + K2O (6.72–6.85 wt.%), Nb
(16.8 × 10−6–19.1 × 10−6), Y (32.0 × 10−6–40.1 × 10−6), Ga (26 × 10−6),
and Zn (88 × 10−6–91 × 10−6) contents and FeOt/MgO (2.28–2.34),
K2O/MgO (1.28–1.49) values, distinguishing them from A-type
suite (Whalen et al., 1987). Finally, these samples contained
hornblende and biotite, and plotted in the I-type granitoid field
in the A/NK versus A/CNK (Figure 6C), suggestive of I-type
affinities.

Calc-alkaline I-type granitoids are commonly generated by 1)
partial melting of lower crustal rocks (Griffin et al., 2002; Ju et al.,
2017); 2) mixing of mantle-derived basaltic magma with crustal
derived felsic magma (Barbarin, 1999; Zhu et al., 2009); and 3)
melting of a subducted oceanic crust. First, mafic xenoliths/enclaves
have not been found in the intrusion from which the granodiorites
(YA1–3) were sampled. Such a characteristic does not favor the
mixing of the mantle- and crust-derived components. Second,
zircons from the granodiorite had a narrow range of Hf isotopic
compositions (εHf(t) = +4.6–+2.5, Figure 5), which is atypical for

FIGURE 7
(A) Primitive-mantle normalized trace element spider diagrams and (B) chondrite-normalized REE patterns. Primitive-mantle, chondrite values from
Sun and McDonough (1989).
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magmas incorporating both mantle- and crustal-derived melts.
Moreover, the granodiorites showed low MgO contents
(3.81–3.92 wt.%) and Mg# values (43–44), in contrast to the
magmas directly derived from the partial melting of subducted
oceanic crustal rocks that typically have high Mg# values (>50)
(Rapp et al., 1999; Guan et al., 2012). Thus, we inferred that the
partial melting of continental crust played a significant role in the
generation of these granitoids. This interpretation is supported by
the whole-rock trace element ratios, such as Ti/Zr (14.9–17.9), Ti/Y
(149.5–187.3), and Nb/Ta (8.5–9.5) values that are comparable with
those (Ti/Zr < 30, Ti/Y < 200, and Nb/Ta = 12) of continental crustal
rocks (Rudnick and Fountain, 1995). They also showed low Sr/Y
ratios (12–15), moderately negative Eu anomalies (Eu/Eu* =
0.56–0.57), and relatively high HREE contents (e.g., Yb = 2.41 ×
10−6–3.03 × 10−6), implying partial melting under the plagioclase
stability condition with little or no garnet (corresponding to
pressures <12 kbar) (Luo et al., 2012; Wang et al., 2016). In
addition, the granodiorites exhibited εHf(t) values of +4.6 to +2.5,
plotting below the depleted mantle evolution line and the
composition of typical Permian mantle-derived mafic-ultramafic
rocks in the region (Lei et al., 2021), but above the crustal evolution
region of the Central Tianshan (He et al., 2018) (Figure 5). Their Hf
two-stage model ages of 1115 Ma to 981 Ma are significantly
younger than those of the Central Tianshan metamorphic
basement rocks (He et al., 2018). These features suggest that the
juvenile material played a key part in the granodiorite formation.
We, therefore, concluded that the studied granodiorites were most
probably derived from the partial melting of juvenile crustal
materials with plagioclase as a major residual phase at
pressures <12 kbar.

5.1.2 Monzogranites
The monzogranites showed low Y (5.6 × 10−6–12.5 × 10−6) and

HREE (e.g., Yb = 0.53 × 10−6–1.22 × 10−6) contents and high Sr/Y
(31–66) and (La/Yb)N (21–50) ratios, consistent with adakite-like
rocks (Figure 8). This feature is similar to Triassic adakite-like

granitoids in the region (Figure 8), indicating their petrogenetic
analogy. Several genetic models have been proposed for the origin of
adakitic rocks, including: 1) crustal assimilation and fractional
crystallization (AFC) processes of basaltic magma (Castillo et al.,
1999); 2) partial melting of subducted oceanic slab (Defant and
Drummond, 1990); and 3) partial melting of thickened (Chung et al.,
2003; Long et al., 2015) or delaminated mafic lower crust (Gao et al.,
2004).

Generally, AFC processes of basaltic magma necessitate
significant volumes of mafic melts (Castillo et al., 1999; Castillo,
2006), and the resultant adakitic rocks typically contain mafic
minerals (e.g., amphibole and clinopyroxene) (Zhang et al.,
2016a). The absence of amphibole and clinopyroxene in the
samples, together with the lack of voluminous coeval mafic rocks
in the study area, does not support an origin from basaltic magma by
AFC processes. Moreover, the monzogranites showed relatively
large variations in Sr/Y (31–66), (La/Yb)N (21–50), Zr/Nb
(23–38), and Nb/Ta (8.8–15.2) ratios at similar SiO2 contents,
precluding fractionation processes (Zhang et al., 2016a).

Adakitic rocks generated by the partial melting of subducted
oceanic slab or delaminated lower crust generally have high Mg#

(≥42), Cr (≥36 × 10−6), and Ni (≥24 × 10−6) values due to melt-
mantle interactions during magma ascent (Martin, 1999; Gao et al.,
2004). However, the studied monzogranites had low Mg# (34), Cr
(29 × 10−6–38 × 10−6), and Ni (1.6 × 10−6–2.1 × 10−6) values. In
addition, they had Rb/Sr ratios of 0.30–0.31, higher than those
(<0.05) of slab-derived adakitic rocks (Huang et al., 2009).
Moreover, lithospheric delamination typically results in mafic
magmatism that transitioned from “older” lithospheric mantle to
“young” asthenospheric mantle over tens of millions of years
(Ducea, 2011), which has not been documented in the CTS
during the Triassic. Thus, the studied monzogranites were
unlikely to have resulted from the partial melting of the oceanic
slab or delaminated lower crust.

The monzogranites had high SiO2 and low MgO, Mg#, Ni, and
Cr values, with εHf(t) values of +7.8 to +2.2 and corresponding TDM2

FIGURE 8
Discrimination diagrams for adakitic rocks. (A) Sr/Y versus Y diagram (Atherton and Petford, 1993); (B) (La/Yb)N versus YbN diagram (Defant and
Drummond, 1990). The symbols are the same as in Figure 6. The fields for Triassic adakite-like granitoids are from Zhang et al. (2015) and Zhao et al.
(2019).
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of 1133–773 Ma, indicating that their parental magma derived from
thickened juvenile lower crust, consistent with the petrogenesis of
Triassic adakite-like granitoids previously reported in the region
(Zhang et al., 2015; Zhao et al., 2019). In addition, the relatively high
Sr/Y and (La/Yb)N ratios of the monzogranites indicated the pluton
formation in the stability field of garnet with little or no plagioclase;
i.e., pressures >12 kbar (Wang et al., 2016). However, the relatively
low Nb/Ta ratios (9–15) imply a rutile-free source. Therefore, the
depth of partial melting for the monzogranites was constrained to
12–15 kbar, indicating a crustal source dominated by garnet
amphibolite (Yuan et al., 2010).

5.1.3 Two-mica granites
The ca. 244 Ma and ca. 241 Ma two-mica granites had

approximately coeval ages within error. Furthermore, they
displayed similar REE distribution patterns and primitive mantle-
normalized spider diagrams (Figure 7), together with similar εHf(t)
values (Figure 5), indicating similar geochemical affinities and
magma sources. Compared with relatively unfractionated
granitoids in the area, they contained higher concentrations of
SiO2, Na2O, and K2O, and lower concentrations of FeOt, MgO,
and CaO, with more significant Rb, Th, and U enrichment and Ba,
Sr, Eu, and Ti depletion (Figure 7A). In addition, their
differentiation indicators, such as the Y/Ho (30–34), Zr/Hf
(12–20), Nb/Ta (<10), and K/Rb (122–154) ratios, significantly
deviated from those of chondrite (Y/Ho = 28, Zr/Hf = 36, Nb/
Ta = 18, and K/Rb = 235; Sun and McDonough, 1989). These
observations demonstrated that the Triassic two-mica granites were
highly fractionated granites.

The alkaline mineral was absent in the two-mica granites
studied, with the presence of subhedral biotite crystals rather
than interstitial biotite. In combination with the low REE, Y, Zr,
and Zn contents, it is reasonable to infer that these two-mica granites
are not A-type granites (Whalen et al., 1987). In addition, they were
weakly peraluminous (A/CNK <1.1, Figure 6C), with low P2O5

(0.01%) contents and normative corundum (<1%), similar to the
diagnostic features of I-type rather than S-type granites (Chappell
and White, 2001). Thus, we concluded that these two-mica granites
were highly fractionated I-type granites.

It is generally agreed that highly fractionated I-type granite is
formed by 1) complete fractional crystallization of mantle-derived
mafic magmas (Wyborn et al., 2001) or 2) partial melting of crustal
materials, accompanied by subsequent fractional crystallization (Ju
et al., 2017; Liao et al., 2019). For the studied two-mica granites, the
latter mechanism may be more reasonable, as the requisite
voluminous mafic rocks to be parental materials were not
observed in the study area. Furthermore, their zircon εHf(t)
values ranged from +7.0 to +2.1, with Hf model ages (TDM2) of
1132 Ma to 824 Ma, indicating that the parental magma derived
from isotopically juvenile crustal materials. The crustal materials
should be medium-to-high-K mafic to intermediate rocks, as
inferred from their high-K calc-alkaline I-type affinity, with K2O/
Na2O > 1 (Roberts and Clemens, 1993; Sisson et al., 2005). The flat
HREE patterns of these two-mica granites suggest the absence of
residual garnet during partial melting. As the lower limit of garnet
stability is 5 kbar (Wang et al., 2016), the studied two-mica granites
were likely generated by the partial melting of crustal rocks in the
pressure range of ≤5 kbar. The subsequent fractional crystallization

process was dominated by feldspar, as deduced from the high Rb
contents (240 × 10−6–301 × 10−6) and Rb/Sr ratios (8.63–21.92), as
well as the significant negative Eu anomalies (Figure 7B) (Ju et al.,
2017). Therefore, the two-mica granites were formed by the partial
melting of juvenile crustal materials accompanied mainly by
fractional crystallization of feldspar before the final emplacement.

5.2 Triassic magmatism in Eastern Tianshan

Triassic plutons have been reported in Eastern Tianshan, such as
ca. 253–246 Ma granitoids and ca. 251–247 Ma gabbros in the
Jingerquan region (Liu et al., 2020), ca.250 Ma Baishitouquan
pluton (Zhi et al., 2021), ca. 250–235 Ma Hongshanliang
granitoids (Zhao et al., 2019), ca. 251–241 Ma Tianhu pluton (Lei
et al., 2013; Zhao et al., 2017; Lei et al., 2021), ca. 249–240 Ma
Guobaoshan amazonite granite (Chen et al., 2022), ca. 246–230 Ma
Weiya magmatic complex (Zhang et al., 2005; Wu et al., 2010; Feng
and Zheng, 2021), ca. 246 Ma Tudun K-feldspar granite (Zhou et al.,
2010), ca. 246–240 Ma Xiaobaishitou biotite granite (Deng et al.,
2017; Li et al., 2019), ca. 239 Ma Houshan granite (Lei et al., 2013)
and Shadong concealed granite (Chen et al., 2018), ca. 237–231 Ma
Donggebi porphyritic granite (Sun et al., 2017; Wu et al., 2017), ca.
236–228 Ma Bailingshanxi gabbro and porphyritic granite (Gao
et al., 2021), ca. 230–222 Ma Yamansubei pluton (Lei et al., 2013;
Zhang et al., 2017; Zhao et al., 2018), and ca. 228–226 Ma Baishan
granite porphyry (Zhang et al., 2015; Wang et al., 2015b; Wang et al.,
2016).

The zircons from the granitoid samples in this study,
characterized by euhedral to subhedral shapes, oscillatory zoning
structures, and relatively high Th/U ratios (0.31–1.34), yielded
weighted mean 206Pb/238U ages of 250–241 Ma, representing the
crystallization ages of the granitoids. These dating results in
conjunction with the aforementioned geochronological data
indicate significant Triassic magmatism in Eastern Tianshan;
thus, the Triassic period is an important magmatism epoch in
Eastern Tianshan. Moreover, several Triassic granitoids were also
identified in the adjacent Beishan area (Li et al., 2012), suggesting
that the Eastern Tianshan may have been connected to the Beishan
area during the Triassic and, thus, they may have been controlled by
the same geodynamic regime at that time.

5.3 Tectonic implications

Recent results from detrital zircons provenance analyses (Zhang
et al., 2016c), paleomagnetic research (Wang et al., 2007), and
structural analyses (Wang et al., 2014) suggested closure of the
Paleo-Asian Ocean most likely in the Late Carboniferous to the
Early Permian and post-collisional environment since the earliest
Permian in Eastern Tianshan. The Permian post-collisional
environment is also evidenced by the occurrence of the Early
Permian A2 type felsic magmatism (Zhou et al., 2010; Chen
et al., 2011) and ca. 295–265 Ma bimodal magmatic suites
constituted by mafic-ultramafic intrusive complexes and
undeformed granitic distributed in the North Tianshan (Han and
Zhao, 2018). Furthermore, it is generally accepted that post-
collisional magmatism signifies the end of the orogenic cycle,
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with a duration of ~10–40 Ma (Song et al., 2015). Thus, it is
reasonable that the subsequent intracontinental environment
commenced at the latest in the Early Triassic.

Meanwhile, the Triassic magmatism of Eastern Tianshan shows
features including a) sporadic occurrence of small granitic
intrusions, with predominantly nearly elliptical shape (Figure 2;
Zhou et al., 2010; Mao et al., 2015), b) a regional distribution (Wu
et al., 2010), c) rare mafic magmatism, except for the Weiya gabbro
(Zhang et al., 2005; Zhang et al., 2007) and coeval mafic dykes
(Wang et al., 2008), and d) the presence of highly fractionated I-type
granites. These differ obviously from those of voluminous Permian
magmatism characterized by abundant A-type granitoids and coeval
voluminous mafic-ultramafic intrusions, exhibiting orogen-parallel
distributions (Han and Zhao, 2018). This contrast indicates a
diminished impact of the continental collision related to the
Paleo-Asian Ocean tectonic evolution on Eastern Tianshan
during the Permian, and that the Triassic magmatism was mainly
controlled by a different tectonic regime. The magmatism of the
Triassic granitoids occurred synchronous with a series of geological
events resulting from the progressive closure of the Paleo-Tethys
Ocean (such as rotations of the Junggar Block, ductile shearing of the
Xingxingxia Fault, and exhumation of the Beishan Terrane) (Wang
et al., 2010; Choulet et al., 2013; Gillespie et al., 2017). Therefore, the
closure of the Paleo-Tethys may have provided a dynamic trigger for
the Triassic magmatism in Eastern Tianshan (Wu et al., 2010; Zhang
et al., 2017; Feng and Zheng, 2021).

The adakite-like rocks, including ca. 247 Ma monzogranites
presented here and ca. 250 Ma Hongshanliang (monzonitic)
granodiorite (Zhao et al., 2019), were mostly plotted in the fields
of VAG + syn-COLG (Figure 9) (Pearce et al., 1984), suggesting a
compressional environment during the Early Triassic (Zhang et al.,
2015) in Eastern Tianshan. Similarly, the ca. 235 Ma Hongshanliang
monzogranite (Zhao et al., 2019) and ca. 228 Ma Baishan granite
porphyry (Zhang et al., 2015), mainly derived from thickened lower
crust, also plotted in the VAG + syn-COLG fields (Figure 9),
suggesting a compressional environment during the early Late

Triassic. In combination with a series of compressional tectonic
events in the adjacent regions, including a) counter-clockwise
rotations of the Junggar relative to the Tarim between the Early
and the Late Triassic (Choulet et al., 2013), and b) exhumation of the
Beishan terrane initiated at ~230 Ma (Gillespie et al., 2017), it is
reasonable to propose that Eastern Tianshan was in a continuous
compressional setting in the Early Triassic to the early Late Triassic.

By contrast, the (highly fractionated) I-type granitoids in this
study mainly fell within the post-COLG field in Figure 9B,
suggesting an extensional environment. However, the tectonic
discrimination diagrams for granitoids were not convincing,
especially for those highly fractionated I-type granitoids.
Therefore, this evidence is less robust. Nonetheless, a Triassic
extensional setting has often been proposed as a possible tectonic
regime in Eastern Tianshan. This inference is supported by the
presence of a 246–230 Ma Weiya intrusive complex (Zhang et al.,
2005; Wu et al., 2010; Feng and Zheng, 2021), 234–231 Ma
Donggebi granitoids with A-type features (Li et al., 2012; Sun
et al., 2017), and 222 Ma Tianhu lamprophyre dykes and coeval
Hongliuhe diabase dykes (Wang et al., 2008) in Eastern Tianshan
and adjacent Beishan area. Furthermore, the extensional setting is
reinforced by the observations that several mineral deposits (such as
the Xiaobaishitou deposit formed during the Early Triassic (Li et al.,
2019) and the Donggebi deposit formed in the Early to Middle
Triassic (Sun et al., 2017)) in Eastern Tianshan are associated with a
regional extension.

The aforementioned discussion indicates that the compressional
and extensional tectonic regimes occurred contemporaneously from
the Early Triassic to the Early Late Triassic in Eastern Tianshan. We
speculate that the contrasting and contemporaneous tectonic
regimes (i.e., compression and extension) occurred at deep and
shallower lithosphere depths, respectively. The compressional depth
was constrained to >40 km. This is inferred from the petrogenesis of
adakite-like granitoids, including monzogranites in this study,
Hongshanliang monzogranite (Zhao et al., 2019), and Baishan
granite porphyry (Zhang et al., 2015), which were mainly derived

FIGURE 9
Discrimination diagrams of Triassic granitoids in Eastern Tianshan (Pearce et al., 1984). (A)Nb versus Y diagram; (B) Rb versus Y + Nb diagram; ORG,
ocean ridge granite; WPG, within plate granite; VAG, volcanic arc granite; syn-COLG, syn-collisional granite; post-COLG, post-collisional granite. The
symbols are the same as in Figure 6. The fields for Triassic adakite-like granitoids (Baishan granite porphyry, Hongshanliang (monzonitic) granodiorite, and
monzogranite) are from Zhang et al. (2015) and Zhao et al. (2019).
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from a thickened lower crust and formed in a compressional setting.
Meanwhile, the extension was inferred to occur at a depth <40 km,
based on the petrogenesis of the (highly fractionated) I-type
granitoids in this study and the Weiya intrusive complex
generated in the pressure range of ≤12 kbar, pointing to an
extensional setting (Feng and Zheng, 2021). Such a model
involving coeval extension and contraction at different depths is
usually attributed to lithosphere flexure, a tectonic scenario
commonly noted along convergent margins (Bradley and Kidd,
1991; Davis et al., 1994; Yuan et al., 2010).

Considering the geological evidence described previously, we
suggest that the Triassic granitoids in the Yamansu area were
generated in an intracontinental environment. In Eastern
Tianshan, contemporaneous compression and extension existed
at deep and shallower lithosphere depths, respectively, during the
Triassic (Figure 10). In the deep lithosphere, some fractures must
have formed within the compressional lithospheric mantle and
provided channels for upwelling asthenospheric mantle
(Figure 10). This upwelling elevated the geotherm, providing the
necessary heat for the partial melting of the lithospheric mantle.
Underplating of the mantle-derived magmas at the deep crust could
promote the partial melting of the thickened lower crust to generate
the adakite-like monzogranitc magma. Later, the intraplating of
these mantle-derived magmas at the middle to the lower crust could

have promoted the partial melting of the corresponding crustal
sources to produce the granodioritic and granitic magmas.

6 Conclusion

Based on new whole-rock geochemical compositions, as well as
LA-MC-ICP-MS U–Pb zircon dating and Hf isotopic analyses of
granitoids in Eastern Tianshan, the following conclusions can be
drawn:

(1) Triassic granitic magmatism, represented by intrusions of
granodiorite, monzogranite, and two-mica granite in the
Yamansu area on the northern margin of the CTS belt, yield
zircon U–Pb ages of ca. 250–241 Ma. Combined with previous
geochronology studies, we suggest significant Triassic
magmatism in Eastern Tianshan; thus, the Triassic period
was an important magmatism epoch in Eastern Tianshan.

(2) The granitoids were formed by the partial melting of juvenile
materials at various crustal levels in the region. The
granodiorites (ca. 250 Ma) were calc-alkaline I-type granites
derived from the partial melting of juvenile crustal materials at
pressures <12 kbar. The monzogranites (ca. 247 Ma) were
adakitic and were formed by partial melting of the thickened

FIGURE 10
Schematic diagram showing granitoid generation in the Yamansu area, Eastern Tianshan.
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lower crust at relatively high pressures (12–15 kbar). The two-
mica granites (ca. 244 Ma and ca. 241 Ma) were highly
fractionated I-type granites generated by the melting of
medium-to high-K mafic to intermediate crustal rocks at
pressures <5 kbar, accompanied mainly by subsequent
fractional feldspar crystallization.

(3) The granitoids were formed in an intracontinental
environment, possibly controlled mainly by the far-field
effects of the Paleo-Tethys system.

(4) In Eastern Tianshan, contemporaneous compression and
extension existed at deep and shallower lithosphere depths,
respectively, during the Triassic.
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