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For the island and reef project formed by filling calcareous sand, the problems of
wide particle size distribution (PSD) and complexmechanical properties have to be
faced. Therefore, in order to provide basic mechanical parameters for the
construction of the island and reef project, triaxial shear tests were carried out
on calcareous sands with five different typical PSDs. The results showed that as
particle gradation became narrower, the axial strain corresponding to the strain-
softening point all showed a decreasing trend and their differences gradually
decreased; the confining pressure has a significant impact on the volumetric
deformation modulus of calcareous sand with a wide PSD. The cohesion of
calcareous sand showed a positive correlation with non-uniformity and
curvature coefficients, while the variation of an internal friction angle showed a
parabolic law; the internal friction angle also changes in the parabola with the
change of fine particle contents. Furthermore, by establishing the PFC3D discrete
element model, it was found that the numerical simulation results were in good
agreement with the test results, which verifies the feasibility of the numerical
simulation and the rationality of the mesoscopic parameter calibration. It was
discovered that the wider the particle gradation range, the greater the axial strain
corresponding to the critical coordination number; the sample with a narrow
gradation interval was more likely to present a rotating displacement field to form
a penetrating shear band. This study can provide design parameters for stability
analysis of high and steep slopes in calcareous sand sites.
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1 Introduction

Calcareous sand (Hongbing et al., 2006) is widely distributed in the Maldives and other
islands, which is a kind of carbonate sediment obtained after experiencing long-term
immersion in calcium carbonate solution; it has the characteristics of irregular shape
(Liu and Wang, 1998; Smith and Cheung, 2003), numerous pores (Xu et al., 2022), easy
cementation (Meng et al., 2014), and breakage (Hu, 2008; Donohue et al., 2009). In terms of
the particularity of calcareous sand, a series of studies have been carried out, including
physical and mechanical properties (Lade et al., 2010; Lv et al., 2017; Giretti et al., 2020; Xu
et al., 2020), dynamic properties (Morsy et al., 2019; Zhou et al., 2019; Liu et al., 2020),
engineering properties (Yue et al., 2017; Rui et al., 2021), calcareous sand concrete (Ma et al.,
2019; Wang et al., 2020), and microbial cementation (Liu et al., 2019; Xiao et al., 2019). The
research results showed that the engineering mechanical properties of calcareous sand are
very different from those of common continental sediments (Jiang et al., 2015; Wang et al.,
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2017a). Because of the “Belt and Road Initiative” policy, numerous
island and reef projects are being planned, where the construction
sites are often formed by blowing and filling calcareous sand (Wang
et al., 2011; Wang et al., 2021). When the island and reef
underground engineering is excavated, it will face the problem of
slope stability analysis, especially some high and steep slopes. At the
same time, due to the wide distribution of particles in the calcareous
sand site formed by hydraulic reclamation, the shear strength of
different graded calcareous sand slopes is different (Coop, 1990; Ma
et al., 2022), which brings difficulties to the slope stability analysis.
Therefore, it is necessary to conduct an in-depth research on the
shear characteristics of calcareous sand (Ding et al., 2021).

The shear characteristics of calcareous sand have been
extensively studied; it has been observed that particle gradation
(Hassanlourad et al., 2014; Rezvani et al., 2021), confining pressure
(Fahey, 2021), and particle breakage (Jingping et al., 1997; Zhang
and Luo, 2020) have an impact on the shear strength of calcareous
sand. For particle gradation, significant attention has been paid to
the influence of particle size (Bagherzadeh-Khalkhali and
Mirghasemi, 2009; Cao et al., 2020; Kuang et al., 2021),
uniformity coefficient (Liang et al., 2022), average particle size
(Giang et al., 2017; Wang et al., 2017b), fine particle content
(Shen et al., 2021), and particle group content (Ata et al., 2018;
Shen et al., 2018; Yang et al., 2020; Fan et al., 2021) on the shear
strength of calcareous sand. Chen et al. (2022) carried out triaxial
shear tests to study the effect of gradation on the particle breakage
andmechanical properties of coral sand. However, the grading range
of prepared coral sand samples is very narrow, which cannot fully
reflect the shear characteristics of hydraulic fill calcareous sand at the
project site. It can be observed that although there are some
achievements in the research on the influence of particle
gradation on the shear characteristics of calcareous sand, they are
partial and not comprehensive enough to reflect the shear
characteristics of fully classified calcareous sand (gravel sand,
coarse sand, medium sand, fine sand, and silt) under wide grading.

In this research, wide graded and fully classified calcareous sandwas
taken as the research object, and five kinds of typically graded calcareous
sand, which can represent calcareous gravel sand, calcareous coarse
sand, calcareous medium sand, calcareous fine sand, and calcareous silt,
were selected to conduct the triaxial drainage shear test; thus, the change
rules of strength characteristics, volumetric deformation characteristics,
and the impact of grading on strength indexes were analyzed.
Furthermore, the 3D discrete element model was established to
conduct a mesoscopic study of the shear characteristics of calcareous
sand so as to clarify the basic mechanical characteristics of the
calcareous sand site, which also provides reasonable mechanical

parameters for stability analysis of high and steep slopes in island
and reef engineering.

2 Materials and methods

2.1 Test material

According to the Code for Geotechnical Investigation of Water
Transport Engineering (Partial Revision)—Geotechnical Investigation
of Coral Reef (Draft) (CCCC Second Harbor Engineering Survey and
Design Institute, 2022), the calcareous sandy soil is divided into
calcareous gravel sand, calcareous coarse sand, calcareous medium
sand, calcareous fine sand, and calcareous silty sand, as shown in
Table 1. This paper considered the coral sandy soil revealed by the
engineering geology of the coral reef area in the Maldives as the research
object, and five kinds of typically graded calcareous sand (respectively
representing calcareous gravel sand, calcareous coarse sand, calcareous
medium sand, calcareous fine sand, and calcareous silty sand) were
selected through field sampling, in order to avoid the particle size effect;
particles with the size ofmore than 5mmwere removed, but the reserved
particle groups are <0.075mm, 0.075–0.1 mm, 0.1–0.25mm,
0.25–0.5 mm, 0.5~1mm, 1~2mm, and 2~5mm, as shown in
Figure 1. The particle analysis test results are shown in Figure 2.
According to particle grading curves, the calculated controlled particle
size and grading index are shown in Table 2.

2.2 Test scheme

2.2.1 Test apparatuses
The strain control triaxial tester was used in this test. The sample

diameter is 50mm, and the height is 100 mm. The maximum axial force
is 100 kN, and the maximum axial displacement can reach 50mm. The
confining pressure is provided by the air pump, where the confining
pressure range is 0–16MPa, and the back pressure control is 0~4MPa.
The pore water pressure, axial strain, axial displacement, and other
parameters are automatically recorded by the computer.

2.2.2 Sample preparation
The saturated sample is the key to this test. The main process of

the test is as follows:

(1) Pour the weighed calcareous sand into the rubber membrane
three times, and compact the sand sample with a slender rod to
achieve the required dry density of 1.45 g/cm3.

TABLE 1 Classification of coral reef debris.

Coral reef detritus Particle size distribution

Calcareous sandy soil Calcareous gravel sand Mass of particles with a particle size greater than 2 mm accounts for 25%–50% of the total mass

Calcareous coarse sand Mass of particles with a particle size greater than 0.5 mm exceeds 50% of the total mass

Calcareous medium sand Mass of particles with a particle size greater than 0.25 mm exceeds 50% of the total mass

Calcareous fine sand Mass of particles with a particle size greater than 0.075 mm exceeds 85% of the total mass

Calcareous silt Mass of particles with a particle size greater than 0.075 mm exceeds 50% of the total mass
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(2) Apply a confining pressure of 10–20 kPa through a computer, pass
CO2 into the sample through the small hole in the center of the
sample base for about 1 h, andmaintain the pressure at about 10 kPa.

(3) Open the water inlet valve to allow water to enter the sample from
the bottom of the sample, and the water head saturation is
completed until the water continuously flows out of the drain valve.

(4) Apply back pressure to saturate the sample and maintain the
confining pressure greater than the back pressure of 30 kPa to
prevent the rubber membrane from being damaged by excessive
back pressure until the water no longer flows into the sample.

(5) When the saturation degree B is detected to be more than 0.95,
saturation is completed; the next step is the shear test.

2.2.3 Sample shearing
Under the confining pressure values of 25 kPa, 50 kPa, 100 kPa,

and 200 kPa, a total of 20 groups of triaxial consolidation drainage

shear tests were performed on five kinds of calcareous sand
mentioned previously. When the axial strain of the sample
reaches 15%, the test is terminated and the shear rate is 0.3 mm/min.

3 Experiment results

3.1 Strength characteristics

The deviatoric stress–strain curves of five calcareous sand
samples are shown in Figure 3. It can be observed that under
confining pressure (σ3 � 25 ~ 200kΡa), these curves all show
strain-softening characteristics (Huodong et al., 2018). As the
axial strain increased, the sustained deviator stress continuously
increased (Yamamuro and Lade, 1996) but decreased after reaching
the peak value. Under low confining pressure (σ3 � 25 ~ 50kΡa),
the curve slope did not significantly decrease after increasing, and
the strain-softening phenomenon was not evident. With confining
pressure increasing to (σ3 � 100 ~ 200kΡa), the strain-softening
phenomenon became more evident. This is because, under low
horizontal stress, the particle breakage phenomenon (Lade et al.,
1996) is not evident, but the particles were broken to different
degrees as the confining pressure increased (Desrosiers and Silva,
2002; Yu, 2018), during which as the content of fine particles
increased, the calcareous gravel sand changed into calcareous silt
(Figures 3A, B, C, D, E), making some fine particles play the role of
“ball” on the surface of the coarse particles; thus, the coarse particles
became easier to slip, forming a relatively evident shear band, and
make the stress–strain curve exhibit evident strain-softening
phenomena. Moreover, it can also be observed that with the
increase of the confining pressure, the axial strain corresponding
to the peak stress continuously increased, that is, the starting
position of strain-softening moved backwards; moreover, as the
calcareous sand particles gradually became finer, these axial strains

FIGURE 1
Calcareous sand of each grain group: 2~5 mm, 1~2 mm, 0.5~1 mm, 0.25~0.5 mm, 0.1~0.25 mm, 0.075~0.1 mm, and below 0.075 mm.

FIGURE 2
PSD curves.
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under each confining pressure decreased and the difference between
them gradually became smaller. This is because as calcareous gravel
sand changed into calcareous silty sand, the particle size distribution
(PSD) gradually became worse and the interlocking effect between

particles decreased, making particles more prone to shear. Figure 3E
shows that for calcareous silt, the difference in the axial strain
corresponding to the four peak stresses was very small; this is
because the increase of fine particles in calcareous silt makes the

TABLE 2 Physical property index of calcareous sand.

Parameter Calcareous gravel
sand

Calcareous coarse
sand

Calcareous medium
sand

Calcareous fine
sand

Calcareous
silt

d10 0.09 0.09 0.08 0.08 0.08

d30 0.45 0.28 0.16 0.14 0.09

d50 1.00 0.58 0.26 0.22 0.15

d60 1.50 0.80 0.36 0.30 0.20

Non-uniformity
coefficient Cu

16.67 8.70 4.80 4.00 2.67

Curvature coefficient Cc 1.50 1.07 0.95 0.87 0.54

FIGURE 3
Deviatoric stress–axial strain curves. (A)Calcareous gravel sand. (B)Calcareous coarse sand. (C)Calcareousmedium sand. (D)Calcareous fine sand.
(E) Calcareous silt.
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particle not easy to break and slip, which results in the whole
decrease of the axial strain corresponding to the strain-softening
point and the decrease of deviation between them. Figure 3 shows
that when the axial strain of calcareous gravel sand, calcareous
coarse sand, and calcareous medium sand reached 15%, the
deviatoric stress still remained unstable, while that of the axial
strain of calcareous fine sand and calcareous silty sand reached
15%; the deviatoric stress of the axial strain gradually became stable,
especially for calcareous silty sand; this indicates that for the fine-
grained sample, the strain is small and it will maintain its stable
residual strength after strain-softening occurs.

3.2 Deformation characteristics

As the relationship between the volumetric strain and axial strain
of five kinds of calcareous sand shown in Figure 4, these calcareous
sand forms all showed volumetric deformation characteristics of the
first shear compression and then shear dilatancy, which means that

with the increase of the axial strain, the shear compression became
more evident, the shear compression rate gradually decreased, and
then the shear dilatancy appeared, with first increase and then
decrease of shear dilatancy rates. With calcareous gravel sand
changing to calcareous silt, their gradation range became
narrower and the decreasing amplitude of the shear dilatancy rate
was large, indicating that the shear dilatancy rate decreased and the
volumetric deformation showed a stable trend. With the increase of
the confining pressure from 50 kPa to 200 kPa, the volumetric strain
curve changed significantly, especially for calcareous gravel sand and
calcareous coarse sand, suggesting that the confining pressure has a
significant impact on the volume change modulus of calcareous sand
with a wide PSD. This is because the coarse particles are irregular in
shape with many edges and corners, and porosity was compressed
and some coarse particles were crushed as the strain increased;
furthermore, the increase in the axial strain caused the particles to
slip as a whole, presenting the volumetric characteristics of shear
dilatancy. With the increase of confining pressure, the coarse
particles in calcareous sand were partially crushed, resulting in the

FIGURE 4
Volumetric strain–axial strain curve of calcareous sand. (A) Calcareous gravel sand. (B) Calcareous coarse sand. (C) Calcareous medium sand. (D)
Calcareous fine sand. (E) Calcareous silt.
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sample being compressed to a greater extent. Therefore, the
volumetric strain curve was significantly different from that under
low confining pressure. It can also be observed that with the increase
in the confining pressure, the axial strain corresponding to the
change point from shear compression to shear dilatancy increased
continuously, which indicates that the increase in confining pressure
compressed pores and crushed particles, delaying the shear dilatancy.

3.3 The effect of PSD on the strength index

According to the Mohr–Coulomb strength criterion, the σ–τ
envelope is obtained, as shown in Figure 5, based on which the
shear strength parameters can be obtained. The peak internal
friction angle of calcareous sand was in the range of 41°–45.3°, the
bite force was in the range of 19.8 kPa–25.6 kPa, the residual internal

friction angle was in the range of 36.6°–38.5°, and the residual bite force
was in the range of 10.9 kPa–15.9 kPa.

In order to further investigate the impact of the gradation index on
shear strength, the curves reflecting the relationship between the non-
uniformity coefficient Cu, curvature coefficient Cc and cohesion, and
the internal friction angle were drawn and are shown in Figures 6, 7.

According to the test results, it can be observed that cohesion
increased with the increase of Cu and Cc. Previous research shows that
the basic shape of particles is similar in calcareous soil with different
particle sizes, but the particle size will change with particle groups
varying, and the proportion of particles with different shapes in each
particle group is also different. In coarse calcareous sand, the particle
shape is mostly flaky and branched and the interlocking effect between
particles is easy to form. Table 1 shows that as Cu of calcareous silt
increased to Cu of calcareous gravel sand, Cc also increased, so the
sample gradually met the requirements of Cu ≥ 5 and Cc=1–3,

FIGURE 5
σ–τ envelope. (A) Peak σ–τ envelope. (B) Residual σ–τ envelope.

FIGURE 6
Relationship between Cu and cohesion and the internal friction angle. (A) Relationship between Cu and cohesion. (B) Relationship between Cu and
the internal friction angle.
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suggesting a continuous good gradation, and the filling, extrusion, and
occlusion of particles were enhanced. With the particle size increasing,
the content of large-particle calcareous sand became higher and the
occluding effect between particles was continuously strengthened, while
the apparent cohesion was generated by the occluding effect of particles;
so, with the increase of non-uniformity and curvature coefficients,
calcareous sand showed a higher cohesion.

It can also be observed that with the decrease of Cu and Cc, the
internal friction angle first increased and then decreased. This is because
as calcareous gravel sand changed into calcareous silt, Cu and Cc
gradually decreased and particles gradually became uniform and poorly
graded, during which the content of coarse particles decreased, and the
content of fine particles gradually increased; thus, more fine particles fill
pores to intensify the contact between particles, making the friction
angle gradually increase. However, with further increase in the content
of fine particles, fine particles started to play a role in lubrication and the

“ball” effect appeared in calcareous sand, reducing the internal friction
angle. Therefore, corresponding to the peak internal friction angle, there
is a limit value for the content of fine particles. In order to further
quantify the limit value of fine particle contents and clarify the effect of
fine particle contents on the internal friction angle of calcareous sand,
the relationship between fine particle contents and internal friction
angles is plotted and shown in Figure 8.

Figure 8 shows that there was a limit value of 10% for the fine
content, whichmeanswhen the fine contentwas 10%, the internal friction
angle reached the maximum value; when the content of fine particles was
less than 10%, the internal friction angle gradually increased; when thefine
content was greater than 10%, the internal friction angle decreased.

Based on qualitative analysis, the test datawerefitted to quantitatively
reflect the impact of the particle size of calcareous sand on the strength
index; the following formulas can be used to accurately calculate and
evaluate the strength characteristics of calcareous sand with different
PSDs. Figures 9–11 show the fitting relationships between Cu and
cohesion, Cc and cohesion, and fine particle content and internal
friction angle; the determination coefficients of the fitting formulas
are all above 0.95, indicating a high reliability.

y � −12.2*e − x
4.3( ) + 26, (1)

R2 � 0.95,

y � 25.5 + −5.8
1 + e

x−1
0.05( ), (2)

R2 � 0.99,

y � 40.9 + 5.2*e−0.5*
x−8.3
2.4( )2 , (3)

R2 � 0.96.

4 Discrete element simulation (Wang
et al., 2018)

Bardet and Proubet (1991) and Bardet and Proubet (1992)
simulated the evolution law of shear bands in granular materials

FIGURE 7
Relationship between Cc and cohesion and the internal friction angle. (A) Relationship between Cc and cohesion. (B) Relationship between Cc and
the internal friction angle.

FIGURE 8
Relationship curve between the fine particle content and internal
friction angle.
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from a two-dimensional perspective. In order to overcome the
limitation of a two-dimensional plane, PFC3D (Cundall and
Strack, 1979; Cundall, 2001) was adopted to model calcareous
sands with different PSDs and explore the interaction between
particles from a three-dimensional perspective, which provides a
powerful tool for revealing the shear behavior of calcareous sand
from the mesoscopic level.

4.1 Numerical sample preparation

Referring to the existing numerical test results, the method of
expanding particle sizes has a small impact on the mechanical
behavior of the material (Belheine et al., 2009; Evans and Valdes,
2011); in this paper, the particle size was uniformly enlarged

3.5 times; the numerical sample is shown in Figure 12, and the
numerical test process is as follows:

(1) According to the PSD in the laboratory test, a model of the
sample in a cylinder with a diameter of 50 mm and a height of
100 mm was established, which had the same PSD. In this
sample model, the generated particles are as follows:
28,013 particles for calcareous gravel sand, 39,715 particles
for calcareous coarse sand, 59,915 particles for calcareous
medium sand, 61,983 particles for calcareous fine sand, and
70,362 particles for calcareous silt.

(2) The particle sample was generated according to the initial
porosity, and the wall was preloaded with a certain pressure
to obtain a uniform and dense sample.

FIGURE 9
Fitted relationship curve between Cu and cohesion.

FIGURE 10
Fitted relationship curve between Cc and cohesion.

FIGURE 11
Fitted relationship curve between the fine particle content and
internal friction angle.

FIGURE 12
Numerical sample.
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(3) The contact between particles was set as the parallel bonding
model “linearpbond,” and relevant parameters were assigned to
realize the bond between particles.

(4) The displacement of particles was reset, and then a relative
velocity was applied to the upper and lower walls to realize
triaxial shear numerical sample loading.

4.2 Calibration of mesoscopic parameters

In this paper, parallel bonding was used to simulate the bonding
force between calcareous sand particles. The parallel bond model
can describe the constitutive characteristics between the cemented
particles, where the spring group with constant normal and
tangential stiffness is distributed on the contact surface. When
the displacement or force between particles exceeds the critical
value, the parallel bonding model will fail to induce a fracture. In
the discrete element numerical simulation, mesoscopic parameters,
such as contact stiffness and friction coefficient, need to be
calibrated. Referring to previous numerical tests (Thompson
et al., 2009; Stratton and Wensrich, 2010), the normal stiffness in
this paper is 100 MN/m, and the particle stiffness ratio is 1.0, which
meets the range of 1.0–1.5 recommended by Goldenberg and
Goldhirsch (2005). According to the results of indoor tests, the
internal friction angle of calcareous sand was 45°, and the cohesion,
effective modulus, and other mesoscopic parameters were calibrated
according to the stress–strain curve in the laboratory test, as shown
in Table 3.

5 Numerical simulation results

5.1 Comparison with indoor tests

Figure 13 shows the comparison between the numerical
simulation results and the test results of calcareous silt; it can be
observed that they are in good agreement, and the feasibility of the
numerical simulation and the rationality of the calibration of
mesoscopic parameters are verified. On this basis, the numerical
simulation results can be further analyzed. Figure 14 shows the
failure pattern in the numerical calculation and the indoor test of

calcareous silt; it can be observed that both were found in the
inclined shear failure zone, which was in good agreement.

5.2 Coordination number evolution

The coordination number reflects the average number of
contacts per ball and can be defined as follows:

Cn �
∑Ngrain

nc
i

Ngrain
i � 1, 2, ...,Ngrain. (4)

Under the impact of load, the rearrangement of calcareous
sand particles is the fundamental reason for the shear
compression and dilatancy, and their sliding and rotation will
cause the change of the coordination number. Figure 15 shows
the change curve of the coordination number of five types of
calcareous sand during shearing. As a whole, with the increase of
the axial strain, the coordination number first increased and then
decreased, existing as a critical coordination number; this is
because, with the increase of the axial load, the volume of
calcareous sand is compressed, resulting in an increase in the
number of contact between particles and an increase in the
coordination number. With the further increase of the axial

TABLE 3 Mesoscopic parameters of a numerical sample.

Sand type Friction
force

Normal contact stiffness/
MN·m-1

Stiffness
ratio

Effective
modulus/GPa

Cohesion/
MPa

Friction
angle/(°)

Calcareous gravel
sand

0.5 100 1.0 0.1 0.32 43.3

Calcareous coarse
sand

0.5 100 1.0 0.1 0.26 43.8

Calcareous medium
sand

0.5 100 1.0 0.1 0.3 45.3

Calcareous fine sand 0.5 100 1.0 0.1 0.28 43.5

Calcareous silt 0.5 100 1.0 0.1 0.22 41.0

FIGURE 13
Comparison of deviatoric stress–strain between simulation and
the indoor test.
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strain, the sample exhibited a shear slip, the number of contact
between particles decreased, and the sample showed shear
dilatancy. It can be observed that with calcareous gravel sand
changing into calcareous silt, the coordination number increased
significantly and the axial strain corresponding to the critical
coordination number decreased gradually from 5% to 3%. This is
because as the PSD gradually became worse, embedding and
occluding between the particles were weakened, making the shear
slip more likely to occur. This is consistent with the shear law
obtained from the laboratory test. The change of the coordination
number also explains the volume change mechanism of the first
shear compression and then shear dilatancy of calcareous sand in
the mesoscale.

5.3 Developmental law of the shear
displacement field

To further analyze the formation and characteristics of the shear
band in the sample, the development and change of a displacement
field were revealed by slicing the cylindrical sample. Figure 16 shows
the development process of the shear displacement field under a
confining pressure of 200 kPa. Figures 16A,B show the particle
displacement field with a small axial strain. With the increase of
the axial strain, the displacement of particles at the top and bottom
gradually increased and the particles in the middle of the sample
began to show a trend of horizontal outward shear dilatancy;
however, the displacement field corresponding to the peak
strength was not reached, and there was no shear band. As the
peak strength was reached with the increase of the axial strain.
Figure 16C showed a more evident shear band, and the shear
dilatancy of the sample was further enhanced. At the same time,
an evident and concentrated shear zone is shown in Figure 16D, and
the movement direction of particles in the shear zone was almost
distributed between 0° and 360°, indicating that the particles in the
shear zone have slipped and turned over, which explains the
formation mechanism of the macroscopic shear fracture zone
from a microscopic perspective.

In order to further compare the shear zone evolution of these
five types of calcareous sand, their shear displacement fields are
observed, as shown in Figure 17. It can be observed that as grain
gradation decreased (Figures 17A, B, C, D, E), the particles gradually
became finer and the rotating blue displacement field gradually
appeared in the sample; moreover, the displacement field in the
calcareous medium sand (calcareous fine sand) was significantly
larger than that of the calcareous coarse sand; this is the primary

FIGURE 14
Comparison of the shear band between simulation and the indoor test. (A)Numerical simulation of the shear band. (B) Shear band for an indoor test.

FIGURE 15
Relationship between the coordination number and axial strain.
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FIGURE 16
Evaluation law of the shear displacement field. (A) ε1 =1%. (B) ε1 =5%. (C) ε1 =10%. (D) ε1 =15%.

FIGURE 17
Shear displacement fields of five types of calcareous sand. (A) Shear displacement field of calcareous gravel sand. (B) Shear displacement field of
calcareous coarse sand. (C) Shear displacement field of calcareous medium sand. (D) Shear displacement field of calcareous fine sand. (E) Shear
displacement field of calcareous silt.

FIGURE 18
Morphological slice of microcracks. (A) Section of calcareous gravel sand. (B) Section of calcareous coarse sand. (C) Section of calcareous medium
sand. (D) Section of calcareous fine sand. (E) Section of calcareous silt.
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condition of forming shear bands. With the further increase of the
rotational displacement field, a fully penetrating shear slip band was
formed as that of calcareous silt, as shown in Figure 17E. If the
rotational displacement field is not formed, the specimen may
exhibit local shear failure and form a local shear band, as shown
in Figure 17A. Due to small differences in sample gradation,
calcareous medium sand and calcareous fine sand showed similar
displacement fields.

5.4 Analysis of microcrack evolution

Figure 18 shows the morphological slice of microcracks in five
types of calcareous sand after triaxial shear, where blue represents
the microcrack formed by shear failure and green represents the
microcrack formed by tensile failure. It can be observed that the
obvious shear failure zone is accompanied by partial tension cracks
on the shear crack zone, which indicates that the bond failure
between particles is caused by both the shear and tension effects,
particularly by shear failure. At the same time, it can also be observed
that in the samples with wide PSDs, such as calcareous gravel sand,
the content of coarse particles is high and the distribution of shear
bands is relatively irregular and more scattered; this is because the
particles have strong impingement and occlusion, making the
penetrating shear bands difficult to form; moreover, the coarse
particles may limit the extension and penetration of the shear zone.

6 Conclusion

In this paper, the shear characteristics of calcareous sand with
five PSDs were studied using the triaxial drainage shear test and the
influence of PSD on the shear properties of calcareous sand is
discussed in detail. The following conclusions can be drawn.

(1) During triaxial drained shear tests, as the PSD became narrow, this
axial strain decreased and the difference between the five types of
calcareous sand decreased. As the PSD became narrow, the deviator
stress of the sample tended to be stable earlier and the residual
strength remained stable. The peak internal friction angle of
calcareous sand is in the range of 41–45.3°, and the bite force is
in the range of 19.8–25.6 kPa; the residual internal friction angle is in
the range of 36.6–38.5°, and the residual bite force is in the range of
10.9–15.9 kPa. With the calcareous gravel sand changing into
calcareous silt, the particles gradually became finer and the
volumetric deformation exhibits a stable trend. With the increase
of confining pressure, the occurrence of shear dilatancy was delayed.

(2) After comparing the PSD of five types of calcareous sand, it was
found that the cohesion of the sample increases with the
increase of the non-uniformity coefficient Cu and curvature

coefficient Cc, while the internal friction angle first increased
and then decreased, showing a parabolic variation law. The
internal friction angle varied with the fine particle content in a
parabola and reached the maximum value when the fine particle
content was 10%. The formulas fitting the relationship between
the non-uniformity coefficient Cu, curvature coefficient Cc, fine
particle contents, and strength parameters were obtained, and
the strength index of calcareous sand can be calculated and
evaluated, with high accuracy.

(3) With PSD becoming wider, the coordination number
decreased, but the axial strain point corresponding to the
critical coordination number continued to increase. With
the decrease in particle gradation, the particles gradually
became finer and the rotating blue displacement field
gradually appeared in the sample. With further increase
of the rotating displacement field, a complete shear slip zone
was formed. With the widening of particle gradation, the
content of coarse particles increased and the distribution of
shear bands became relatively irregular and more dispersed.
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