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Prediction of dam behavior based on monitoring data is important for dam safety
and emergencymanagement. It is crucial to analyze and predict the seepage field.
Different from the mechanism-based physical models, machine learning models
predict directly from data with high accuracy. However, current predictionmodels
are generally based on environmental variables and single measurement point
time series. Sometimes point-by-point modeling is used to obtain multi-point
prediction values. In order to improve the prediction accuracy and efficiency of
the seepage field, a novel multi-target prediction model (MPM) is proposed in
which two deep learning methods are integrated into one frame. The MPMmodel
can capture causal temporal features between environmental variables and target
values, as well as latent correlation features between different measurement
points at each moment. The features of these two parts are put into fully
connected layers to establish the mapping relationship between the
comprehensive feature vector and the multi-target outputs. Finally, the model
is trained for prediction in the framework of a feed-forward neural network using
standard back propagation. The MPM model can not only describe the variation
pattern of measurement values with the change of load and time, but also reflect
the spatial distribution relationship of measurement values. The effectiveness and
accuracy of theMPMmodel are verified by two cases. The proposedMPMmodel is
commonly applicable in prediction of other types of physical fields in dam safety
besides the seepage field.
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1 Introduction

A dam is a complex and important water retaining structure in the field of hydraulic
engineering. Because the dam possesses huge amounts of hydraulic energy, once it is broken,
the flood will cause immeasurable damage to the lives and properties of people downstream.
It is of great practical importance to know the operational behavior of the dam and predict its
development through dam safety monitoring (Wu and Su, 2005; Jeon et al., 2009; Gu et al.,
2016).

Two types of methods can be used to establish dam behavior prediction models: physics-
driven methods and data-driven methods. Physics-driven methods mainly use finite element
method to predict and analyze the physical field of the dam according to the constitutive
model based on the physical and mechanical relationships of materials (Gu et al., 2011;
Huang and Chen, 2012). The physics-driven methods essentially reveal the operational
behavior of the main physical fields of the dam. However, these approaches place high
demands on constitutive models, which limits the applicability of such approaches. Data-
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driven methods, which are based on regression analysis of historical
monitoring data and influencing factors can be subdivided into two
categories: One is the traditional statistical model (Fanelli, 1975;
Bonelli and Royet, 2001; Deng et al., 2007), which is the most
frequently used data-driven method in practical engineering
applications due to its definite physical meaning and simple
application. The statistical model physically explains and predicts
dam behavior rules. However, this model needs to establish a
functional relationship between effect variables (dependent
variables) and influencing factors (independent variables) (Zhu
et al., 2019; Liang et al., 2022; Tang et al., 2022) based on
mathematical statistics theory. The selection of appropriate
independent variables is difficult to determine because the
operational behavior of the dam is affected by many complex
factors and the influence of different factors on the behavior of
the dam is unstable. All these factors lead to low prediction accuracy
of the statistical model. The other is the most advanced machine
learning method (Su et al., 2000). A more typical method is to use
neural networks to establish complex non-linear and time-varying
input-output relationships between effect variables and influencing
factors. For example, Su et al. (2001) used the fuzzy neural network
to establish the functional relationship between the horizontal
displacement of the dam crest and water level, temperature, and
time effect. Shi et al. (2020) used the radial basis function neural
network optimized by the genetic algorithm to predict the seepage
discharge of the concrete face rockfill dam. Hou et al. (2022)
combined time series decomposition and deep learning to predict
the deformation of high embankment dams. Azarafza et al. (2021),
Azarafza et al. (2022), and Nikoobakht et al. (2022) have also done
much research work based on deep learning to verify its advantages
in landslide susceptibility assessment, landslide susceptibility
mapping, and prediction of geotechnical features of rock
materials. To give a brief summary, Table 1 is presented to
describe about deep learning models, along with the application
in dam behavior prediction, as well as their advantages and
disadvantages. More information can be found in the literatures
(Xu et al., 2019; Ren et al., 2021). From these studies, we can

conclude that neural networks have a high potential for dam
behavior prediction. However, due to the large amount of noise
interference in the monitoring data, the prediction accuracy of the
model is likely to be low due to overfitting. Moreover, the above
data-drivenmethods are all for the prediction of single measurement
point, which cannot well predict the main physical fields of dam
behavior with multiple measurement points.

The single measurement point prediction model plays an
important role in explaining the operation rules of the dam and
implementing safety monitoring, but it does not involve the
interconnection between multiple measurement points. It only
reflects the structural state of the location of single measurement
point, which has limitations. Even if multiple single measurement
point prediction models are used to obtain predictions of multiple
measurement points, the rules described by them are often not
consistent and coordinated. Multiple target learning (MTL)
(Caruana, 1993) is a modeling method that accounts for latent
correlation between target values at multiple measurement points
by sharing parameters and simultaneously predicts multiple
target values in the physical field by training a model.
Training multiple targets in parallel is equivalent to implicitly
increasing the amount of training data, which reduces the risk of
overfitting and improves the prediction accuracy and efficiency.
The main parameter of sharing patterns in MTL models include
hard parameter sharing (Caruana, 1993) and soft parameter
sharing (Misra et al., 2016; Gao et al., 2019). Hard parameter
sharing means that multiple target-specific output layers are
maintained and all target values are forced to use the same
parameters to obtain a common parameter model. Soft
parameter sharing is simpler and more flexible than hard
parameter sharing because each target is assigned its own set
of parameters and the parameters are partially shared through
some mechanism. The main difficulty in developing MTL models
is the need to exploit correlations and differences between
targets. The initial applications of MTL models for dam
behavior prediction include: Yao et al. (2022) performed an
improved multi-output support vector machine, and the

TABLE 1 A summary of deep learning in dam behavior prediction.

Deep learning (DL) model Application Advantage Limitations

Based on rough set theory and
LSTM (Qu et al., 2019)

Concrete dam Highest value based on accuracy, robustness, externality,
and generalization; multipoint prediction

Result depend upon choice of inputs,
and is noise sensitive

Deformation

LSTM-based deep learning
technique (Yang D. S. et al., 2020)

Concrete double-curved arch dam Evaluated operation behavior of dams under different
environmental factors; high accuracy

The suitable inputs are difficult to
determine; single point prediction

Deformation

Using a mixed attention mechanism
and LSTM model (Ren et al., 2021)

Concrete gravity dam Flexible and capable for adapting to highly complex
interactions between the variables; accurately predicted

the displacement behavior

Can result in inaccurate prediction
due to anomaly; over-fitting in some

casesDisplacement

Using various DL and transfer
learning techniques (Li et al., 2022)

High concrete parabolic double-
curvature arch dam; Deformation

Can be applied in case of missing data, can model
complex non-linear relationships; high accuracy and

robustness

The input environment variables are
excessive

Based on the CNN-GRU Model
(Hua et al., 2023)

Concrete gravity dam; Uplift
pressure

Improves the utilization rate of dam safety monitoring
results

Over-fitting and single point
prediction

Based on combined CNN and
LSTM in parallel (This paper)

Earth dam and rockfill dam Multi-target prediction with high accuracy and efficiency,
avoiding over-fitting; Simple operation and reliable

precision

Suitable for normal operation period,
other periods need to reverify

Seepage field
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improved model considered chaos and similarity of displacement
series to simultaneously predict displacements of multiple
measurement points with the same trend. Chen et al. (2022)
proposed a serial model composed of convolutional neural
networks and convolutional long short-term memory networks
to extract spatial features from multiple measurement values and
temporal features in time series in turn, and then simultaneously
predict displacements of multiple measurement points. This
method focused on statistical rules for target series without
environmental variables.

In summary, there is a wealth of theoretical research results for
dam behavior prediction models, but less research on the seepage
field prediction based on deep learning. Seepage failure is one of the
major causes of dam failure (Foster et al., 2000). The analysis and
prediction of the seepage field has important implications for dam
safety (Deng et al., 2020). The objective of this study is to establish an
efficient and accurate the seepage field prediction model for the
simultaneous prediction of seepage at multiple measurement points.
It is well known that the response of dam seepage field to changes in
environmental variables is non-synchronous, and the rules for the

FIGURE 1
Similar trends and differences of target values. (A) Mesh. (B) Time series. (C) Data grids.

FIGURE 2
The framework of the MPM model.
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FIGURE 3
Flow chart of the MPM training process.

FIGURE 4
Piezometric tubes distribution of the Naban earth dam.

FIGURE 5
Time series of monitoring data.
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temporal development of target values at different measurement
points are related to the location of the measurement points. The
longer the period and the smaller the variation of target values of
points closer to the downstream, while those closer to the upstream
are not (i.e., the variation trend of target values at different
measurement points is similar but not the same at any one time).
When multi-target prediction is performed and hard parameter
sharing is applied, it forces the regularity of each measurement point
at any time to be consistent, affecting prediction accuracy. Applying
soft parameter sharing to learn the differences between target values
can effectively improve the learning capacity of the model. Given its
strong ability to capture local features for adjacent target values
(Krizhevsky et al., 2012), the convolutional neural networks
(CNN) model is introduced as the soft parameter sharing
layer. Since the temporal variation trends of target values at
different measurement points are highly similar and both target
values and environmental variables have strong time series
characteristics, the long short-term memory networks (LSTM)

model, which is superior in processing sequential data, is
introduced to extract causal temporal features between
environmental variables and target values. For dam seepage
prediction, no evidence has been found at present for using a
combination of CNN and LSTM in parallel. Therefore, based on
the causal relationship between external loads and seepage field
distribution, this study combines CNN and LSTM in parallel to
establish a novel multi-target prediction model (MPM) for
simultaneous predictions at multiple measurement points. The
MPM model can not only describe the variation regulation of
measurement values with the change of load and time, but also
reflect the spatial distribution relationship of measurement
values by considering the correlation information among
multiple measurement points, which is undoubtedly more
comprehensive and real for correctly mastering the structural
condition and variation rules of the whole dam. The MPM model
improves prediction accuracy and efficiency while also achieving
seepage field prediction. It is of great importance to effectively
and safely manage reservoir operation, as well as to improve
future planning for dam seepage problems.

2 The novel prediction model

2.1 The existing models adopted

2.1.1 Long-short term memory model
Long short-term memory networks (LSTM) (Hochreiter and

Schmidhuber, 1997) are an extension of recurrent neural network
designed to solve the problem of long-term dependencies and
vanishing gradients. In LSTM, it can continuously learn short-
term time changes and long-periodic variation rules (Hochreiter,
1998) due to its connection to hidden nodes. LSTM has a stronger
temporal feature extraction capability and a faster training speed for
time series (Zhao et al., 2021). Because of these characteristics,
LSTM produced good performance in predicting dam behavior
series (Zhao et al., 2021; Hou et al., 2022). LSTM is also one of
the most widely adopted models for MTL models (Wan et al., 2021;
Zong et al., 2022). For non-linear regression, LSTM can be used to
obtain highly-accurate predictions, and its governing equation can
be simplified as follows:

ht, ct � LSTM xt, ht−1, ct−1( ) (1)
where xt is the input vector, c is the memory cell, and h is the hidden
layer.

The LSTM model in this paper contains multiple hidden layers
(Luo et al., 2022) to extract deep causal temporal features. The
output of the last hidden layer of LSTM is recorded as Fd1

t after
flattening so as to facilitate feature fusion and connect fully
connected layers.

2.1.2 Convolutional neural networks
Convolutional neural networks (CNN) (Hubel and Wiesel,

1959; LeCun and Bengio, 1995) are mainly used to process
variables in Euclidean space (Hakim et al., 2021). The
convolutional layer, the pooling layer, and the activation function
of the CNN model are the core steps of feature extraction. The
convolutional layers extract the different non-linear interaction

TABLE 2 Setting of hyperparameters.

Parameters Values

CNN Architecture Convolutional layer 1 8

Kernel: 2

Stride: 1

Padding: 1

Convolutional layer 2 8

Kernel: 3

Stride: 1

Padding: 1

Maxpool Kernel: 3×3

Stride: 2×2

Padding: 1

Fully connect nodes 512

Time step 1

Activation function Relu

LSTM Architecture Hidden layers nodes 16

Hidden layers 2

Time step 12

Activation function Softmax

Output layer Hidden layers 2

Dropout rate 0.1

Training Optimizer Adam

Loss function RMSE

Batch size 64

Epochs 1,000

Learning rate 0.001
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relationship features of the input data by setting different
convolution kernels. The pooling layer reduces redundant
features by taking the maximum or average value of the data in
the convolution kernel. The activation function reflects the mapping
relationship between input and output in two adjacent layers, which
provides neural networks with non-linearity capability.

In this paper, the CNN model is introduced to extract latent
features between adjacent target values. The input is a data grid with
multiple measurement values at each moment that is regularly
arranged, and high-dimensional feature extraction is performed
using a series of convolutions and maximum pooling

subsampling. The activation function is the rectified linear unit
(Relu). Finally, it is flattened into a one-dimensional feature vector
Fd2
s to facilitate feature fusion and to connect fully connected layers.

2.2 The framework of the MPM model

The seepage field contains multiple measurement points that
can be meshed at each moment to produce a series of data grids
(Figure 1A). The position of the measurement points is indexed by
coordinates, and there is at most one measurement value in each

TABLE 3 Evaluation results of prediction models.

Measurement points Metrics LSTM-M MPM Relative improvement: P/%

R1 MSE/m 0.796 0.201 74.7

RMSE/m 0.892 0.448 49.7

MAE 0.638 0.292 54.2

R2 0.925 0.981 —

MAPE/% 0.297 0.136 54.2

R2 MSE/m 0.202 0.017 91.5

RMSE/m 0.449 0.131 70.9

MAE 0.354 0.102 71.3

R2 0.910 0.992 —

MAPE/% 0.168 0.048 71.3

R3 MSE/m 0.738 0.023 96.9

RMSE/m 0.859 0.151 82.4

MAE 0.723 0.101 86.0

R2 0.581 0.987 —

MAPE/% 0.360 0.050 86.0

R4 MSE/m 0.501 0.037 92.6

RMSE/m 0.708 0.193 72.7

MAE 0.597 0.124 79.2

R2 −0.121 0.917 —

MAPE/% 0.309 0.064 79.2

R5 MSE/m 0.166 0.009 94.8

RMSE/m 0.407 0.093 77.2

MAE 0.344 0.063 81.8

R2 −0.132 0.941 —

MAPE/% 0.181 0.033 81.8

R6 MSE/m 0.627 0.014 97.8

RMSE/m 0.792 0.118 85.1

MAE 0.699 0.087 87.6

R2 −3.676 0.896 —

MAPE/% 0.370 0.046 87.6

Note: the boldface indicates better performance.
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small square, and no measurement value is assigned 0. The data grid
at each moment is similar to the images that CNN usually processes.
The measurement value of each point in the data grid is typical time
series data, which is suitable for analysis by LSTM. Similar trends
and differences can be seen among time series (Figures 1B, C).

The MPM model consists of two different parallel networks,
CNN and LSTM (the framework is shown in Figure 2). The LSTM
model efficiently captures causal temporal features. By constructing
a data grid with multiple target values at each moment, the CNN
model with local feature extraction capability adaptively deep mines

latent features from the data grid to optimize the multi-target model.
Latent correlation features between target values learned by CNN
are fused with causal temporal features extracted by LSTM, and the
final multi-target predictions are obtained by fully connected layer
mapping.

For specific data processing, preprocessed environmental
variables and monitoring history data are fed into the MPM
model, the temporal features are extracted by the LSTM model,
correlation features between target values are extracted by the CNN-
soft parameter sharing layer, flattened feature vectors are obtained

FIGURE 6
Measurement and predicted values from LSTM-M and MPM.

FIGURE 7
Osmometers distribution of the Lubuge rockfill dam.
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for feature fusion at the same time, and the respective outputs of
multiple target values are connected by fully connected layers. The
MPM model integrates CNN and LSTM into a unified framework
for jointly training one loss function. In addition, since the MPM
model has multiple outputs, back propagation is carried out in
parallel. A standard back propagation algorithm propagates errors
from the output layer to the feature fusion layer and then to the
parallel network layer and updates parameters.

The parts are described below:

(1) Data collection and preprocessing: abnormal data were
eliminated, and data format conventions and
normalization were carried out for environmental
variables and target values (Yang D. S. et al., 2020) to
make them suitable for the MPM model. Inputs are Xm

and Yn, where X is a matrix of m environmental variables
and Y is a matrix of n target values.

(2) Soft parameter sharing layer: Soft parameter sharing layer is
built by CNN with local perception and weight sharing
features. The CNN model is introduced to mine latent
correlation features between target values of adjacent
measurement points.

(3) Feature fusion layer: There are two main feature fusion methods
in hybrid neural networks: addition (Yang J et al., 2020) and
concatenation (Zhang et al., 2022). Feature addition requires the
same dimension of feature vectors, while concatenation is more
flexible. Moreover, feature fusion through concatenation has the
effect of reinforcing and interconnecting features (Zhang et al.,
2017; Zhang et al., 2022). Therefore, concatenation is used to
fuse feature vectors in MPM.

(4) Output layer: Fully connected layers are performed to connect
the final multi-target outputs, which consist of an input layer,

hidden layers, and an output layer. The input to this module is
the comprehensive feature vector. Full connection between
adjacent layers is used to integrate local information, and the
corresponding activation function is set to achieve non-
linearity. Due to data regression, the activation function is
sigmoid. For neural networks, when the input data is not
very large, the 2- to 3-layer structure can fit any function
(Yan et al., 2019).

2.3 The detailed calculation method

2.3.1 Model training
Details of the MPM model are presented in Algorithm 1.

Input: Environmental variables Xm and target values Yn
1. Data preprocessing

2. Get training and test datasets

3. Randomly initialize model parameters

4. Set loss function: RMSE

5. Begin training:

6. Forward propagation

7. Calculate loss function

8. Calculate gradient descent

9. Backpropagation and update model parameters

10. End training

11. Save model parameters

12. Begin testing

13. Inverse standardization

Output: The predictions of Y*
n

Algorithm 1: The MPM model.

FIGURE 8
Time series of monitoring data.
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The specific training process is as follows (Figure 3):

Step 1: Obtain the initial training dataset and initialize the model
parameters.

Step 2: Enter the training data into the networks to start the
training. According to the output predictions and target values, the
error of multiple measurement points on the output layer is

calculated and then propagated forward to the feature fusion
layer and the parallel layer, where the error is calculated.

Step 3: Update the weights according to the error on the output
layer and calculate the total error of the multi-target results. If the
maximum number of iterations is reached, proceed directly to Step
4. Otherwise, Step 2 is returned.

Step 4: Model training is completed, and the configuration of the
entire network is saved for prediction.

2.3.2 Hyperparameter optimization
The goal of hyperparameter optimization is to make the

model perform better on both training and test datasets. At
present, there is no perfect theoretical guidance for the
selection of hyperparameters of deep neural networks, which
need to be constantly adjusted according to the learning effect
of the model. In order to obtain the optimal structure of the
deep learning model, this study adopts the variable control
approach to select hyperparameters such as the number of
network layers, the number of neurons, and the number of
iterations, taking into account the prediction accuracy and
complexity of the model.

2.4 Comparison model and evaluation
metrics

To verify the effectiveness of the MPM model, it is compared
and analyzed with the traditional multi-target benchmark model
based on hard parameter sharing (Zhou et al., 2018; Sun et al., 2021).
For convenience, the benchmark model is denoted LSTM-M in this
paper. Hard parameter sharing layer of the LSTM-M model is built
by LSTM neural networks, and the output results are target-specific
and built by fully connected layers. The LSTM-M model based on
hard parameter sharing can share complementary knowledge
between various time series and capture temporal features
between environmental variables and target values. For fair
comparison, the hyperparameters and inputs of the LSTM-M
model are consistent with those of the MPM model.

In order to examine the superiority of the MPM model from
different perspectives, mean square error (MSE), root mean
square error (RMSE), mean absolute error (MAE), coefficient
of determination (R2), and mean absolute percentage error
(MAPE) are five commonly used metrics to fully compare and
evaluate predictive performance. Among them, R2 reflects fit
performance, ranging from 0 to 1, and a more significant R2

represents a better fit. MSE and RMSE are sensitive to outliers
and can measure deviations between predictions and target
values. MAE is the mean of the absolute value of the error,
and MAPE measures the absolute difference between predictions
and target values, with a smaller value representing better
prediction performance. The equations are as follows:

MSE � 1
M ·N∑M

j�1∑N

i�1 ŷj,i − yj,i( )2 (2)

RMSE � 1
M

∑M

i�1

����������������
1
N

∑N

j�1 ŷj,i − yj,i( )2√
(3)

TABLE 4 Setting of hyperparameters.

Parameters Values

CNN Architecture Convolutional layer 1 16

Kernel: 2

Stride: 1

Padding: 1

Convolutional layer 2 8

Kernel: 2

Stride: 1

Padding: 1

Maxpool Kernel: 2×2

Stride: 2×2

Padding: 1

Convolutional layer 3 8

Kernel: 3

Stride: 1

Padding: 1

Maxpool Kernel: 3×3

Stride: 2×2

Padding: 1

Fully connect nodes 64

Time step 1

Activation function Relu

LSTM Architecture Hidden layers nodes 128

Hidden layers 2

Time step 12

Activation function Softmax

Output layer Hidden layers 2

Dropout rate 0.1

Training Optimizer Adam

Loss function RMSE

Batch size 32

Epochs 1,000

Learning rate 0.001
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MAE � 1
M

∑M

i�1
1
N

∑N

j�1 ŷj,i − yj,i

∣∣∣∣∣ ∣∣∣∣∣( ) (4)

R2 � 1
M

∑M

i�1 1 − ∑N
j�1 ŷj,i − yj,i( )2∑N
j�1 yj,i − �yj,i( )2⎛⎝ ⎞⎠ (5)

MAPE � 100%
M ·N∑M

i�1∑N

j�1
ŷj,i − yj,i

yj,i

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ (6)

where ŷ is the predicted value, y is the measurement value, �yi is the
mean value of target values,N is the number of samples, andM is the
number of measurement points.

In addition, to directly analyze the prediction performance
of two models, the promotion percentages of MSE, RMSE, MAE,
and MAPE are applied. The index can be expressed as Eq. 7,
where EM represents different evaluation metrics and the
positive value represents that the second model has better
performance than the first. The higher the ratio, the greater
the performance improvement of the model.

P � EM1 − EM2

EM1
· 100% (7)

3 Applications and result analysis

3.1 The first model application

3.1.1 Project status and monitoring data profile
Naban (Sun, 2012) is an earth dam with a clay core wall, a crest

elevation of 231.5 m, a maximum height of 78.5 m, a crest width of
8.0 m, a normal reservoir water level of 220.2 m, and a dead water

level of 209.6 m. Reservoir water level (RWL) and rainfall are
environmental variables. Given the low downstream water level
and little fluctuation, the influence of the downstream water level is
not considered in this case. The total water head measured by six
piezometer tubes in the maximum height section is selected as the
representative measurement value, denoted R1–R6. The position
of multiple piezometer tubes is shown in Figure 4.

3.1.2 Training and prediction
There were 969 observations from 24May 2001, to 31 December

2010. The time series of monitoring data is shown in Figure 5.
The dataset from 24 May 2001 to 27 January 2009, is used as

training data for optimizing and adjusting parameters, and the
dataset from 30 January 2009 to 31 December 2010, is used as
test data for prediction and performance evaluation.

In this case, the CNN model has two convolutional layers with
8 neurons and 2 and 3 convolution kernels, respectively. The LSTM
model has 16 neurons in the two hidden layers, and the fully
connected layers have two hidden layers. The batch size is 64,
the number of iterations (epoch) is set to 1,000, Adam is the
optimizer, the initial learning rate is set to 0.001, and the
dropout rate is set to 0.1. The details are shown in Table 2.

3.1.3 Results and comparison
The evaluation results for LSTM-M and MPM are shown in

Table 3, and the boldface indicates better performance.
The intuitive comparison results are shown in Figure 6. It can

be seen from the figure that both models can achieve
simultaneous predictions of multiple parallel targets, but the
MPM model performs better, and the prediction accuracy is
greatly improved compared to the LSTM-M model. From the

TABLE 5 Evaluation results of prediction models.

Measurement points Metrics LSTM-M MPM Relative improvement: P/%

R1 MSE/m 1.604 0.786 51.0

RMSE/m 1.267 0.887 30.0

MAE 0.827 0.566 31.5

R2 0.972 0.986 —

MAPE/% 0.074 0.051 31.6

R2 MSE/m 1.055 0.402 61.9

RMSE/m 1.027 0.634 38.2

MAE 0.676 0.421 37.7

R2 0.980 0.992 —

MAPE/% 0.061 0.038 37.7

R3 MSE/m 0.240 0.054 77.4

RMSE/m 0.490 0.233 52.5

MAE 0.368 0.166 54.9

R2 0.983 0.996 —

MAPE/% 0.034 0.015 54.9

Note: the boldface indicates better performance.
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MAPE, MSE, RMSE, and MAE, it can be seen that the MPM
model improves on average by 76.7%, 91.4%, 73.0%, and 76.7%,
respectively, compared to the LSTM-M model. According to R2,
the MPM model has a good fit between predictions and target
values, and the average R2 for the six measurement points is
0.952. The results show that the prediction accuracy has been
remarkably improved by introducing the CNN model. It is very
important to consider latent correlation features between target
values based on the benchmark LSTM-M model.

In addition, it can be seen from the predictions that the
errors of the two models are mainly reflected at the time when
the inflection point fluctuates greatly and the MPM model has
more ideal feature sensitivity. For example, in Figure 6, the data
at both times of the dashed lines indicate that the rules learned

by the LSTM-M model are approximately the same, which is the
delayed peak, especially at R1, R4, and R5 on 14 September 2010,
where the predicted values differ significantly from target
values. As can be seen, it is difficult to guarantee the
accuracy of LSTM-M predictions when there are differences
in the correlation between environmental variables and various
target values. In addition, during the training process, because
the same parameters are used for each measurement value of the
LSTM-M model, the parameters are adjusted by errors and back
propagation of multiple measurement points. When the error of
one measurement point is large, the prediction accuracy of other
measurement points will be sacrificed to balance the overall
error. The CNNmodel is introduced to extract latent correlation
features between adjacent target values, consider correlations
and differences between target values, and adopt different
parameters accordingly, thus improving the learning effect of
the model and effectively enhancing the prediction
performance.

3.2 The second model application

3.2.1 Project status and monitoring data profile
Lubuge is a weathered rockfill dam, with the top elevation of

the dam, the maximum dam height, the width of the dam crest,
and the length of the dam crest being 1138.0, 103.8, 10.0, and
217.0 m, respectively. The normal reservoir water level is
1130.0 m, the corresponding storage capacity is 111.0 million
m3, the dead water level is 1105.0 m, the storage capacity is
75.0 million m3, and the reservoir presents an incomplete
capacity for seasonal regulation. Given the low downstream
water level and little fluctuation, the influence of the
downstream water level is not considered in this case. Three
osmometers from the largest section were selected for analysis
and were denoted R1–R3. The position of multiple osmometers is
shown in Figure 7.

3.2.2 Training and prediction
There were 1,375 observations from 17 May 2009 to

19 February 2013. The time series of monitoring data is
shown in Figure 8.

The dataset from 17 May 2009 to 30 April 2012, is used as
training data for optimizing and adjusting parameters, and the
dataset from 1 May 2012 to 19 February 2013, is used as test
data for prediction and performance evaluation.

In this case, the CNN model has three convolutional layers with
16, 8, and 8 neurons and 2, 2, and 3 convolution kernels,
respectively. The LSTM model has three hidden layers with
128 neurons. The batch size is 32, and the other parameters are
the same as those above. The details are shown in Table 4.

3.2.3 Results and comparison
The evaluation results for LSTM-M and MPM are shown in

Table 5, and the boldface indicates better performance.
The intuitive comparison results are shown in Figure 9. When

LSTM-M and MPM are compared, it is clear that the prediction
accuracy of MPM has improved significantly, and MSE, RMSE,
MAE, andMAPE have improved by 63.4%, 40.2%, 41.4%, and 41.4%

FIGURE 9
Measurement and predicted values from LSTM-M and MPM. (A)
R1. (B) R2. (C) R3.
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on average, at the three measurement points, respectively. The
average R2 at the three measurement points is 0.992, which is
higher than that of LSTM-M (0.978).

3.3 Result analysis

The MPM model has achieved better prediction results in
practical applications, and possible reasons for this include: 1.
The LSTM model can deeply learn the non-linear temporal
features between environmental variables and target values. 2.
The introduction of the CNN model can effectively obtain latent
correlation features between target values, and when the causal
relationship between target values and environmental variables is
different, the latent correlation features can be effectively used to
reduce the prediction error and better fit the variation trend. 3.
Feature fusion can act as feature reinforcement and intercorrelation,
allowing data features to be extracted and identified from various
aspects. 4. Multi-target joint training implicitly increases the amount
of training data and prevents model over-fitting.

4 Conclusion

In this study, the MPM model is proposed, which considers
causal temporal features between environmental variables and
target values, as well as correlations and differences between
target values.

The MPM model integrates CNN and LSTM into a unified
framework. The LSTM model is introduced to efficiently learn the
causal temporal features of short-term time changes and long-periodic
variation rules in time series, while theCNNmodel is introduced to build
the soft parameter sharing layer to efficiently mine latent correlation
features of the data grid at each moment. After integrating causal
temporal features and latent multi-target correlation features, fully
connected layers are used to establish the mapping relationship
between the comprehensive feature vector and the multi-target
outputs. The MPM model allows data features to be extracted and
identified from various aspects. Monitoring data of two embankment
dams are used to show the prediction performance. Compared with the
traditional benchmark model based on hard parameter sharing, the
MPM model has better fitting effect and prediction accuracy.

The main advance of the MPM model is that CNN and LSTM are
combined parallelly. Parallel networks do not depend on each other,
which improves the prediction the performance of the model without
consuming too much time. Although the monitoring data at multiple
points in this paper are the same type, the proposed MPMmodel is still
applicable in prediction of multiple types of physical fields in safety
monitoring.

It should be noted that the model performance is inspected on
the basis of the training data, which is during the normal operation
period of the embankment dams. Further studies are needed to test
the model performance based on the data of other types of dams and
on the data of different periods of monitoring data, such as the initial
operation data or long-term operation data.
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