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This study aims to investigate a marlstone and claystone succession located at the
southern end of the Eastern Carpathians, a region where oceanic anoxic event 2
(OAE2) has not been pointed out so far. Toward the upper half of this succession, a
17-cm-thick black shale was identified. The investigated depositional interval lies
within the late Cenomanian–early Turonian, encompassing the UC3d up to
UC7 nannofossil zones. The δ13C values fluctuated between 2.06‰ and 3.89‰,
showing a positive isotope excursion that was assigned to OAE2. The δ13C isotope
curve displays the following intervals: pre-excursion, first build-up, trough, second
build-up, plateau, and post-excursion. Within the second build-up interval of
OAE2, a substantial shift in CaCO3 values, accompanied by high concentrations of
total organic carbon and a significant decline in the abundance and diversity of
calcareous nannofossil assemblages, was observed. The nannofossil turnover
related to OAE2 climax revealed predominance of Watznaueria barnesiae and
temporary disappearance from the record of surface-water higher fertility taxa,
such as Biscutum constans, Zeugrhabdotus erectus, and Discorhabdus ignotus.
Above OAE2, peaks of Eprolithus floralis, followed by increased abundance of
Eiffellithus turriseiffelii and Nannoconus spp., were identified. In the lower part of
the studied succession (i.e., the upper Cenomanian UC3d nannofossil subzone),
during the pre-excursion characterized by low δ13C values and less negative δ18O
values, a small group of nannofossils more related to mid- and high-
paleolatitudes, such as Crucibiscutum salebrosum, Repagulum parvidentatum,
and Seribiscutum primitivum, is present, always showing a low abundance.
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1 Introduction

The recent sea-level rise (Dangendorf et al., 2017), which occurs in response to increasing
levels of atmospheric greenhouse gases associated with global warming, is a remarkably
concerning issue in modern times. Such sudden changes in climate events have been
reported in the Earth’s history at several intervals, such as the Quaternary glacial–interglacial
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episodes and older, in the Cretaceous, where such changes were
accompanied by high sea-level fluctuations (Haq, 2014).

The mid-Cretaceous, described as “Cretaceous Greenhouse,” is
one of the intervals of a high sea level associated with a very warm
and humid climate (Arthur et al., 1985; Miller et al., 2005; Sames
et al., 2016). It is linked to superplume occurrence and high rates of
ocean crust formation (Larson, 1991). Reflecting these events, most
of the globally recognized oceanic anoxic events (OAEs) occur
within the Aptian–Turonian interval (Jenkyns, 2010). These
OAEs are believed to occur in an interval of an extreme high
volcanism and to be associated with methane hydrate
decomposition (Hesselbo et al., 2000).

A prominent OAE that occurred during the mid-Cretaceous is
OAE2, also known as the Cenomanian–Turonian boundary event
(Schlanger and Jenkyns, 1976; Jenkyns et al., 1994; Jenkyns, 2010),
which has shown a rapid global positive excursion spanning from
the late Cenomanian to the earliest Turonian interval. In general, the
aforementioned interval is described as “supergreenhouse” (Hallam,
1985; Hay and Floegel, 2012), characterized by a significant global
increase in atmosphere and ocean temperatures and short-term sea-
level changes, linked to various processes such as aquifer-eustasy
and high fluctuation of the atmospheric CO2 content (i.e., Wagreich
et al., 2014; Wendler and Wendler, 2016). These modifications have
led to changes in the diversity and abundance of marine planktonic
organisms, especially the calcareous nannoplankton, which is very
sensitive to environmental changes. The calcareous nannofossil
fluctuations from low to middle and high paleolatitudes in both
hemispheres indicate a distinctive pattern of high productivity in the
initial phase of OAE2 (Paul et al., 1999; Hardas and Mutterlose,
2007; Linnert and Mutterlose, 2015), followed by a “starving
interval” during the OAE2 climax and recovery in post-OAE2
(Lamolda et al., 1994; Premoli-Silva et al., 1989; Wang et al.,
2001; Erba, 2004; Li et al., 2006; Voigt et al., 2006; Gertsch et al.,
2010; Linnert et al., 2010; Melinte-Dobrinescu et al., 2013; Petrizzo
et al., 2022, among many others).

Notably, the “long” definition of OAE2 includes the interval
from the base of the carbon isotope excursion up to the stable
background δ13C values found at the top of the event, whereas the
“short” definition includes the interval up to the end of the δ13C
value plateau. According to Sageman et al. (2006), the age of the
“long” OAE2 is 866 ± 19 Ky, being comparable with those found in
the Maverick Basin of Texas (920 ± 170 Ky; Eldrett et al., 2015) and
Gongzha, Tibet (820 ± 25 Ky; Li et al., 2017). Jarvis et al., 1988; Jarvis
et al., 2006) reported four successive peaks of δ13C isotope values
within the OAE2: A (the oldest peak), B (the second peak), C (the
third peak), and D (the youngest peak). In Dover and Eastbourne,
the fluctuation pattern of the δ13C isotope (Paul et al., 1999) shows
strong similarities to those described by Jarvis et al. (2006). In the
Tethyan Realm (i.e., north Spain), the OAE2 contains the first build-
up, trough, second build-up, and plateau (Oba et al., 2011; Melinte-
Dobrinescu et al., 2013).

Yet, in the Eastern Carpathians, only the Albian–Cenomanian
boundary event has been reported by assessing isotope and biotic
fluctuations (Melinte-Dobrinescu et al., 2015). The presence of
OAE2 was observed in the Southern Carpathians in a shallow
marine setting based on isotope analysis and calcareous
nannofossil biostratigraphy but in the absence of a lithological
overprint, such as black shales (Melinte-Dobrinescu and Bojar,

2008). Cetean et al. (2008) reported the Cenomanian–Turonian
boundary event in an expanded Albian–lower Turonian succession
of drilling located in the southern Eastern Carpathians based on
lithology assessment (occurrence of black and dark-gray shales) and
foraminifer and calcareous nannofossil turnover; however, the
authors did not perform chemostratigraphic investigations. They
also observed rich and diversified agglutinated foraminiferal
assemblages that disappeared within the hypothesized
OAE2 interval, characterized mainly by the presence of
Glomospira charoides and Haplophragmoides spp., which are taxa
indicative of an oxygen-depleting paleoenvironment.

The present study aimed to constrain OAE2 in the Eastern
Carpathians with an integrated analysis of bio- and
chemostratigraphy. Our investigations focus on the calcareous
nannofossil biostratigraphy for the assignment of the age, and
carbon and oxygen isotopes for reconstructing the
paleoenvironmental changes. A correlation with other sections of
the Tethyan and Boreal realms enclosing the OAE2 is also presented.

2 Geological background

The Romanian Carpathians, including the Eastern Carpathians,
Southern Carpathians, and Apuseni Mountains, comprise several
tectonic units progressively assembled during the closure of two
oceanic realms that are kinematically linked to the evolution of the
Alpine Tethys (Săndulescu, 1984; Schmid et al., 2008; Maţenco et al.,
2010; Maţenco, 2017). The sedimentary cover of the Eastern
Carpathians is included in a thin-skinned nappe system
(Figure 1), i.e., the Outer Dacides in W and the Moldavides in E
(Săndulescu, 1984).

The sedimentary cover of the Outer Dacides and Moldavides is
mainly composed of Valanginian–lower Albian deep-water deposits,
such as turbidites and pelagites (Melinte-Dobrinescu et al., 2009).
The post-tectonic deposition started in the upper Albian, following
the meso-Cretaceous movements (Ştefănescu et al., 1981; Ştefănescu
and Melinte, 1996).

The study area, located at the southern end of the Eastern
Carpathians (Figure 1), is a very complicated region in terms of a
tectonic viewpoint because of the cumulative effects of successive
tectonic phases produced since the Albian up to the Burdigalian
(Murgeanu et al., 1963; Ştefănescu, 1995). Large
Cretaceous–Paleogene outcrops are distributed on both banks of
the Ialomiţa River, south of Pietrosiţa town (Figures 1, 2). The Lower
Cretaceous deposits, belonging to the Outer Dacides (Ceahlău
Nappe), contain the Sinaia and Comarnic units, which are
mainly composed of Tithonian to lower Aptian calcareous
turbidites (Patrulius et al., 1976). The Comarnic Formation is
unconformably covered by hemipelagic sediments of the
Dumbrăvioara Formation, which belongs to the post-tectonic
cover and encompasses, according to the identified macrofaunas
and microfaunas (Ştefănescu and Zamfirescu, 1964; Cetean et al.,
2008), the upper Albian–Turonian interval (Figures 1, 2). The
Dumbrăvioara Formation is unconformably covered by red
hemipelagic deposits of the Gura Beliei Formation. The red
marlstone and claystone rocks of this unit contain rich and
diversified calcareous nannofossil assemblages, indicating the
Campanian–early Paleocene age (Melinte and Jipa, 2005).
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3 Materials and methods

The investigated Dumbrăvioara Formation is mainly made of
greenish and graymarlstone and claystone. Toward the upper half of
the succession, a 17-cm-thick black shale was observed, along with
pyrite concretions around this shale level (Figure 2). The
stratigraphic thickness of the study section was 19.8 m. Overall,
49 samples were investigated for both calcareous nannofossils and
geochemistry, and sampling was performed every 30 cm.

Calcareous nannofossil assemblages were examined under a
polarizing light microscope at 1,250× magnification. Smear slides
were prepared according to standard techniques (Bown and Young,
1998), without centrifuging or cleaning, to retain the original
composition. At least 300 nannofossil specimens were counted

for each sample in randomly distributed longitudinal traverses;
the percentage of each taxon was calculated relative to the total
calcareous nannofossil assemblages. Abundance was calculated as
the average number of nannofossil specimens found in the fields of
view. Taxonomic identification follows Perch-Nielsen (1985) and
Burnett (1998). Biostratigraphy follows Burnett (1998).

An analysis of a set of stable isotopes was performed on bulk
carbonates at the University of Graz. Samples were weighed into tubes
and flushed with 99.995% helium. After flushing, phosphoric acid was
added to the samples, followed by heating for 1 h, subjecting them to
overnight acid reactions to carry out complete conversion of carbonate
to CO2. The CO2 gas released from the samples was then analyzed by
continuous-flow–isotope ratio mass spectrometry (CF-IRMS). CO2

was sampled from the tubes into a continuously flowing stream using a

FIGURE 1
(A) Location of the study succession in the southern end of the Eastern Carpathians (tectonic map after Săndulescu, 1983; Maţenco, 2017). (B) Study
area location in the simplified Alpine–Carpathian tectonic context. (C)Geological map of the investigated area showing the location of the study section
(modified after Ştefănescu, 1995).
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double-hole needle. The CO2 gas was passed through a packed column
gas chromatograph. The resultant chromatographic peak was carried
forward into the ion source of Europa Scientific 20-20 IRMS, where it
was ionized and accelerated. Gas species of different masses were
separated in a magnetic field and simultaneously measured using a
Faraday cup collector array to calculate the isotopomers of CO2 atm/z
44, 45, and 46. The phosphoric acid used for digestion in the isotope
analysis was prepared according to the method reported by Coplen
et al. (1983), and it was injected into the vials through the septum. The
overall analytical reproducibility was ±0.05‰ for δ13C and ±0.1‰ for
δ18O. The results of the stable isotope analysis were expressed in per
mil, relative to the Pee Dee Belemnite Standard (PDB) for carbon and
oxygen.

The carbonate δ18O signal is sensitive to diagenesis (Schrag et al.,
1995). Because the study area provides a relatively homogeneous
lithology, it is possible that the overprint during burial diagenesis
uniformly affected the oxygen isotope signal (Stoll and Schrag,
2000). For this reason, the oxygen stable isotope data were
interpreted only qualitatively, in terms of cooling or warming

trends, and further correlations with other sections encompassing
the Cenomanian–Turonian boundary interval were realized only
based on the carbon isotope and biostratigraphy.

The CaCO3 content was computed through a volumetric test
based on the CO2 concentration, which consists of titration of a
measured sediment quantity with 0.5 N HCl and retrotitration with
0.5 N NaOH in the presence of phenolphthalein. The total organic
carbon (TOC) was analyzed by titration, based on the oxidation of
carbon with excess potassium dichromate in a sulfuric acid medium.

4 Results

4.1 Calcareous nannofossil assemblages

Overall, 41 species were identified. The diversity (number of species
per sample) varied between 3 and 30, while the abundance (number of
specimens per field of view) varied between 2 and 8. Themost abundant
species were Watznaueria barnesiae and Eprolithus floralis, which
jointly constituted 34%–83% of the total assemblages throughout the
succession under study. Other common taxa were Nannoconus truittii,
Nannoconus elongatus, Nannoconus multicadus, Rhagodiscus
spp. (including Rhagodiscus asper and Rhagodiscus angustus),
Eiffellithus turriseiffelii, and Tranolithus phacelosus (Figure 3;
Supplementary Table S1).

Biscutum constans was present more consistently in the lower and
upper parts of the succession, with a maximum of 7.1% toward its base.
Other genera of the nannofossil assemblages were Prediscosphaera
spp. (especially Prediscosphaera cretacea) and Zeugrhabdotus
spp. (Zeugrhabdotus embergeri, Zeugrhabdotus erectus, and
Zeugrhabdotus diplogrammus). Zeugrhabdotus erectus and
Discorhabdus ignotus occurred more consistently toward the base and
top of the succession but at very low abundance (i.e., a maximumof 3.4%
for Z. erectus and 1.9% for Discorhabdus ignotus). Both taxa temporarily
disappeared within the OAE2 climax (Figure 3). In the lower part of the
succession, Crucibiscutum salebrosum, Repagulum parvidentatum, and
Seribiscutum primitivum were present at low abundance, accounting for
up to 4% of the total assemblage in the short interval where they occurred
(Figures 3, 4; Supplementary Table S1).

The calcareous nannofossils assemblages included several taxa
that were important for biostratigraphy (Figure 4), such as
Corollithion kennedyi, Lithraphidites acutus, Helenea chiastia,
Axopodorhabdus albianus, Quadrum intermedium, R. asper,
Eprolithus octopetalus, Eprolithus moratus, Quadrum gartneri,
and Lucianorhabdus maleformis.

4.2 Calcareous nannofossil biostratigraphy

The oldest nannofossil event observed in the studied succession
was the last occurrence (LO) of C. kennedyi (sample P7;
Supplementary Table S1), which marked the base of the UC3e
subzone in the late Cenomanian (Figure 3). The base of
UC4 could not be recognized as Cylindralithus biarcus was not
present. The top of UC4 was recognized based on the LO of L. acutus
(sample P21; Supplementary Table S1), which is a late Cenomanian
event. The UC5 subzones, namely, A, B, and C, were identified based
on the LO of A. albianus (base of UC5b; sample P23), followed by

FIGURE 2
Lithology of the Cretaceous sediments cropping out on both
banks of the Ialomiţa River, including the Dumbrăvioara unit under
study. The 17-cm thickness of the black shale level is not to scale.
Photographs: (A) gray claystone and marlstone, (B) black shale,
and (C) pyrite concretions.
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the first occurrence (FO) of Q. intermedium (base of UC5c; sample
P31; Figures 3, 4; Supplementary Table S1). The LO of R. asper is
placed in UC5b (sample P30). The base of UC6 was marked by the
LO of H. chiastia (sample P34, Supplementary Table S1).

At the Global Boundary Stratotype Section and Point (GSSP) of the
Turonian stage, the disappearance interval of H. chiastia indicated the
Cenomanian–Turonian boundary (Kennedy et al., 2004); hence, we
considered that the Cenomanian–Turonian boundary falls within the
UC5c nannofossil subzone. In UC6, two bioevents, the successive FOs
of E. octopetalus (sample P35) and E. moratus (sample 37), were
recorded, the latter indicating the boundary between the UC6a and
UC6b subzones (Figures 3, 4; Supplementary Table S1).

The base ofUC7wasmarked by the FOofQ. gartneri (sample 38), an
early Turonian event (Lamolda et al., 1994; Burnett, 1998; Tsikos et al.,
2004; Boulila et al., 2020). The youngest recorded nannofossil event was
the FO of L. maleformis (sample P44), placed slightly above the FO ofQ.
gartneri, consistent with the findings of Burnett (1998). In some regions
(i.e., the Bohemian Basin and the OuterWestern Carpathians), the FO of
L. maleformis was found to be synchronous with the FO of Q. gartneri,
both nannofossil events recorded at the base of UC7 (Švábenická, 2012).
The biozone UC8 was not recorded in the succession as Eiffellithus
eximius (its FO marks the base of this nannofossil zone) was not present
in the identified calcareous nannofossil assemblages.

4.3 Fluctuation of δ13C and δ18O isotopes

The lower part of the section showed low values, ranging
between 2.23‰ and 2.54‰ (Figure 3). The values sharply

increased to up to 3.68‰, which was slightly above the LO of C.
kennedyi. We consider that this oldest increase in the isotope δ13C
encountered in this succession represents the beginning of OAE2,
i.e., peak A reported by Jarvis et al. (2006, 2011), described herein as
the first build-up of OAE2. Upward of the succession, the values
gradually decreased, representing a trough interval (Figures 3, 5;
Table 1). Slightly above the LO of L. acutus, we identified high
isotope δ13C values, i.e., a peak of 3.89‰, which reflected the second
build-up of OAE2. It was the highest value recorded in the section
and was assumed to be peak B reported by Jarvis et al. (2006, 2011).
The second build-up comprised several nannofossil events, such as
the LO of A. albianus and the FO of Q. intermedium, extending
within the UC5 zone.

Toward the end of the second build-up of OAE2, just below the
LO ofH. chiastia, a smaller peak of 3.38‰ (sample 32) was observed,
which probably represented peak C described by Jarvis et al. (2006,
2011). Upward of the succession, an interval of lower and constant
δ13C values, described herein as the plateau, was identified; it
spanned from the top of UC5 up to the base of UC7. At the end
of the plateau, we recorded the youngest peak of the succession,
i.e., 2.99‰, which was just below the FO of Q. gartneri, which
possibly correlated with peak D identified by Jarvis et al. (2006,
2011). The youngest studied interval (i.e., post-excursion) was
characterized by δ13C values, similar to those recorded in the
pre-excursion interval.

The isotope δ18O values fluctuate between −4.8‰ and −2.2‰
(Figure 3; Table 1). The highest values were recorded in the lower
part of the succession, which was below the LO of C. kennedyi. A
shift to more negative values (approximately −4‰) was observed

FIGURE 3
Lithostratigraphy, chemostratigraphy, calcareous nannofossil biostratigraphy, and relative abundance in the analyzed section. Legend: 1—claystone;
2—marlstone; 3—black shale; 4—first occurrence; 5—last occurrence.
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concomitant with the increase in δ13C, which was at the base of the
first build-up phase of OAE2. Upward of the succession, the
fluctuations in δ18O were minor, i.e., between −4.1‰ and −3.8‰.

4.4 CaCO3 and TOC

CaCO3 values varied between 5% and 78% (Figure 6). The lowest
values corresponded to the level of black shale cropping out in the
succession, whereas the highest values were identified at the base and
the top of the section, with the latest being above the end of OAE2.
The CaCO3 values first showed a decline toward the upper part of
the first build-up, within the trough, and the second build-up
(intervals that include peaks A and B reported by Jarvis et al.,
2006; 2011). The CaCO3 values were increasing in the upper part of
the plateau phase (above peak C) and showed higher values above
the end of OAE2.

The TOC (total organic carbon) values are generally low
through the studied interval, showing little fluctuations,
i.e., between 0.6 wt% and 0.9 wt%. A single peak was observed
enclosing the black shale depositional interval, with values
ranging from 3.7 wt% to 3.9 wt%. The high TOC values are
coeval with a very low CaCO3 content and a substantial shift in
diversity and abundance of calcareous nannofossil assemblages
(Figure 6).

5 Discussion

5.1 Nannofossil turnover during OAE2

The calcareous nannofossil distribution pattern indicated
significant changes throughout the studied OAE2 interval.

According to the observed fluctuations, several phases were
identified (older first), as shown in Figure 6.

Phase 1 was characterized by low-to-middle paleolatitude taxa
(Watkins, 1992; Erba, 1992, 1994; Lamolda et al., 1994; Lees et al.,
2005; Herrle et al., 2010; Aguado, 2016), the most common beingW.
barnesiae, Rhagodiscus spp.,Nannoconus spp., Biscutum constans, E.
turriseiffelii, T. phacelosus, Z. embergeri, Eprolithus spp., and
Quadrum spp. The lowest part of the succession encloses a small
group of species more related to high paleolatitudes, such as C.
salebrosum, Repagulum parvidentatum, and S. primitivum (Watkins
et al., 1996; Mutterlose et al., 2005). This is the only interval with
such an occurrence in the succession, consistent with the increased
abundance of higher fertility taxa, such as Biscutum constans,
Discorhabdus ignotus, and Z. erectus, along with the highest
values for the isotope δ18O. In terms of OAE2, this part
corresponds to the pre-excursion.

Phase 2 was characterized by a declining tendency in terms of
the abundance and diversity of nannofossil assemblages. The taxa
more related to high paleolatitudes vanished, while Biscutum
constans showed two successive peaks. Toward the base of this
phase, a peak of Nannoconus spp. was recorded, followed by the
peak of E. turriseiffelii. In terms of OAE2, based on δ13C fluctuation,
this phase extended from the pre-excursion up to the lower part of
the first build-up (including peak A described by Jarvis et al., 2006).
The disappearance of cooler surface-water nannofossils along with
the shift to more negative values of the isotope δ18O indicated a
possible warming tendency at the base of this phase, followed by a
short cooling trend.

Phase 3 was characterized by high abundance of W. barnesiae
and decreased values of E. floralis, accompanied by a significant
decrease in Biscutum constans. This phase extended within the
upper part of the first build-up, the trough, and the lower part of
the second build-up of OAE2 (including peak B of Jarvis et al., 2006).

FIGURE 4
Calcareous nannofossil microphotographs of the studied upper Cenomanian–lower Turonian succession. All microphotographs were taken under
a light microscope; N+, crossed-nicols; NII, polarized light; scale bar: microns. 1, 2, Eprolithus floralis (Stradner, 1962; Stover, 1966); 1, Sample 15; 2,
Sample 28; 3, Eprolithus octopetalus (Varol, 1992); Sample 37; 4, 5, Eprolithus moratus (Stover, 1966; Burnett, 1998); Sample 35; 6, Lithraphidites acutus
(Verbeek & Manivit; Manivit et al., 1977); Sample 21; 7, Quadrum gartneri (Prins & Perch-Nielsen; Manivit et al., 1977); Sample 40; 8, 9, Quadrum
intermedium (Varol, 1992); 8, Sample 33; 9, Sample 40; 10, Corollithion kennedyi (Crux, 1981); Sample 6; 11, Biscutum constans (Górka, 1957) (Black and
Barnes, 1959); Sample 5; 12, Crucibiscutum salebrosum (Black, 1971; Jakubowski, 1986); Sample 3; 13, Helenea chiastia (Worsley, 1971); Sample 33.
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Phase 4 was characterized by a drastic decline in calcareous
nannofossil assemblage, a trend that extends to the upper part of the
second build-up (including peak C reported by Jarvis et al., 2006) and the
plateau (including peak D of Jarvis et al., 2006). Higher fertility surface-
water taxa such asBiscutumconstans andZ. erectus (Erba, 2004;Mutterlose
et al., 2005; Erba et al., 2019) disappeared. The assemblages consist mainly
of W. barnesiae (up to 75%–80% of the total assemblages).

Phase 5 was characterized by recovery in terms of nannofossils
linked to OAE2 termination. It encloses successive peaks of E.
floralis, Nannoconus spp., and E. turriseiffelii. In this phase, the
abundance of W. barnesiae consistently decreased, and Biscutum
constans reappeared in the record.

5.2 Nannofossil paleoecology

To estimate, based on calcareous nannofossils, the
paleoecological changes of mid-Cretaceous times, including
OAEs, Herrle et al. (2003) proposed two indices: the temperature
index (TI) and the nutrient index (NI). Since then, TI and NI have

FIGURE 5
δ13C versus δ18O stable isotope cross-plot in the investigated
section. Data are presented for analysis of bulk sediments and are
presented in ‰ VPDB (Vienna Pee Dee Belemnite).

TABLE 1 Data on δ13C and δ18O stable isotope analyses.

m Sample δ13C δ18O

19.8 P49 2.11 −3.29

19.4 P48 2.41 −3.49

19 P47 2.38 −3.36

18.6 P46 2.25 −3.53

18.2 P45 2.36 −3.41

17.8 P44 2.24 −3.59

17.4 P43 2.32 −3.47

17 P42 2.26 −3.28

16.6 P41 2.40 −3.97

16.2 P40 2.26 −3.59

15.8 P39 2.99 −4.01

15.4 P38 2.91 −3.25

15 P37 3.17 −4.07

14.6 P36 2.83 −3.09

14.2 P35 2.97 −4.12

13.8 P34 2.66 −3.73

13.4 P33 2.58 −4.15

13 P32 3.38 −3.78

12.6 P31 3.22 −4.18

12.2 P30 3.09 −3.81

11.8 P29 3.19 −4.19

11.4 P28 3.28 −3.79

11 P27 3.03 −4.23

10.6 P26 3.73 −3.88

10.2 P25 3.57 −4.69

9.8 P24 3.89 −3.61

9.4 P23 3.52 −4.77

9 P22 3.21 −3.69

8.6 P21 3.57 −4.01

8.2 P20 3.98 −3.67

7.8 P19 3.21 −4.18

7.4 P18 3.05 −3.27

7 P17 3.11 −4.06

6.8 P16 2.96 −3.08

6.4 P15 2.79 −4.09

6 P14 2.89 −3.87

5.6 P13 3.44 −4.14

5.2 P12 2.99 −3.82

(Continued on following page)
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been successfully applied to the Aptian–Turonian interval (Herrle,
2003; Herrle et al., 2003; 2010; Herrle and Mutterlose, 2003;
Tiraboschi et al., 2009; Bottini et al., 2015; Aguado et al., 2016;
Bottini and Erba, 2018) for deciphering modifications in surface-
water temperature and fertility.

In this study, we calculated NI using the following formula: NI =
{SUM (% of mesoeutrophic taxa)/(% of mesoeutrophic taxa + % of
oligotrophic taxa) * 100}. The mesoeutrophic group includes
Biscutum constans, Z. erectus, and D. ignotus, whereas the
oligotrophic group is represented by W. barnesiae.

Biscutum constans is an indicator of high-fertility surface-water
condition (Erba, 2004; Mutterlose et al., 2005; Linnert et al., 2011;
Aguado et al., 2016). Roth (1981) was the first to use Biscutum
constans as an indicator of high-fertility surface-water conditions,
while Watkins (1989) assumed that Biscutum constans may be
associated with mesotrophic surface-water conditions rather than
eutrophic conditions. Decreased abundance of Biscutum
spp. throughout OAE2 was observed in many European sections
of mid-to-high paleolatitudes (Lamolda et al., 1994; Paul et al., 1999;
Mutterlose and Kessels, 2000; Gale et al., 2002; Herrle and
Mutterlose, 2003; Melinte-Dobrinescu and Bojar, 2008; Bottini
et al., 2015), as recorded in the investigated succession of the
Eastern Carpathians.

Zeugrhabdotus erectus is another proxy of high-fertility surface-
water conditions and indicates eutrophic conditions, probably
because it has a higher nutrient preference than Biscutum taxa
(Erba, 1992). It was assumed that the high abundance of smaller
Zeugrhabdotus specimens (<5 μm) mirrored the elevation but at
somewhat lower fertility conditions than Biscutum species (Kessels
et al., 2003), whereas a predominance of Z. erectus over Biscutum
spp. reflected more coastal environments, with a higher input of
nutrients (Möller and Mutterlose, 2014; Aguado et al., 2016).

TABLE 1 (Continued) Data on δ13C and δ18O stable isotope analyses.

m Sample δ13C δ18O

5 P11 3.51 −4.13

4.6 P10 2.86 −3.11

4.4 P9 3.62 −2.97

4 P8 3.68 −4.12

3.8 P7 2.21 −3.98

3.4 P6 2.28 −4.36

3 P5 2.48 −2.09

2.6 P4 2.42 −3.54

2.2 P3 2.34 −2.93

1.8 P2 2.51 −3.85

1.4 P1 2.06 −2.62

1 P0 2.37 −3.83

FIGURE 6
Geochemistry, calcareous nannofossil events, nutrient index, and phases identified in this study based on calcareous nannofossils. Legend: 1,
claystone; 2, marlstone; 3, black shale; 4, first occurrence; 5, last occurrence; 6, higher abundance (Watznaueria barnesiae >70%; Eprolithus floralis >25%;
Nannoconus spp. >9%; Biscutum constans >7%; Eiffellithus turriseiffelii >9%).
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Discorhabdus ignotus is also regarded as a high-fertility proxy,
showing a preference for mesoeutrophic surface-water conditions
(Herrle, 2003; Bornemann et al., 2005; Aguado et al., 2014; 2016).

Watznaueria barnesiae is the most abundant Cretaceous species
and one of the nannofossils with the highest resistance to
dissolution. Assemblages containing more than 40% W. barnesiae
are assumed to have undergone heavy alterations (Roth and
Krumbach, 1986). Watznaueria barnesiae is regarded as an
oligotrophic taxon, being a K-strategist species (Mutterlose and
Kessels, 2000). Some authors hypothesized that its high
abundance is indicative of high surface-water temperature
(Watkins, et al., 1996; Sheldon et al., 2010). However, no
consensus exists regarding the paleoecology of W. barnesiae,
which is associated with various conditions, from eutrophic to
mesotrophic or oligotrophic conditions (Lees et al., 2005).
Because this species is resistant to dissolution, its blooms occur
in intervals of intense diagenetic processes and/or because of the
surface-water geochemical changes; this leads to the disappearance
of nannofossils more sensitive to ecological modifications. These
changes have also been demonstrated in the present study, i.e., owing
to an increase of more than 80% in the abundance of W. barnesiae,
placed in the interval of very low CaCO3 and high TOC.

In general, the NI of the investigated succession in the Eastern
Carpathians shows low values through the late
Cenomanian–early Turonian interval (Figure 6). The highest
values were identified below the OAE2 setting, characterized
by an increased abundance of Biscutum constans, Z. erectus,
and D. ignotus. This interval also contains the single
occurrence of the nannofossils associated with mid-to-high
paleolatitudes (Bown et al., 1998; Mutterlose et al., 2005), such
as Crucibiscutum salebosum, Repagulum parvidentatum, and S.
primitivum. Based on these findings, we assume a mesotrophic to
eutrophic setting for the oldest studied interval (late
Cenomanian, UC3d biozone). The mesoeutrophic setting was
temporarily replaced by an oligotrophic one as NI decreased
concomitantly with the increased abundance of Nannoconus
spp. and E. turriseiffelii. The nannoconids are mostly
indicative of warm surface water and are considered
oligotrophic taxa (Busson and Noël, 1991; Street and Bown,
2000; Lees et al., 2005; Mattioli et al., 2014); possibly, the
same pattern was shown by E. turriseiffelii, also regarded as a
cosmopolitan oligotrophic nannofossil (Eleson and Bralower,
2005; Mutterlose et al., 2005).

Upward of the succession, the NI increases, indicative of the
higher abundance of Biscutum constans. Productivity improved for a
short interval in the initial phase of OAE2. Toward the upper part of
the first build-up, the NI continuously decreased. From the second
build-up to the upper part of the plateau, the NI was null as all the
high-fertility taxa had disappeared from the record. This interval
was characterized by very scarce calcareous nannofossil
assemblages, which are composed of very few species (W.
barnesiae, E. floralis, Z. embergeri, and Rhagodiscus spp.; Figures
3, 6; Supplementary Table S1). These depauperate assemblages
probably indicate very strong diagenesis, which is also reflected
by the extremely low CaCO3 content (Figure 6). Recent findings
(Slater et al., 2022) linked the subsequent dissolution of CaCO3 in
the last phase of OAEs to the high organic matter content that may
lead to the occurrence of acidic pore waters.

From the upper part of UC6, the NI showed a progressive
increase, indicating the highest values in the UC7 zone. Probably,
the recovery of diversity and abundance, accompanied by the
substantial shift in W. barnesiae, reflects an improvement of the
nannofossil world, linked to changes in ocean chemistry, after the
anoxic setting disappears. A similar scenario of nannofossil
fluctuations found in the Eastern Carpathians across the
OAE2 was described from various regions of the Tethyan and
Boreal realms. In Central Tunisia, Aguado et al. (2016) reported
that the most eutrophic conditions developed during deposition of
the lowermost part of the Whiteinella archaeocretacea foraminifer
zone, corresponding to the UC3 and UC4 nannofossil zones. The TI
based on calcareous nannofossil assemblages indicates an initial
warming at the beginning of the OAE2, followed by progressive
cooling, a similar trend reflected by δ18Obulk values. In another
Tethyan section in Austria, nannofossil indices and dinoflagellate
associations have shown rather low productivity, possibly associated
with the low nutrient input in the upper part of the OAE interval
(Pavlishina and Wagreich, 2012).

The blooms of E. floralis were encountered above the end of
OAE2 in the Eastern Carpathian succession, a pattern described for
many Tethyan and Boreal sections (Paul et al., 1994; Erba et al.,
2019). As elsewhere, in the investigated succession, the abundance of
W. barnesiae consistently increased during the OAE2 climax,
coincident with the lowest CaCO3 concentration recorded in the
section. This event could be an effect of diagenesis rather than a
primary signal. Through the Plenus Marls (UK) across OAE2, very
high percentages of W. barnesiae were also identified, but it was
assumed these are not linked to any change in lithology and/or
diagenetic processes, thus reflecting a primary signal, not a post-
burial effect (Lamolda et al., 1994). Previous studies indicate that
during the Cenomanian–Turonian boundary event, other groups of
the organism bloomed, i.e., the calcareous dinoflagellate genus
Thoracosphaera (Melinte-Dobrinescu et al., 2013), cyanobacteria
(Duque-Botero and Maurrasse, 2005; Duque-Botero et al., 2009),
and the nannofossil Braarudosphaera bigelowii (Cunha and
Shimabukuro, 1997). Probably, the occurrence of these organisms
is linked to the eutrophication event produced in the initial phases of
OAE2 and post-excursion, reflecting not only the global changes but
also the regional settings of these times.

6 Conclusion

Based on bio- and chemostratigraphy, we identified OAE2 in the
Eastern Carpathians in a marlstone and claystone succession,
enclosing a 17-cm-thick black shale. The investigated interval
covers the UC3d to UC7 biozones, spanning the
Cenomanian–Turonian boundary interval. The fluctuation
pattern of the δ13C isotope led to the identification of several
OAE2 intervals, such as the first build-up, trough, second build-
up, and plateau. Peaks A, B, C, and D reported by Jarvis et al. (2006,
2011) are included at the base of the first build-up (peak A), at the
base and the top of the second build-up (peaks B and C), and in the
plateau (peak D). We assumed that the Cenomanian–Turonian
boundary falls in the upper part of the UC5c nannofossil
subzone, at the LO of H. chiastia, as pointed out at the GSSP of
the Turonian boundary (Kennedy et al., 2004). Therefore, the main
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part of the OAE2 is comprised in the late Cenomanian (including
peaks A, B, and C). The earliest Turonian comprises only peak D
(the main part of the plateau).

The fluctuation pattern of NI is indicative of a mesoeutrophic
paleosetting in the lower and upper parts of the investigated intervals
throughout the pre- and post-excursion. During OAE2, oligotrophic
conditions expanded, except for the short interval at the beginning
of OAE2, where productivity increased, with Biscutum constans
showing a shift in its abundance. A cooling interval at the base of the
studied succession, characterized by the occurrence of cooler
surface-water taxa, such as C. salebrosum, Repagulum
parvidentatum, and S. primitivum, along with a high abundance
of Biscutum constans, was observed. This event occurred within the
UC3e nannofossil subzone, in the pre-excursion interval, and may
reflect a transgressive event in the Eastern Carpathian region.
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