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The Tibetan Plateau, induced by the India-Eurasian collision, has the highest
average altitude in the world. During its uplift vertically, the Tibetan Plateau has
been considered to expand laterally. However, there are several strong and almost
non-deformable cratons on its periphery, such as the Tarim, North China craton,
and South China block. The present landform features show that these cratons
limit the expansion of the Tibetan Plateau. However, there is still much controversy
over whether the deformation can be transmitted to periphery orogens or
reactivate ancient orogens in the cratons. This study used numerical models to
investigate the effect of rheological heterogeneities on the lithospheric
deformation of the Tibetan Plateau and its neighbouring regions. The results
show that the lateral heterogeneities of the lithosphere have an important
influence on the deformation or strain partitioning. Generally, during the lateral
expansion of the Tibetan Plateau, its peripheral cratons can transmit the
deformation or high strain to neighbouring weak orogens. This case can be
used to understand the Tian Shan orogen, which was reactivated by the India-
Eurasian collision. However, when the orogens inside the cratons have high
lithospheric strength, high strain is difficult to distribute on them and the
expanding Tibetan Plateau is constrained by its peripheral cratons. These
results can be used to explain the ancient orogens that are not strongly
deformed, such as the Jiangnan orogen in the South China block. Because
these orogens formed at the same time as the cratons and have relatively high
lithospheric strength. In addition, the large lithospheric thickness difference and
low crustal rheological contrast favor high strain rates localized on the lithosphere
of the ancient orogen in the craton, such as the Trans-North China orogen in the
North China craton.
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1 Introduction

The Tibetan Plateau has been formed due to the continuous collision of the Indian and
Eurasian plates since the Cenozoic (Molnar and Tapponnier, 1975). While the Tibetan
Plateau is uplifted vertically, it is considered to expand horizontally. So far, the terranes of the
Himalayas, Lhasa, Qiangtang, Songpan-Ganzi, Kunlun-Qaidam and Qilian Shan have been
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involved in the plateau (Tapponnier et al., 2001; Wang et al., 2014a;
Yin and Harrison, 2000). The Tarim, North China craton, and South
China block are the three main cratons in East Asia. However, these
three cratons were not integrated into the plateau, on the contrary,
they severely restricted the expansion of the Tibetan Plateau based
on the landform features (Figure 1A). There are three main orogenic
belts outside or within these cratons: the Tian Shan orogen outside
the Tarim, the Jiangnan orogen within the South China block, and
the Trans-North China orogen within the North China craton.
Whether the deformation or strain caused by the India-Eurasian
collision can be transferred by cratons to these orogens is still
controversial (Molnar and Tapponnier, 1977; Sun and Liu, 2018;
Yuan et al., 2013).

Previous numerical studies have shown that during the lateral
expansion of the Tibetan Plateau, if a stable craton is encountered, strain
can be transferred to the weak orogen on the other side through the
craton (England and Houseman, 1985; Neil and Houseman, 1997). For
example, the Tibetan Plateau encountered the Tarim during the
expansion of its northern margin. The strong Tarim, while
undergoing little internal deformation, transfers strain to the Tian
Shan orogen, producing significant crustal thickening (Figure 1B).
The Tian Shan orogen belongs to the Central Asian orogenic belts,
which were formed in the Paleozoic (Windley et al., 2007; Xiao et al.,
2013). The expansion of the Tibetan Plateau or India-Eurasian collision

reactivated the Tian Shan orogen (Jolivet et al., 2010; Li et al., 2022;
Tapponnier and Molnar, 1979). Similar tectonics exist in the eastern
and northeastern expansion of the Tibetan Plateau. Across the eastern
margin of the Tibetan Plateau and the Sichuan basin, there is the
Jiangnan orogen within the South China block (Figure 1C). It was
formed in the Neoproterozoic due to the collision of the Yangtze craton
and the Cathaysia block (Li et al., 1995). Across the northeasternmargin
of the Tibetan Plateau and the Ordos, the Trans-North China orogen is
located within the North China craton (Figure 1D). It was formed in the
Paleoproterozoic due to the collision of the west (Alashan and Ordos
blocks) and east (North China plain) blocks of the North China craton
(Zhao et al., 2000; Zhao et al., 2005). Although these two orogenic belts
are located inside the cratons, their lithosphere has undergone a strong
post-modification since the Cambrian. Especially, in the Mesozoic, the
lithospheric thinning occurred in the east of North China craton and
South China block (Zhu and Xu, 2019). Both for the South China block
and the North China craton, there were significant differences in the
thickness of the lithosphere between the east and west parts. In
particular, the thickness of the mantle lithosphere in the eastern
North China craton has decreased significantly, from ~200 km to
~80 km (Chen et al., 2009; Zhang et al., 2019; Zhu et al., 2011), and
large-scale magmatic activities have occurred. However, the Ordos in
the west of the North China craton and the Sichuan basin in the west of
the South China block both maintained the stability of the craton

FIGURE 1
Tectonic background for the Tibetan Plateau and surrounding regions (A), and lithospheric structure across the Tarim (B), South China block (C), and
North China craton (D) based on the Pwave tomography (Wei et al., 2012). Red triangles and purple dots indicate the Holocene and Pleistocene volcanos,
respectively (https://volcano.si.edu/volcanolist_pleistocene.cfm). Dashed lines in (A) indicate the block boundaries. Gray areas in (B–D) indicate the
topographic change along the three profiles. The swath width of each profile is 40 km. Black dashed lines (B–D) indicate theMoho surface based on
the Crust1.0model (Data from https://igppweb.ucsd.edu/~gabi/crust1.html). Red dashed lines (B–D) indicate the base of the thermal lithosphere (An and
Shi, 2006). JNO: Jiangnan orogen; TNCO: Trans-North China orogen; NCP: North China plain.
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without significant deformation. In general, older orogens have stronger
or more stable lithospheres due to the cooling of the lithosphere (Hu
et al., 2000). However, under the action of strong neotectonic stress,
some intraplate rheological weak zones may be reactivated, such as the
Sprigg’s orogen in southeastern Australia (Dyksterhuis and Müller,
2008) and the Laramide orogen in the United States (English and
Johnston, 2004). Compared to the Tian Shan orogen, it is not clear
whether the expansion of the Tibetan Plateau can affect these two
ancient orogenic belts through the strong Sichuan basin and Ordos,
respectively (Zhao and Zheng, 2007).

Previous studies have shown that the far-field effect of the
India-Eurasian collision has extended to the Altai Shan and east
China based on the active tectonics and topography (Molnar and
Tapponnier, 1975; Molnar and Tapponnier, 1977). During this
process, high topography and strain are mainly distributed along
the preexisting faults, which implied the first-order importance
of the weaknesses (Kong et al., 1997). However, these studies
focused on crustal stress transmission (Dayem et al., 2009;
England and Houseman, 1986; Kong et al., 1997). The
dynamic effects of the India-Eurasian collision may have
extended much deeper. On the one hand, recent study shows
the subducting Indian mantle lithosphere beneath the western
Tibetan Plateau collided with the Tarim lithosphere controls the
uplift of the Tian Shan orogen (Huangfu et al., 2021). This
implies the importance of the rheology of the mantle
lithosphere. On the other hand, tomography studies have
shown that continuous low-velocity asthenospheric mantle
structure extends from the Tibetan Plateau to east China at
the depth of 200–300 km (Huang et al., 2009; Liu et al., 2004).
Numerical simulations suggest that significant lateral extrusion
of the asthenospheric mantle driven by India-Eurasian collision
is possible in the presence of a low-viscosity asthenosphere (Liu
et al., 2004). Therefore, one possible explanation for the Cenozoic
rifting and volcanism in east China is mantle flow driven by
India-Eurasian collision. These studies show that the upper
mantle dynamics should be considered in investigating the
deformation distribution during the India-Eurasian collision.

In this study, a two-dimensional thermo-mechanical finite
element model was used to consider the lithospheric strength
heterogeneities of the Tibetan Plateau and neighbouring regions.
We tried to explore how deformation or strain distribution when the
expanding Tibetan Plateau collides with peripheral cratons.
Especially, by considering the lithospheric deformation of the
craton and asthenospheric flow, we try to investigate if the
ancient orogenic belts in the craton, such as the Jiangnan orogen
or the Trans-North China orogen, can be reactivated like the Tian
Shan orogen. The results would help us to understand the far-field
effects of the India-Eurasian collision and the interaction of different
dynamic factors.

2 Methods

2.1 Governing equations

Two-dimensional thermo-mechanical finite element codes have
been developed based on previous studies (Sun et al., 2019; Sun and
Liu, 2018, 2023). For the mechanical deformation, the visco-plastic

rheology was adopted in the numerical model, and viscosity
depended on the temperature and strain rate. The Arbitrary
Lagrange-Euler (Fullsack, 1995) and the marker-in-cell method
(Gerya and Yuen, 2003) were used to solve the coupling equations.

The following equations are used in the two-dimensional
thermal-mechanical coupled finite element model. The
momentum conservation equation is

−zP
zxi

+ zτ ij
zxj

+ ρgi � 0 (1)

where P � −σij
3 is pressure and σij is stress tensor. δij is the Kronecker

delta tensor. σij � −Pδij + τij and τij is deviatoric stress tensor. xi is
spatial coordinates (in the 2D case employed here: x1 � x, x2 � y). ρ
is density, gj � [0,−g]T is the gravitational acceleration. Here we use
the index notation, which implies summation over its range when an
index is repeated in a term. ρ � ρ0[1 − α(T − T0)] is density,
depending on temperature T. ρ0 is the reference density under
the condition of T0 � 298K; α is the thermal expansion parameter.
α � 3 × 10−5K−1 is used in this study.

The mass conservation or incompressible continuity
equation is

zvj
zxj

� 0 (2)

where vj is velocity vector.
The constitutive equation is

σij � −Pδij + 2ηef f _εij (3)
where ηef f is effective viscosity. The strain rate tensor _εij can be
written as:

_εij � 1
2

zvi
zxj

+ zvj
zxi

( ) (4)

The ductile behavior is driven from experimental uniaxial
creep law:

ηd � _εII( ) 1−n
n A( )−1n exp E

nRT
( ) (5)

A is material constant, n is power law exponent, E is the activation
energy, R � 8.314 J/(mol · K) is Boltzman’s gas constant and T is the
temperature in K.

Frictional–plastic deformation would occur if the stress state
satisfied a yielding criterion. Here we ignore the effect of pressure
and active volume, which are of minor importance for the upper
mantle (Ranalli, 1997a). In this study, we used a pressure-depended
Drucker-Prager yield criterion:��

J2
√ � C0 cos α + P sin α (6)

where σII � (J2) 1
2 � (12τijτij)

1
2 is the second invariant of the deviatoric

stress tensor, C0 is the cohension, α is the angle of internal friction.
The plastic viscosity for plastic flow is

ηp � 1
2

J2( ) 1
2/ _I2

′( ) 1
2 (7)

in the regions that satisfy the yield criterion. Here

_εII � _I2
′( ) 1

2 � 1
2
_εij′ _εij′( ) 1

2 (8)
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_I2′ is the second invariant of the deviatoric strain rate tensor. _εij′ is
the deviatoric strain rate tensor. For the incompressible medium,
_εij′ � _εij .

The minimum value of the viscous or plastic viscosity defines the
effective viscosity:

ηef f � min ηd, ηp( ) (9)

To quantify the intensity and state of deformation
(extension or compression), we define the maximum shear
strain rate γ and dilatation strain rate θ to study the
deformation.

γ � _ε max − _ε min| |/2 (10)
θ � _ε max + _ε min( )/2 (11)

where _εmax and _εmin are the maximum and the minimum
principal strain rates, respectively. γ indicates the intensity of
deformation. Positive θ indicates that the deformation is
dominated by elongation or extension, while negative θ
implies compressive deformation.

The energy conservation equation is given based on the
extended Boussinesq approximation (EBA) (Christensen and
Yuen, 1985; Hansen and Yuen, 2000)

ρCP
zT
zt

+ ρCPvj
zT
zxj

� z

zxj
k
zT
zxj

( ) +Qr + Qs +Qa (12)

where ρ is density, CP is heat capacity, T is temperature, k is thermal
conductivity, vj is velocity vector, Qr is radioactive heat production,
Qs � τij _εij is frictional shear heating, and Qa is the adiabatic heating
term. The adiabatic heating term can be simplified by neglecting
deviations of the dynamic pressure gradients. That is Qa � αT DP

Dt ≈ −
αTρgvy.

2.2 Finite element mesh and boundary
conditions

The constructed numerical model is 2,200 km in length and
400 km in depth (Figure 2). From left to right, the initial width of the
Tibetan Plateau and craton in the numerical model are 1,050 km and
1,150 km, respectively. In the vertical direction, the model is divided
into 5 layers: upper crust, middle crust, lower crust, mantle
lithosphere, and asthenosphere. The upper, middle, and lower
crustal thicknesses of the Tibetan Plateau were set as 15.8 km,
18 km, and 18 km, respectively. For the craton, the upper,
middle, and lower crustal thicknesses were set as 10 km, 15 km,
and 15 km, respectively. The initial topography of the Tibetan
Plateau and craton are 1.8 km and 0, respectively. The initial
crustal structure satisfies isostatic equilibrium. For the reference
model (case R), the initial lithospheric thicknesses of the Tibetan
Plateau and craton are 100 km and 130 km, respectively. The initial
thicknesses of different layers change linearly from the Tibetan
Plateau to the craton.

The mechanical boundary conditions of the reference model (case
R) are imposed as follows. A 20 mm/yr constant velocity is imposed on
the left side of themodel. The bottom and left sides of themodel are free-
slip boundary conditions. The top side of the model is a full free
boundary condition. In this case, the top surface may move vertically
because of mass conservation (or incompressibility). We set the
topography at the center of the craton as the reference point (0 km),
then corrected the y-axis coordinates of all markers, which is relative to
the elevation of the craton (Figure 2). For this reason, the topography
shown in this study indicates a relative change, not an absolute elevation.
The thermal boundary conditions are imposed as follows. The thermal
boundary conditions are zT

zx � 0 on the left and right sides. The
temperature imposed on the top and bottom of the model is 0 °C

FIGURE 2
The two-dimensional finite element model and boundary conditions (A) and the initial effective viscosity of the reference model (case R) (B).
Different colors in (A) indicate differentmaterials. Units 1–4 are the upper crust, middle crust, lower crust, andmantle lithosphere of the Tibetan Plateau or
a weak orogen in other cases, respectively; units 5–8 are the upper crust, middle crust, lower crust, and mantle lithosphere of the craton or a strong
orogen in the craton, respectively (Table 1); unit 9 is the asthenosphere. White lines in (A) indicate the initial isotherm.
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and 1,500 °C, respectively. The initial temperature from the top to the
bottom of the lithosphere increased linearly from 0 °C to 1,350 °C. From
the bottom of the lithosphere to the bottom of the model, the
temperature increases linearly from 1,350 °C to 1,500 °C (400 km depth).

2.3 Parameters

Cenozoic orogens, such as the Tibetan Plateau, generally have weak
lithospheric strength, while the Precambrian orogens have high strength
(Deng and Tesauro, 2016; Sun et al., 2013). The results are also
supported by the S-wave velocity structure across the margins of the
Tibetan Plateau and adjacent blocks (Tian et al., 2021). This is not only
related to the cooling of the lithosphere but also to the composition of
the continental lithosphere and the distribution of radioactive elements
(Mareschal and Jaupart, 2013; Sun et al., 2022). In this study, for the
reference model (case R), the initial lithospheric thickness of the craton
does not change. The parameters of case R are given in Table 1. When
we consider the effect of the lithospheric strength heterogeneities on the
strain partitioning, a weak orogen is inserted in the craton. According to
the nature of the orogens in the periphery of the craton or the interior of
the craton, the lithospheric strength or thickness contrasts are
considered. This difference is inherited from older periods, such as
the huge difference in lithospheric thickness of the North China craton
after the Mesozoic (Zhang et al., 2019). In addition, the effect of crustal
strength contrast is considered. Rheological parameters adopted in these
numerical models follow in Table 1.

3 Results

3.1 Reference model (case R)

For case R, the Tibetan Plateau and craton correspond to high
and low lithospheric viscosity, respectively (Figure 2B). With
continuous convergence (20 mm/yr on the left side of the

model), the results show that the lithosphere of the Tibetan
Plateau has undergone significant deformation, and a high strain
rate is localized on it (Figures 3A–D). The mantle lithosphere of the
Tibetan Plateau is delaminated or subducted after encountering the
obstruction of the craton (Figures 3C,D). The craton does not
deform significantly, which is indicated by a low strain rate or
low convergence velocity (Figure 3E). The crustal thickening and
high strain rate are mainly distributed on the side of the Tibetan
Plateau near the boundary between the plateau and the craton. The
free-slip boundary on the right side of the model means that the
length of the craton could extend to infinity. Under this high
rheological contrast (Figure 2B; Figure 3D), these results indicate
that the expansion of the Tibetan Plateau is blocked by the craton. If
the craton is uniform and infinite, the expanding plateau will not
have a far-field effect under the India-Eurasian collision.

3.2 Effect of rheological heterogeneity of the
lithosphere (group A)

To further study the effect of lateral rheological heterogeneity on
lithospheric deformation and strain partitioning. Three more models
(cases A, A1, A2) were established (Figure 4) for comparisonwith case R.
In these cases, a 150 km wide orogen is inserted in the craton. In case A,
the weak orogen was imposed the same rheological parameters as the
Tibetan Plateau (Table 1). The rheological parameters of case A1 are
similar to case A, except that the orogen was given a lower plastic yield
strength (10MPa). For case A2, the mantle lithosphere of the Tibetan
Plateau is given a higher strength (Dry olivine replaces wet olivine
according to Table 1) than that in case A1. The results (Figure 4,
Supplementary Figure S1) show that the lateral strength heterogeneities
have a great influence on the deformation pattern and strain distribution
of the lithosphere under the same shortening amount. When the
expanding plateau encounters strong craton resistance, if the orogen
outside the craton has weak lithosphere, the orogen would have high
strain distribution and lithospheric thickening (case A in Figures 4A,B).

TABLE 1 Rheological parameters of the numerical modelsa.

Layers Tibetan plateau or weak orogen Craton or strong orogen in the craton

Material A (MPa-
n/s)

E
(kJ/
mol)

n α
(degree)

C0
(MPa)

Material A (MPa-
n/s)

E
(kJ/
mol)

n α
(degree)

C0
(MPa)

Upper crust Wet granite
[1, 2]

2.0 × 10−4 137 1.9 20 20 Dry granite
[1, 2]

1.8 × 10−9 123 3.2 20 20

Middle crust Quartz diorite
[1, 2]

1.3 × 10−3 219 2.4 20 20 Anorthosite
[1, 2]

3.2 × 10−4 238 3.2 20 20

Lower crust Felsic
granulite [3]

8.0 × 10−3 243 3.1 20 20 Mafic
granulite [3]

1.4 × 104 445 4.2 20 20

Mantle
lithosphere

Wet
olivine [4]

2.0 × 103 471 4.0 30 30 Dry olivine [5] 2.5 × 104 532 3.5 30 30

asthenosphere Wet
olivine [4]

2.0 × 103 471 4.0 30 30 Wet olivine [4] 2.0 × 103 471 4.0 30 30

aReference density ρ0 of 2,600 kg/m3, 2,800 kg/m3, 3,000 kg/m3, 3,300 kg/m3 were set for the upper crust, the middle crust, the lower crust, and the mantle, respectively. Radioactive heat

production Qr of 1.2 × 10−6 W/m3, 1.0 × 10−6W/m3 and 0.8 × 10−6 W/m3 were imposed on the upper crust, the middle crust, and the lower crust, respectively. Radioactive heat production of

the mantle is 0. Constant thermal conductivities k of 3.0W/(m · K), 3.0W/(m · K), 3.2W/(m · K), 3.4W/(m · K), 3.8W/(m · K)were used for the upper crust, the middle crust, the lower crust,

the mantle lithosphere, and asthenosphere in this study. Heat capacity of CP � 1300 J/(kg · K) was used for all layers.

References: [1] (Ranalli, 1997a); [2] (Ranalli, 1997b); [3] (Wilks and Carter, 1990); [4] (Chopra and Paterson, 1981); [5] (Chopra and Paterson, 1984).
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Furthermore, if the lithospheric strength of the orogen is decreased, the
deformation is more likely to be transmitted to the orogen outside the
craton (case A1 in Figures 4C,D). In case A2, the strong mantle
lithosphere of the Tibetan Plateau collides with that of the craton,
which causes a high strain rate and delamination of the mantle
lithosphere under the orogen (Figures 4E,F).

According to the results of the viscous thin-shell model (England
and Houseman, 1986), during the outward expansion of the Tibetan
Plateau, strong deformation and high strain rates are localized on the
weak Tibetan Plateau. For a homogeneous crust, high strain gradually
decreases away from the collision boundary and is hard to transfer to
the orogen outside the craton. However, the lateral strength
heterogeneity of the lithosphere changes this feature, making it
easier for the high strain to concentrate on the Tibetan Plateau or
orogens with weak strength (England and Houseman, 1985). In our
two-dimensional profile model, such conclusions also apply to the
horizontal deformation characteristics and strain distribution of the
lithosphere. In addition, the deformation of the lithosphere also affects
the motion of the asthenosphere. For example, the deformation of the
mantle lithosphere will cause small-scale mantle convection below the
orogen (Figure 4F).

We compared the surface topography and strain rate of these three
models (group A) with the observations across the northern margin of
the Tibetan Plateau (AA’ profile in Figure 1B). The comparisons
(Figure 5) show that the results of group A are generally consistent
with the actual deformation feature. The west Kunlun Shan and Tian
Shan with high landforms are located on the south and north sides of
the Tarim basin, which is similar in the high topography features
distributed over both sides of the craton obtained by the numerical
models (Figure 5A). Especially for case A2, the steep topography feature
is fits well with the observation profile. High values of the maximum
shear strain rate (Figure 5B) and dilatation strain rate (Figure 5C) from
the observations (Kreemer et al., 2014; Wang and Shen, 2020), show
that Tian Shan are under strong compressive deformation. These are
generally consistent with the results of numerical models. The features
of observed topography and strain rate of the Than Shan are in better
agreement with the results of case A1 or case A2. This implies that the
lithospheric thickening may be taking place beneath the Tian Shan.
However, the dilatation strain rate calculation shows that the Tibetan
Plateau is under a compression state, which is not consistent with the
observed extension state (Figure 5C). This may be related to the shallow
crustal extension caused by gravity collapse for high topography (Liu

FIGURE 3
The evolution of lithospheric deformation (A–C), effective viscosity (D), and the maximum shear strain rate localization (E) for case R. White lines in
(A–C) indicate the isotherm. Black arrows in (D) show velocity vectors.
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and Yang, 2003), because the current observed strain rate is calculated
from the GPS observation on the surface. It represents the three-
dimensional deformation characteristics of the shallow crust.

3.3 Effect of lithospheric thickness on
deformation (group B)

Given the same rheological parameters, the initial thickness of
the lithosphere also affects the strength of the lithosphere because of
the difference in thermal structure. For instance, the craton and its
internal orogen have different strengths because of the varied initial
thicknesses of the lithosphere. This is related to the evolution of
craton or orogens. Therefore, it is necessary to discuss the influence
of the initial structure of the lithosphere on the deformation and
strain distribution.

Based on case R, we set up two comparable cases (case B1 and
case B2) by changing the initial lithospheric thickness of the craton
(Figure 6). For case B1, the initial lithospheric thickness of the craton
is not constant. The initial lithospheric thickness in the left part of
the craton is 130 km, which is thicker than that of the right part
(100 km) (Figures 6C,D). For case B2, a much thinner initial
lithospheric thickness (80 km) of the right part of the craton is
imposed (Figures 6E,F). The results show that the difference in the
initial thickness of the lithosphere, which affects the rheological
strength (Supplementary Figure S2), also has an important influence
on the deformation and strain partitioning. In case R, the craton
with the same initial lithospheric thickness has higher lithospheric
strength than the Tibetan Plateau. During the expansion of the
Tibetan Plateau, the deformation and high strain are mainly
concentrated in the Tibetan Plateau. With the initial lithospheric

thickness of the right part of the craton decreasing, the effective
viscosity also decreases (Supplementary Figure S2). The strain rate
localized on the right part of the craton increases accordingly

FIGURE 4
Comparisons of lithospheric deformation (A, C and E) and strain rate localization (B, D and F) for different cases (cases A, A1, and A2) after 10 Myr.
Different colors in (A,C and E) indicates different materials, which are consistent with that in Figure 2A. White lines in (A,C and E) indicate the isotherm.
Black arrows in (B,D and F) show velocity vectors.

FIGURE 5
Comparisons of the results of numerical models (group A) with
the observed surface topography (A), the maximum shear strain rate
(B), and the dilatation strain rate (C) across the northern margin of the
Tibetan Plateau (AA’ profile in Figure 1B). Gray areas in (A) indicate
the observed topographic change. Gray dots in (B–C) indicate the
observed strain rates (Kreemer et al., 2014; Wang and Shen, 2020).
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(Figures 6C–F). In case B2, if the initial lithospheric thickness of the
right part of the craton is reduced by 50 km compared to case R, the
strain rate localized on the right part of the craton is similar to that of
the Tibetan Plateau (Figures 6E,F). The strain rate localized on the
left part of the craton is similar to that of case R.

The surface topography and strain rate of these three cases (cases
R, B1, and B2) are compared with the observations across the eastern
margins of the Tibetan Plateau (BB’ profile in Figure 1C). The results
of the reference model (case R) are consistent with the observations
of this profile. Crossing the boundary between the plateau and the
craton, the topography and strain rate changed abruptly (Figure 7).
When the lithosphere thickness of the right part of the craton
decreases (case B1, B2), the topography and strain rate of the
right part of the craton will increase (Figures 7A,B). High
topography and the maximum shear strain rate correspond to
the low effective viscosity of the lithosphere (Supplementary
Figure S2), which is determined by the initial lithosphere
thickness. Our model shows that when the initial lithosphere
thickness of the right part of the craton is 100 km (case B1), the
calculated surface topography and the maximum strain rate agree
with the observation results (Figures 7A,B). This is consistent with
the thermal lithospheric thickness (Figure 1C). However, the
comparison of dilatation strain rate shows the compressive state
from the simulation is stronger than that of observation (Figure 7C).

3.4 Effect of crustal rheological contrast
(group C)

The above cases include the overall rheological contrast of the
lithosphere, but the rheological contrast of the crust has not been
considered in detail. In this group of cases, the effect of the crustal

rheological contrast on the plateau expansion and far-field effect is
considered. In case C (Figures 8A,B), we imposed a weak crust for
the craton (Supplementary Figure S3), whose parameters are the

FIGURE 6
Comparisons of lithospheric deformation (A,C and E) and strain rate localization (B,D and F) for different cases (cases R, B1, and B2) after 10 Myr
convergent. Different colors in (A,C and E) indicates different materials, which are consistent with that in Figure 2A. White lines in (A,C and E) indicate the
isotherm. Black arrows in (B,D and F) show velocity vectors. Double-headed red arrows in (A,C and E) indicate that the initial lithospheric thicknesses of
the right part of the craton. HLith presents the initial thickness of the lithosphere.

FIGURE 7
Comparisons of the numerical models (cases R, B1, B2) with the
observed surface topography (A), the maximum shear strain rate (B),
and the dilatation strain rate (C) across the eastern margins of the
Tibetan Plateau (BB’ profile in Figure 1C), respectively. Gray areas
in (A) indicate the observed topographic change. Gray dots in (B–C)
indicate the observed strain rates. The data of topography are
consistent with those shown in Figure 1. Strain rate data is from
(Kreemer et al., 2014; Wang and Shen, 2020).
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same as those of the Tibetan Plateau. Other parameters are the same
as in case B1. Compared to case B1, if the crustal viscosity of the
craton is low (Supplementary Figure S3B), the high strain rate can be
extended to the interior of the craton under the expansion of the
Tibetan Plateau (Figure 8B). The strain rate results show that the
deformation process is gradually extended from the plateau and
craton boundary to the craton interior. As shown in group A, if there
is a weak orogen in the craton (Figures 8C,D), the deformation of the
orogenic belt is relatively intense and a high strain rate is localized on
it (case C1). Furthermore, if a thin initial lithosphere is imposed for
the right part of the craton (case C2), it is conducive to the high
strain rate localized on it. In the upper mantle, edge-driven
convection will be caused by the large lithospheric thickness of
the craton (Figures 8E,F).

The surface topography and strain rate of these three cases
(cases C, C1, and C2) are compared with the observations across
the northeastern margins of the Tibetan Plateau (CC’ profile in
Figure 1D). For the northeastern margin of the Tibetan Plateau,
the smooth surface topography and the diffuse strain rate can be
generally fitted only when a weak crustal strength of the craton is
given (Figure 9). If the orogen within the craton is given low
lithospheric strength, then the surface topography and strain rate
are consistent with the characteristics of the Trans-North China
orogen (case C1 in Figure 9). This is reasonable because the
composition between the ancient orogenic belt and stable craton
are still different. However, different compositions may also
produce the same rheological strength (group B). In our
current model, the factor affecting the results can be
attributed to the rheological contrast (Supplementary Figure
S3). In case C2, under the convergent of the Tibetan Plateau,
low viscosity and large difference of lithospheric thickness leads
to strong deformation of the orogen in the craton. High

topography and sharp change of the strain rate crossing the
orogen in the craton is not consistent with the observed strain
rate (case C2 in Figure 9). Thus, we infer that the lithospheric

FIGURE 8
Comparisons of lithospheric deformation (A,C and E) and strain rate localization (B,D and F) for different cases (cases C, C1, and C2) after 10 Myr
convergent. Different colors in (A,C and E) indicates different materials, which are consistent with that in Figure 2A. White lines in (A,C and E) indicate the
isotherm. Black arrows in (B,D and F) show velocity vectors.

FIGURE 9
Comparisons of the numerical models (cases C, C1, C2) with the
observed surface topography (A), the maximum shear strain rate (B),
and the dilatation strain rate (C) across the northeasternmargins of the
Tibetan Plateau (CC’ profile in Figure 1D), respectively. Gray areas
in (A) indicate the observed topographic change. Gray dots in (B–C)
indicate the observed strain rates. The data of topography and strain
rate are consistent with those shown in Figure 5.
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deformation of the Trans-North China is not strong as that
shown in case C2.

4 Discussion

4.1 Implication for the far-field effect of the
India-Eurasian collision

The Tibetan Plateau is blocked by cratons during its
expansion, but whether it has far-field effects on orogens
outside or within the cratons has been debated. Using
numerical models in this study, we considered the effects of
strength heterogeneity of the lithosphere and contrast in
lithospheric thickness on the deformation characteristics and
strain distribution during the expansion of the plateau. These
results can help us understand the far-field effects of the India-
Eurasian collision.

Across the northern margin of the Tibetan Plateau and the
Tian Shan orogen (profile AA’ in Figure 1B), the lithospheric
deformation can be understood by the lateral heterogeneity of
lithospheric strength. Our numerical results show that lateral
heterogeneity of lithospheric strength affects greatly lithospheric
deformation patterns and strain partitioning (Figures 4, 5).
When the expanding Tibetan Plateau is blocked by the Tarim,
the hard Tarim can transmit the strain to Tian Shan orogen
(Figure 4). These results are consistent with previous thin-shell
model studies (England and Houseman, 1985; Neil and
Houseman, 1997). The pre-existing weak Tian Shan orogen
was remotely influenced by the India-Eurasian collision (Kong
et al., 1997). Especially when the subducted Indian mantle
lithosphere collided with the mantle lithosphere of the Tarim
(Li et al., 2008; Zhao et al., 2010), the uplift of the Tian Shan
orogen was more intense. For case A2, if the weak mantle of the
Tibetan Plateau was replaced by the subducted Indian mantle
lithosphere (Figures 4E,F), lithospheric thickening occurred
strongly on the Tian Shan orogen. According to the
observation of surface strain rate and geomorphological
characteristics (Figure 5), our numerical results show that the
lithospheric thickening beneath Tian Shan orogen is consistent
with the characteristics observed in some geophysical
observations (Chen et al., 1997; He and Santosh, 2018).
Therefore, the late Cenozoic reactivation of the Tian Shan
orogen was controlled by the India-Eurasian collision,
especially the collision of the mantle lithosphere between
India and Tarim since the late Cenozoic (Hendrix et al., 1994;
Qin et al., 2022). But the low lithospheric strength of the Tian
Shan orogen is the premise that it can be remotely affected by the
India-Eurasian collision.

However, when the lithospheric strength of the orogenic belt
in the craton is relatively high, the India-Eurasian collision is
difficult to affect (Figures 6, 7). This result can be used to
understand the convergence deformation between the Tibetan
Plateau and South China block (profile BB’ in Figure 1C). Within
the South China block, there is the Jiangnan orogen formed by
the splicing of the Yangtze craton and the Cathaysian block in
the Neoproterozoic (Li, 1999; Li et al., 1995). Since these orogens
was formed during the collision of two blocks, its strength is

similar to that of the Yangtze craton and the Cathaysian block.
Furthermore, its strength is higher than the orogen formed in the
Paleozoic, such as Tian Shan orogen (Allen et al., 1993). When
such a high strength ancient orogenic belt exists in the craton,
the strain caused by India-Eurasian collision cannot be transited
to it (Figures 6B,C; Figures 7A,B). That means it is difficult for
this ancient orogenic belt to be reactivated like the Tian Shan
orogen. In particular, if the craton and its interior orogenic belt
remain thick lithosphere, the Tibetan Plateau will be severely
constrained, making it difficult to expand further (Figures
6A–D). Deformation and high strain rate are mainly localized
on the Tibetan Plateau, and the mantle lithosphere of the
extended Tibetan Plateau will undergo delamination, which is
very similar to the deformation characteristics of the eastern
margin of the Tibetan Plateau (Liu et al., 2014; Wang et al.,
2014b). Our numerical model results suggest that the
lithospheric thickness also affects strain distribution, although
not as strong as the preexisting weak lithospheric strength
(Figures 6C–F; Figures 7B,C). The current thickness of the
mantle lithosphere in the Cathaysia block in the east of the
South China block has decreased significantly (An and Shi, 2006;
Gao et al., 2022; Li et al., 2013). Although thin lithospheric
thickness contributes to high strain rate distribution, our results
show that the high lithospheric strength of the craton will still
restrict the expansion of the Tibetan Plateau and its far-field
effect.

For the northeastern margin of the Tibetan Plateau (profile
CC’ in Figure 1D), more complex lithospheric rheology is needed
to fit the observed topography and strain rate. Crossing this
profile, the smooth surface topography and the diffuse strain rate
require low crustal rheological contrast between the Tibetan
Plateau and the North China craton (Figures 8, 9). In
addition, our results show that the formation of the smooth
surface topography needs a weak mantle lithosphere of the west
part of the North China craton (or the Ordos block). Although
the Trans-North China orogen was formed by the splicing of the
eastern and western blocks of the North China craton in the
Paleoproterozoic (Zhao, 2001; Zhao et al., 2000; Zhao et al.,
2005), its strength should be as high as that of the Jiangnan
orogen. However, our numerical results show that the high
topography of the Trans-North China orogen needs a weak
lithospheric strength (Figures 9B,C). This may imply that the
Trans-North China orogen had undergone significantly
transformation during the Mesozoic (Zhu and Xu, 2019). For
example, during the Mesozoic, the mantle lithosphere in the
eastern North China craton was significantly thinned from about
120 km to the current 80 km (Chen et al., 2009; Zhang et al.,
2014), and the strength of the Trans-North China orogen was
reduced. In addition, differences in lithosphere thickness can
cause the edge-driven convention beneath the North China
craton (King and Anderson, 1998; King and Ritsema, 2000;
Sun and Liu, 2023). The superposition of edge-driven
convention and asthenosphere flow caused by the expansion
of the Tibetan Plateau will further reduce the strength of the
lithosphere beneath the Trans-North China orogen (Figures
8B,D,F). Thus, the lateral growth of the Tibetan Plateau is
most likely to occur in the northeast margin and may affect
the Trans-North China orogen.
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4.2 Uncertainties of the model

In this study, the push boundary condition on the left side of
the model presents the convergence of the Indian and Eurasia
plates. However, the convergence of the Eurasia-Pacific plates is
also an important driving force that cannot be ignored
(Northrup et al., 1995). The subduction of the Paleo-Pacific
(Izanagi) plate is regarded as the dominant factor that induced
lithospheric thinning of the North China craton in the Mesozoic
(Liu et al., 2021a; Zhu and Xu, 2019). The subsequent
subduction and roll-back of the Pacific plate lasted to the
present and trigged back-arc extension in east China (Liu
et al., 2017a). Especially, the Cenozoic big mantle wedge
caused by the stagnation of the subducting Pacific slab has
contributed to the intraplate volcanism and rifting in East
Asia (Liu et al., 2017b; Zhao et al., 2007). The spatial
patterns of the fast polarization directions of vertically
traveling shear waves also indicate complex upper mantle
deformation in east China (Zhao and Xue, 2010). Strain rates
of group C models in this study show the deformation of the
right part of the craton is under compression, which is not
consistent with the observed extensive strain rates in the east
part of the North China craton (Figures 8G,H). This may be
related to the fact that the pulling force caused by the roll-back
of the Pacific plate is not considered in our model (Liu et al.,
2021b; Yang et al., 2018). If a tensile force is provided at the right
boundary in the numerical model, the lithosphere of the
surrounding block will be under extension state according to
recent study (Sun and Liu, 2023).

At the same time, there are large differences in the lithosphere
thickness between the east and west of the North China craton
after being reconstructed. Deep geophysical results indicate that
crossing the Ordos, there are low-velocity anomalies and low
electrical resistivity under the Trans-North China orogen (Guo
et al., 2016; Lei, 2012; Li et al., 2018; Yin et al., 2017), indicating
upwelling and downwelling of the asthenosphere beneath the
North China craton. Although the existence of the Philippine
plate blocks the impact of the westward subduction of the Pacific
plate on the South China block (Liu et al., 2021b), similar
tomography results are also observed in the upper mantle
beneath the South China block (Gao et al., 2022; Ward et al.,
2021; Wei et al., 2012). This may imply the existence of small-
scale convection in the upper mantle of east China because of the
difference in lithospheric structure (King and Anderson, 1995,
1998). These studies show that the complicated lithospheric and
upper mantle deformation of east China may be the interaction of
the subduction of the Pacific plate, the India-Eurasian collision
and small-scale convection (Sun and Liu, 2023).

Furthermore, the two-dimensional model here cannot
consider the lateral deformation or mantle flow caused by the
India-Eurasian collision. On the northeastern margin of the
Tibetan Plateau, the extended plateau not only converges with
the western margin of the North China craton but also
experienced significant strike-slip and developed a series of
pull-apart basins (Zheng et al., 2013). In the east of the
Tibetan Plateau, current GPS and geophysical observations
show that the plateau material is extruded along the
southeastern margin of the plateau and the Qingling orogen

(Guo and Chen, 2017; Wang and Shen, 2020). The velocity
boundary conditions (20 mm/yr) we impose on all models are
the same. Actually, for the region of the eastern and northern
margins of the Tibetan Plateau, only the velocity perpendicular to
the block boundary should be considered in the two-dimensional
model. In this way, the convergence velocity is lower than the
current given velocity boundary conditions. Thus, the strain
localized on the orogens in the craton may be smaller than
present. These lateral deformations may reduce the far-field
effects of the India-Eurasian collision because it does not need
to overcome great resistance in the case of the pre-existing weak
zone (Chen et al., 2020; Kong et al., 1997). Therefore, the Trans-
North China orogen and Jiangnan orogen would be more stable
in that case. The results of this study will not be changed.

Finally, to test the model in the future, systematic
comparisons between the model results and observations
should be strengthened. Besides topography and strain rate,
other surface geology and geophysical data from multiple
disciplines, such as the crustal–lithospheric structure and
thermal structure, should be used as much as possible.
However, there are still two problems in the comparison of
lithosphere structure. On the one hand, the lithosphere
structure obtained by varied methods is quite different, such
as the lithosphere thickness obtained by temperature and
seismology can vary greatly [An and Shi., 2006; Pasyanos
et al., 2014]. On the other hand, the lithosphere structure
obtained by simulation is highly dependent on the initial
structure, which will cause great uncertainty in comparison.

5 Conclusion

By constructing two-dimensional thermal-mechanical
numerical models, this study investigated the effects of the
rheological heterogeneities and thicknesses of the lithosphere on
the deformation of the Tibetan Plateau and neighbouring regions.
These results help us understand the far-field effects of the India-
Eurasian collision. The main conclusions are as follows.

(1) The lateral rheological heterogeneities of the lithosphere
have an important influence on the deformation and
strain partitioning during the lateral expansion of the
Tibetan Plateau. When the expanding Tibetan Plateau is
blocked by a strong peripheral craton, if there is a weak
orogen outside the craton, the craton will transmit the strain
to the peripheral orogen and reactivate it, such as the Tian
Shan orogen. The collision of the subducted Indian mantle
lithosphere with the Tarim mantle lithosphere would make
the uplift of the Tian Shan orogen more intense.

(2) If there is an ancient orogenic belt in the peripheral craton, the
deformation is mainly concentrated in the weak-strength
Tibetan Plateau, and the lateral expansion of the plateau is
limited by the craton. For example, the Jiangnan Orogen within
the South China block is hard to be reactivated by the collision
between the Indian and Eurasia plates.

(3) The huge difference in the lithospheric thickness of the craton
around the Tibetan Plateau also affects the far-field effect of the
India-Eurasian collision. A thinning lithosphere of the craton
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would reduce the lithospheric strength of ancient orogenic belts
within the cratons, thereby favoring the distribution of high
strain rates. If upper mantle convection reduces the lithospheric
strength of the North China craton, future lateral growth of the
Tibetan Plateau would occur in the northeast margin and may
affect the Trans-North China orogen.
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