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Well log prediction while drilling estimates the rock properties ahead of drilling
bits. A reliable well log prediction is able to assist reservoir engineers in updating
the geological models and adjusting the drilling strategy if necessary. This is of
great significance in reducing the drilling risk and saving costs. Conventional
interactive integration of geophysical data and geological understanding is the
primary approach to realize well log prediction while drilling. In this paper, we
propose a new artificial intelligence approach to make the well log prediction
while drilling by integrating seismic impedance with three neural networks: LSTM,
Bidirectional LSTM (Bi-LSTM), and Double Chain LSTM (DC-LSTM). The DC-LSTM
is a new LSTM network proposed in this study while the other two are existing
ones. These three networks are thoroughly adapted, compared, and tested to fit
the artificial intelligent prediction process. The prediction approach can integrate
not only seismic information of the sedimentary formation around the drilling bit
but also the rock property changing trend through the upper and lower
formations. The Bi-LSTM and the DC-LSTM networks achieve higher prediction
accuracy than the LSTM network. Additionally, the DC-LSTM approach
significantly promotes prediction efficiency by reducing the number of training
parameters and saving computational time without compromising prediction
accuracy. The field data application of the three networks, LSTM, Bi-LSTM, and
DC-LSTM, demonstrates that prediction accuracy based on the Bi-LSTM and DC-
LSTM is higher than that of the LSTM, and DC-LSTM has the highest efficiency
overall.

KEYWORDS

machine learning, long short-term memory, well log prediction, drilling bit, seismic
impedance, neural networks

1 Introduction

During the drilling process, reliable prediction of the rock properties of the
geological formation below the drill bit is of great significance. If well logs can be
effectively obtained within a certain depth range below the drill bit, it can surely help to
improve the drilling process with lower risk and optimal strategy. Researchers have
proposed various methods for well log prediction while drilling (Wang, 2017; Tamim
et al., 2019). Wang (2017) established a 3D model by analyzing the drilling core, rock
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chip, and seismic data. The well log curve values below the
drilling bit along the borehole trajectory are predicted based
on the 3D model. Tamim et al. (2019) constructed a Bayesian
classifier using well logs as the classification target. With the
posterior probability calculated with prior distribution and
conditional probability, the spatial distribution of well logs
can be predicted. However, the actual geological formations
are non-homogeneous and complex. The logging curve values
show great fluctuations with depth even when the sampling
interval of the well log is small. The mapping relationships
between different data points are strongly non-linear, and the
traditional methods are not able to effectively predict the actual
formation changes.

Predicting rock property with geophysical data is often a
non-linear problem in many cases. Describing the intrinsic
relationship between properties and their geophysical
responses using explicit mathematical or physical equations
can be challenging. However, machine learning has shown great
potential in recent years, as it can describe these relationships
with network parameters by using a large number of training
datasets. Examples of relevant machine learning applications
include geological parameter estimation (Ahmed Ali Zerrouki
and Baddari, 2014; Iturrarán-Viveros and Parra, 2014),
lithology discrimination (Wang et al., 2014; Silva et al.,
2015), and stratigraphic boundary determination (Singh,
2011; Silversides et al., 2015). In recent years, there has been
a surge of research on well log prediction, resulting in
significant improvements in performance (Rolon et al., 2009;
Alizadeh et al., 2012; Mo et al., 2015; Long et al., 2016; Salehi
et al., 2017).

The well log prediction methods discussed above use fully
connected neural networks (FCNN) to construct a point-to-
point mapping. However, FCNN shows less effectiveness in
characterizing the trend of the data because it cannot capture
the relations between the point data of well log at different
depths. This means that the correlation between the rock
properties at a shallower depth and those at a deeper depth
is ignored, potentially contradicting the sedimentary principles
in the geological sense. To fix this problem with FCNN in well
log prediction, many researchers have improved FCNN by
coupling non-machine learning methods, such as wavelet
transform (Adamowski and Chan, 2011) and singular
spectrum analysis (Sahoo et al., 2017). However, these
improvements are often complex and cumbersome to
implement. An alternative way to utilize recurrent neural
networks (RNNs) is able to deal the problems (Schuster and
Paliwal, 1997). In the RNN structure, there is a self-looping
structure within each neural unit, which allows previous
information to be retained and used later. Since the
information can flow freely in the RNN, well log prediction
with this method integrates the intrinsic connection between
different logs and the overall trend with depth, which follows
geological principles.

Long Short-Term Memory Neural Networks (LSTM), an
advanced form of RNN, have become widely utilized in the
deep learning community for various tasks. LSTM
incorporates gate structures within each automatic cycle
structure to mimic biological neurons’ information conduction

patterns, thereby storing more long-term sequential information
without additional tuning. This attribute has facilitated LSTM’s
extensive use in natural language processing (Deng et al., 2019),
machine translation (Lokeshkumar et al., 2020), and speech
recognition (Graves and Jaitly, 2014). Moreover, RNNs and
LSTMs have also found applications in the field of hydrology
to deal with time series data-related problems (da Silva and
Saggioro, 2013), and some researchers have used LSTM to
generate logs (Jin, 2018).

In the case of well log prediction while drilling, Wang et al.
(2020) employed the LSTM model, whereas Shan et al. (2021)
utilized the CNN-LSTM hybrid model to achieve the goal.
Both methods employed neighboring well logs to predict the
logs at the undrilled segment, resulting in successful
outcomes. However, when neighboring wells are too distant
(as in the case of sparse neighboring wells) and well
correlation is weak, the prediction results can become
biased. In certain scenarios, prediction may not be possible
due to the unavailability of well logs from neighboring wells at
the prediction depth.

This study proposes a novel approach for well log prediction
while drilling, utilizing seismic impedance and three different
artificial intelligence networks: the LSTM network and its two
derivative networks, namely, the Bi-LSTM and the newly
developed Double Chain LSTM (DC-LSTM). The proposed
methodology effectively integrates seismic impedance
constraints for well log prediction. The results demonstrate
that the two derivative networks outperform the LSTM
network in terms of prediction accuracy. Additionally, the
DC-LSTM network exhibits superior computational efficiency
as compared to the Bi-LSTM network, owing to the reduction in

FIGURE 1
Workflow of data procession. (Red means known value and blue
means unknown value).
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the number of network parameters and consequently the
computing time, while maintaining prediction accuracy. A
practical case study is conducted to verify the effectiveness of
the proposed methodology.

2 Methodology

2.1 Well log prediction while drilling
principle: training and prediction

The acquisition of well logs is traditionally carried out after
drilling, while well log prediction while drilling refers to the real-
time estimation of well logs at a certain depth below the drill bit
during the drilling process. This paper presents a workflow for
such prediction, as depicted in Figure 1. The known observed logs
are shown in red, whereas the logs yet to be predicted are shown
in blue. The seismic impedance obtained through seismic
inversion is utilized as input data for the training and
prediction of well logs using three different networks, as
outlined in Table 1.

2.2 Three networks: LSTM, Bi-LSTM, and
DC-LSTM

2.2.1 The LSTM adaption
The LSTM neural network (Hochreiter and Schmidhuber,

1997) is a specialized type of recurrent neural network (RNN)
designed to capture long-term dependencies within sequential
data. This makes it particularly suitable for processing well logs,

which are a type of sequential data with a relatively small
sampling interval. A significant characteristic of well logs is
the representation of long-term depth trends within a large
depth interval, which can play an essential role in prediction
tasks. Unfortunately, these trends are often overlooked in
existing models. However, LSTM’s ability to retain
information with long-term dependencies from previous, more
distant steps allows it to capture and incorporate these trends
into its predictions. As a result, LSTM represents an effective tool
for well log prediction.

Figure 2 illustrates the architecture of the LSTM network. The
inputs to the network are denoted by x1 to xn, while h1 to hn
represent the hidden state vectors. The computation of the LSTM
network’s outputs is performed iteratively in a stepwise fashion,
from Step 1 to Step n, with the hidden state vectors h1 to hn and
outputs y1 to yn calculated sequentially by the LSTM unit. In the
context of well log prediction, only the final output, yn, is utilized for
prediction, and is subsequently fed into a Fully-Connected Neural
Network (FCNN).

2.2.2 Bidirectional LSTM network adaption
The Bi-LSTM neural network (Graves and Schmidhuber,

2005) represents a variant of the LSTM architecture that
incorporates two parallel LSTMs: one running forward along
the input sequence, and another running backward in reverse
order. By exploiting both the past and future context of the input
data, the Bi-LSTM model can capture more comprehensive and
accurate representations of sequential data. Specifically, the
forward and backward LSTMs compute hidden state vectors in
opposite directions, and the final output of the network is
produced by combining the two LSTM’ outputs with
appropriate weights in the output layer. A diagram of the Bi-
LSTM structure is presented in Figure 3.

In Figure 3, the input is denoted by x, and the hidden state
vectors of the forward and backward hidden layers are represented
by hf and hb, respectively. The forward layer computes its outputs in
a sequential manner from Step 1 to n, while the backward layer
calculates its outputs from Step n to 1. The LSTM unit calculates the
hidden state vectors of the forward and backward layers, i.e., hf and
hb, respectively. The network generates its outputs based on the
following equation,

yn � hf⊗ hb (1)

TABLE 1 The steps of the work.

Steps of well log prediction while drilling

Step 1: Obtaining seismic impedance by the inversion of seismic data.

Step 2: Constructing a dataset with B1 and A1 as the label library.

Step 3: Training the neural network with the label library and establishing the
mapping from seismic impedance to well log.

Step 4: Performing the prediction from B2 to A2 based on the trained network.

FIGURE 2
The architecture of the LSTM. (Each green box stands for one LSTM unit).
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where a ⊗ is a matrix operator, which is utilized to couple hf and hb

sequences. The operator ⊗ could be a summation, multiplication,
concatenating, or average function. In the experiment of this paper,
the operator ⊗ is concatenating the horizontal matrix. The final output of
a Bi-LSTMnetwork is expressed as vectors, [y1, y2, . . . , yl . . . , yn−1, yn].
The element in the middle position, yl, is used to predict the log values.

Figures 4, 5 present the prediction framework using a Bi-LSTM
network for mapping the relationship between well logs and seismic
impedance. The prediction framework is comprised of three layers,
namely, the input layer, the output layer, and the hidden layer. The
network is trained using the training set to obtain the mapping
relationship between the log segment of the well and seismic

FIGURE 3
The architecture of the BiLSTM.

FIGURE 4
Prediction framework of Bi-LSTM network.
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impedance. The seismic impedance within the undrilled well
segment is then used to predict well logs.

In Figure 5, the model is trained using well logs observed
from the drilled segment and the corresponding seismic
impedance to optimize the network. The trained model is
subsequently used to predict log values of the well segment
below the training data along the well trajectory. The input
window specifies the length of the input seismic impedance

sequence to the network, and the input window length should be
consistent between the training and prediction phases. In the
current example, q1 represents the value at the position xl, while
hfl−1 and hbl−1 denote the hidden state vectors before and after
processing q1, respectively. Table 2 outlines the prediction steps
in detail.

2.2.3 The double-chain LSTM adaption
The Bi-LSTM model utilized for well log prediction while

drilling entails numerous prediction parameters. Specifically, the
final output of a Bi-LSTM layer is expressed as a set of vectors,
denoted as [y1, y2, . . . , yl . . . , yn−1, yn]. However, only the vector
positioned in the middle, yl, is employed to predict the log values.
As a result, other vectors computed during both training and
prediction are not utilized, resulting in a strain on computational
efficiency. To address this issue, this paper proposes a DC-LSTM
network.

The DC-LSTM network is an optimized network that aims to
enhance the computational efficiency in well log prediction while
drilling in comparison to the Bi-LSTMmodel. As shown in Figure 6,
DC-LSTM divides the input sequence, represented by
[x1, x2, . . . , xl . . . , xn−1, xn], into two sequences: [x1, . . . , xl] and
[xl, . . . , xn], where xl is positioned at the middle of the sequence.
The two sequences [x1, . . . , xl] and [xl, . . . , xn] are then separately
inputted into two LSTM. Following the ⊗ operation, yl, which is
identical to the yl mentioned in the Bi-LSTM, is obtained. Because

FIGURE 5
Flow chart for prediction of Bi-LSTM network.

TABLE 2 The specific steps of the prediction phase.

Steps of Bi-LSTM model for well log prediction while drilling

Step 1: Determine the location of the input window

Step 2: As shown in Figure 5, when the data is input to the network (the data in the
solid box), q1 is located in the midpoint of the input window, i.e., ql is the
input of time step xl , then the LSTM cell at the position of time step= l can
obtain as well as the original seismic data q1 and the input of two cell states

hfl−1 and h
b
l−1, outputs h

f
l and hbl , After the ⊗ operation yl is obtained and from

this, the logging data w1 for the unknown segment is predicted, w1 and q1
being the corresponding data for the same depth.

Step 3: The Input Window is shifted one place to the right, so that when the data is
entered into the network (the data inside the dashed box), q2 is located right
in the middle of the InputWindow, and it can be predicted thatw2,w2, and q2
are the corresponding data of the same depth.

Step 4: Repeat the step3 to predict all unknown segment data
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only one vector, yl, is involved in the prediction process, DC-LSTM
significantly reduces the number of network parameters and
enhances calculation efficiency relative to Bi-LSTM.

Figures 7, 8 depict the prediction process with DC-LSTM, which
is a simplified and more efficient version of Bi-LSTM in well log
prediction while drilling. As illustrated in Figure 7, DC-LSTM
replaces Bi-LSTM in the hidden layer, resulting in a simpler
overall structure. Furthermore, Figure 8 shows that DC-LSTM

requires only n+1 LSTM units, whereas Bi-LSTM utilizes 2n
LSTM units. This reduces the number of parameters and
improves computational efficiency. Importantly, yl calculated in
DC-LSTM is identical to that in Bi-LSTM, thereby ensuring the
same level of prediction accuracy.

The steps of prediction with DC-LSTM are largely analogous to
those outlined in Table 2 for Bi-LSTM. The only difference is that
DC-LSTM divides the input sequence [x1, x2, . . . , xl . . . , xn−1, xn]

FIGURE 6
The architecture of the Double-chain network.

FIGURE 7
Prediction framework of DC-LSTM network.
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into two shorter sequences, namely, [x1, . . . , xl] and [xl, . . . , xn],
which are then fed into two separate LSTMs.

3 Experiment

In this part, we present the results of well log predictionwhile drilling
using seismic impedance with the LSTM, Bi-LSTM, and DC-LSTM.

3.1 Dataset

In this experiment, a pilot area of an oil field in East China is
selected for well log prediction. Two wells and a seismic
impedance cube in the area are used in this experiment (see
Figure 9). The two wells have four logs for testing, density (DEN),
natural gamma ray (GR), compensated neutron log (CNL), and
induction (CON).

FIGURE 8
Flow chart for prediction of DC-LSTM.

FIGURE 9
Seismic impedance profile of input data.
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Before the prediction with the three networks, two data
preprocessing tasks, data cleaning, and standardization are
required.

3.1.1 Data cleaning
Data cleaning (Zhang et al., 2015) aims to improve the data

quality of input data. Common problems with logs, such as

FIGURE 10
Logging curves for well A and well B used in training and validation: (A) well A, (B) well B
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invalid and missing values, are cleared. Check on the data value
range are necessary as well. Any data point, falling outside the
normal range, logically unreasonable, or contradictory, is also
cleared.

3.1.2 Data standardization
The purpose of data standardization is to centralize data

values so that the characteristics of each type of data are balanced.
Data standardization also reduces the disturbance of anomalous
values that still exist after data cleaning. This paper uses the
z-score normalization method (Hrynaszkiewicz, 2010) to
standardize input data standardization, expressed in the
equations below,

x* � xi − �x

s
(2)

�x � 1
N

∑N

i�1xi (3)

s �
�����������������
1

N − 1
∑N

i�1 xi − �x( )2
√

(4)

where x* is the standardized data, xi is the input data, �xi is the mean
of the input data, and s is the standard deviation of the input data.
The standardized data not only retains the correlations present in
the original data but also removes the effects of different magnitudes
and ranges of data values.

3.2 Evaluation metrics

The problem discussed in this paper is called the ‘regression
task’ in the field of the neural network, and the common loss
functions of the regression task are Mean Square Error (MSE),
Root Mean Square Error (RMSE), and Mean Absolute Error
(MAE). If there are some unusual values (large or small) in
the data, these values are more likely to indicate the important
geological contrast in rock properties, such as sudden change of
lithology, measured acoustic velocity, etc. Therefore, it is
necessary to attach more weight on the unusual values. This is
achieved by using MSE as the loss function.

MAE and RMSE are used as criteria to evaluate prediction
accuracy. MAE is the average of the absolute error between the
predicted value and the true value, indicating the true situation of
the error, while RMSE is generally used to indicate the deviation
between the predicted value and the true value. MAE, MSE, and
RMSE are defined as,

MAE � 1
N

∑N

i�1 yi − ŷi

∣∣∣∣ ∣∣∣∣ (5)

MSE � 1
N

∑N

i�1 yi − ŷi( )2 (6)

RMSE �
��������������
1
N

∑N

i�1 yi − ŷi( )2√
(7)

where yi is the predicted value and ŷi is the true value. The smaller
the MAE and RMSE values, the more accurate the model’s
prediction of the well logs will be.

In this study, the MAE and RMSE of four logs are calculated and
averaged to evaluate the performance of different models. However,
the value ranges of these four curves are very different, and the value
ranges of the same curve in different wells are also different. For the
fair evaluation of the results, the true and predicted values of each
curve are put together and normalized before calculating the MAE
and RMSE, according to the following equation,

yi � yi − �y( )
ymax − y min( ) (8)

where yi are the normalized values of a well log, �y is the mean of the
well log, ymin refers to the minimum value, and ymax denotes the
maximum value.

3.3 Experiment results and analyze

In this experiment, two wells, namely, Well A (with measured
depth ranging from 3220m to 3960 m) and Well B (ranging from
3700 to 4400 m), along with a seismic impedance segment
traversing both wells, were utilized as input data (as depicted
in Figure 9). The training data set was constructed by
incorporating the first 70% of the well log data (the section
above the red line shown in Figure 10), along with the
corresponding seismic impedance. The remaining 30% of the
logs (the section below the red line in Figure 10) and their
corresponding seismic impedance were used for blind test
validation. The sampling interval for both wells was set to
0.076 m. The input window length for the networks was fixed
at 51 neighboring data points, which corresponds to an actual
sampling length of 3.876 m. By using seismic impedance, each
input window predicts a single well log point at the depth of the

TABLE 3 Training parameter setting.

Parameter Setting

Optimization algorithm ADAM

Hidden layers 25

Batch size 32

Learning rate 0.002

Dropout 15%

Epochs 150

Input size 1

Output size 1

Layer number 2
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middle point of the input window. The window length
determines the memory range of the network model during
both the training and prediction processes.

In this study, the training data set is obtained by dividing the
impedance and well logs into segments with a length of 51. The
impedance is utilized as the input, while four well logs, including

FIGURE 11
Results of the three networks applied to well A: (A) LSTM, (B) Bi-LSTM, (C) DC-LSTM.

TABLE 4 MAE and RMSE of the three methods applied to well A.

CNL CON DEN GR Average

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTM 0.154 0.182 0.119 0.153 0.145 0.198 0.176 0.214 0.149 0.187

Bi-LSTM 0.088 0.111 0.067 0.090 0.146 0.183 0.154 0.182 0.114 0.142

DC-LSTM 0.078 0.099 0.076 0.102 0.115 0.156 0.129 0.164 0.099 0.130

TABLE 5 MAE and RMSE of the three methods applied to well B.

CNL CON DEN GR Average

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

LSTM 0.062 0.088 0.143 0.207 0.085 0.115 0.167 0.207 0.114 0.154

Bi-LSTM 0.056 0.075 0.119 0.169 0.069 0.110 0.113 0.141 0.089 0.124

DC-LSTM 0.057 0.076 0.110 0.139 0.062 0.089 0.121 0.147 0.086 0.112
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density (DEN), natural gamma ray (GR), compensated neutron log
(CNL), and induction (CON) curves, serve as the output. The optimal
training parameters, as demonstrated in Table 3, are determined
through several rounds of parameter tests.

The training sequences (impedance and well logs) are divided
into segments with a length of 51 to produce the training and
prediction data set. The impedance is used as the input. Four well
logs, including density (DEN), natural gamma ray (GR),
compensated neutron log (CNL), and induction (CON) curves,

are used as the output. The best results are obtained by using the
training parameters shown in Table 3 after a few times of parameter
tests.

Figures 11, 12 depict the outcomes of the three methods
employed in the analysis of the two wells, where the red and
blue curves indicate the predicted and actual values, respectively.
As illustrated in these figures, the performance of the LSTM-
based method is suboptimal, as it fails to capture the geological
changes adequately, leading to inaccurate overall predictions.

FIGURE 12
Results of the three networks applied to well B: (A) LSTM, (B) Bi-LSTM, (C) DC-LSTM.

TABLE 6 Time spent on three methods (Unit: seconds).

WELL A WELL B Over All

Train Predict Train Predict Train Predict Total

LSTM 17.6 ± 1.1 3.4 ± 0.3 18.9 ± 1.2 3.2 ± 0.3 36.5 6.5 43.0

Bi-LSTM 43.5 ± 3.4 8.8 ± 1.1 41.3 ± 3.2 8.1 ± 1.1 84.8 16.9 101.7

DC-LSTM 25.4 ± 2.1 5.1 ± 0.7 24.1 ± 2.1 4.7 ± 0.8 49.5 9.8 59.3
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Conversely, the Bi-LSTM and DC-LSTMmethods yield favorable
results in both detecting the geological variations in detail and
predicting the overall trend.

Table 4, 5 present the Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) values of three methods applied to two
wells. Figure 13 is a bar chart illustrating the performance of these
methods. The results indicate that the MAE and RMSE values of the
Bi-LSTM and DC-LSTM models are significantly lower than those
of the LSTM model in terms of average value. This finding implies
that the predicted values of Bi-LSTM and DC-LSTM are closer to the
true values than those of the LSTM model. The MAE and RMSE
values of DC-LSTM are similar to those of Bi-LSTM. However,

Table 6 shows that using DC-LSTM significantly reduces the time
required for model training and prediction.

In well log prediction while drilling, accuracy is a crucial
reference factor. In this study, the models are evaluated based on
the time spent, using the same personal computer with NVIDIA
GPU (GTX 1650 with 4 GB video storage) and the same set of
parameters for training and prediction. Table 6 and Figure 14 show
the time spent on the models. Results reveal that the running time of
the LSTM model is the shortest among the three methods, but its
accuracy is the lowest. Bi-LSTM and DC-LSTM models exhibit
comparable higher accuracy, with DC-LSTM being more efficient in
terms of computational time.

FIGURE 13
The average MAE and RMSE of three methods on three wells: (A) MAE, (B) RMSE.
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4 Conclusion

This paper presents a novel approach for predicting well logs
using artificial intelligence while drilling, utilizing seismic
impedance and three related LSTM networks. The proposed
approach incorporates the constraints of sedimentary
formation seismic impedance at the drill bit and the changing
trend of impedance through the upper and lower formations.
This optimization of the prediction process results in improved
computational efficiency. Through experimentation, the Bi-
LSTM and DC-LSTM derivative networks are demonstrated to
have higher prediction accuracy than the base LSTM. Notably,
the DC-LSTM network, developed in this paper, is more efficient
in reducing the number of training parameters and
computational time without compromising prediction
accuracy, as compared to the Bi-LSTM. Field data tests of the
three networks were conducted using two wells, and the results
demonstrate their effectiveness and efficiency.

The data-driven approach utilizing the three networks is effective
for predicting well logs in laterally homogeneous target formations,
particularly in the case of clastic sedimentation. However, if the
formation exhibits significant lateral heterogeneity, such as fractures
and faults near the drilling bits, the prediction accuracy may be
compromised. Therefore, the challenge of making reliable
predictions under such conditions with limited quality data and
rapidly changing trends is an important research topic for the future.
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