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In predicting earthquakes, it is a major challenge to capture the time factor and
spatial isoline anomalies, and understand their physical processes, of the seismic
strain field before a strong earthquake. In this study, the seismic strain field was
used as representative of seismic activity. The natural orthogonal function
expansion method was used to calculate the seismic strain field before the
Menyuan Ms 6.4 earthquakes in 1986 and 2016, and the Ms 6.9 earthquake in
2022. Time factor and spatial isoline anomaly of the strain field before each
earthquake was extracted. We also compared the evolution of the strain field with
numerical simulation results under the tectonic stress system at the source. The
results showed that the time factor before the earthquakes had high or low value
anomalies, exceeding the mean square error of the stable background. The
anomalies were concentrated in the first four typical fields of the strain field,
which hasmultiple components. The abnormal contribution rate of the first typical
field is the largest (accounting for 42%–49% of the total field). The long- and
medium-term anomalies appear 3-4, and 1-2 years before the earthquake,
respectively. There were no short or immediate-term anomalies within
3 months of the earthquake. In addition, during the evolution of the strain field,
the abnormal area of the spatial isoline changed with the change in time. Usually,
the intersection area of the two isoseismic lines of strain accumulation and strain
release becomes a potential location for strong earthquakes. Finally, we found that
the high strain field values of the 1986 and 2016Ms 6.4 earthquakes were
equivalent to the numerical simulation results, while the high strain field values
of the 2022 Menyuan Ms 6.9 earthquakes were slightly different, but within the
accepted error range. These results indicate that the two methods are consistent.
We have shown that the natural orgthagonal method can be used to obtain the
spatiotemporal anomaly information of strain field preceding strong earthquakes.
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1 Introduction

The Menyuan region is located in the middle of the eastern region of the Qilian
Mountains block on the northeastern boundary of the Tibetan Plateau in China. This
orogenic belt has strong tectonic deformation, relatively large topographic gradient
variations, and strong movements (Gaudemer et al., 1995; Jiang et al., 2017; Li et al.,
2021). The area has long been pushed by the Indian plate, leading to the northeastern
expansion of the Tibetan Plateau and the resisting force of the Alxa block (Pan et al., 2022;
Yuan et al., 2023). The region has a complex internal geological structure, and the active
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Lenglongling and Tuolaishan fault zones that developed mainly
during the Holocene belong to the strongly active Qilian-Haiyuan
fault zone branch (Zheng et al., 2013). Historically, the following
earthquake events were located in areas known for strong
earthquake activity (Yuan et al., 2023; Zuo et al., 2023): the
1927 Gansu Gulang Ms 8 (Zheng et al., 2004; Liu et al., 2007;
Guo et al., 2020), 1986MenyuanMs 6.4 (Yan et al., 1987; Dang et al.,
1988; He et al., 2019), 2016 Menyuan Ms 6.4 (Hu et al., 2016; Xu
et al., 2016; Guo et al., 2017; Liang et al., 2017; Liu et al., 2019; Zhao
et al., 2019; Qu et al., 2021), and 2022 Menyuan Ms 6.9 (Fan et al.,
2022; Sun et al., 2022; Xu et al., 2022). Recently, several detailed
studies have investigated the activity pattern, seismogenic
environment and earthquake triggering capacity of the
Lenglongling fault zone (Guo et al., 2017; Liu et al., 2018; Zhao
et al., 2019). ThreeMs >6.0 earthquakes in Menyuan are believed to
have been associated, predominantly, with the Lenglongling fault,
although the 2022 Menyuan Ms 6.9 earthquake resulted from the
combined activity of the Tuolaishan and Lenglongling faults (Fan
et al., 2022; Zhao et al., 2022; Yuan et al., 2023), with ruptures
occurring on both sides (Xu, 2022). The 2022 Menyuan Ms
6.9 earthquake significantly affected the Jinqianghe and
Laohushan faults situated at the eastern side of the Lenglongling
fault, increasing the seismic stress and, the probability of strong
earthquakes in future (Pan et al., 2022; Yuan et al., 2023).

In recent years, strong seismic activity in the Menyuan area has
elicited abundant research, with detailed local and international
studies being conducted on the cause, velocity structure, coseismic
deformation, and surface rupture of strong earthquakes in the area.
Zuo and Chen (2018) and Wang et al. (2022) investigated the three-
dimensional body wave velocity structure and seismic relocation of
the crust in the Menyuan region, contending that the heterogeneity
of the velocity structure showed strong congruity with the two
Menyuan Ms 6.4 earthquakes. Zhang et al. (2020) found that the
2016 MenyuanMs 6.4 earthquake resulted from the delayed rupture
deep in the focus of the 1986 earthquake. Gai et al. (2022), Han et al.
(2022), Liang et al. (2022), Li Z et al. (2022), and Pan et al. (2022)
studied the distribution of the surface rupture and seismogenic
structures of the 2022 Menyuan Ms 6.9 earthquake. Yang et al.
(2022), Huang et al. (2022), Li Y et al. (2022), and Bao et al. (2022),
employing Interferometric Synthetic Aperture Radar (InSAR) data,
determined the coseismic deformation of the Menyuan Ms
6.9 earthquake. These authors conducted slip inversion of the
earthquake, demonstrating that the surface rupture process was a
consequence of the combined actions of the Lenglongling and
Tuolaishan faults.

The application of field theory to study anomalies before strong
earthquakes is relatively new. In China, the orthogonal function
expansion method is used to calculate the energy field (Yang and
Zhao, 2004), frequency field (Luo et al., 2023) and strain field (Yang
et al., 2017; Luo et al., 2018; Luo et al., 2019) before strong
earthquakes. This method analyze the relationship to between
spatiotemporal anomalies and strong earthquakes. In Japan, India,
Europe and the United States, the empirical orthogonal function
method is used to calculate deformation fields before and after strong
earthquakes (Chang and Chao, 2011; Chao and Liau, 2019; Neha and
Pasari, 2022). This method analyzes the co-seismic deformation and
gives the motion direction of 3-dimensional deformation.

In this study, we used the natural orthogonal function expansion
method to analyze the strain field before 3 Ms >6.0 earthquakes in
the Menyuan region. We aimed to understand the spatial and
temporal anomalies that occur before strong earthquakes, analyze
the evolution characteristics of spatial anomalies of the strain field
over time, and give the physical interpretation of spatial anomalies
and strong earthquake locations. In addition, this is the first time the
results of numerical simulation under the tectonic stress system and
strain field evolution have been compared.

2 Methodology

Seismic strain was considered a random variable and was broken
into temporal and spatial functions using the natural orthogonal
function expansion method, also known as the seismic strain field S
(Yang et al., 2017; Luo et al., 2018). Using the grid method, the strain
field was constructed for a particular study region according to the level
of seismic activity in the region. A time interval Δt was selected, the
observation time was divided into different m periods
ti � Δt × i(i � 1, 2, ...m); and the area was separated into n equal-
area elements ΔS � Δx ×Δy, with center coordinates of
(xj, yj)(j � 1, 2, ...n). The observed values in each area element in
each time-period Sij were calculated and used as the field function value
representing the spatiotemporal coordinates (xi, yi, tj)(i, j � 1, 2, ...n).

The seismic energy release was represented by E, Considering
that the square root of seismic energy is proportional to the seismic
strain, i.e.,

��
E

√ � cε (c is the focal-related parameter of the
earthquake in the study region, and ε is the seismic focal region
cumulative strain parameter), where both parameters reflect strain
field changes in the focal region. After assessing the region, the strain
field function was established through S � ∑

i

��
Ei

√
, expressed in a

matrix form:

S �
S11 S12 / S1n
S21 S22 / S2n
..
. ..

. ..
. ..

.

Sm1 Sm2 / Smn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

The Menyuan region has similar seismic blocks, and seismic
focal-related parameter c is approximately constant. The field
function S � ∑

i

��
Ei

√
is also known as the seismic strain field,

where Sij (i � 1, 2, ...m, j � 1, 2, ...n) is the j th grid and i th time-
period of the cumulative seismic strain value. The energy agrees with
the formula LogE � 4.8 + 1.5M (E is the energy unit in joules, M is
magnitude). We conducted the natural orthogonal function
expansion, which involved breaking down matrix S into the sum
of the product of orthogonal spatial function x and orthogonal
temporal function T:

Sij � ∑n
p�1

TipXpj
i � 1, 2,/, m
j � 1, 2,/, n

{ (2)

The orthogonality and normalization conditions were satisfied,
as follows:

∑n
j�1
xkjxlj � 0

1
{ k ≠ l

k � l
(3)
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∑m
i�1
TikTil � 0

λk
{ k ≠ l

k � l
(4)

The characteristic equation of the corresponding covariance
matrix R � S′S was solved, as follows:

R11 R12 / R1n

R21 R22 / R2n

/ / / /
Rn1 Rn2 / Rnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1

x2

/
xn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � λ

x1

x2

/
xn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

The eigenvectors �xk and eigenvalues λk ( k � 1, 2...n) were
obtained. The temporal factor (i.e., weight coefficient sequence) is
expressed as:

T
.

k � Sx
.

k k � 1, 2,/n (6)

The eigenvectors �xk (strain fields) represent the spatial
distribution of seismic strain in the different fields constituting
the field, and the temporal factor �Tk represents temporal changes
in strain fields �xk, reflecting the dynamic characteristics of the strain
fields at different times. The eigenvectors corresponding to the first
few eigenvalues (in order of large to small) in matrix R satisfied the
accuracy of fitting of the total strain field, indicating that the
superposition of the first few eigenvectors (strain field)
approximated the total strain field. Accordingly, the changes of
the first few main strain fields we studied represented the
spatiotemporal characteristics of the strain field in the study
region. Assuming that the sum of all n eigenvalues was b0, using
the previous typical field l, the accuracy of fitting of the total field
rl was:

rl � ∑l
p�1

λp/b0 (7)

where λp represents the p th characteristic root.
The natural orthogonal function expansion method was

employed to extract the strain fields corresponding to the largest
eigenvalues, which is equivalent to encapsulating the main
information of the strain fields in the region. The focus was on
the anomalies of the highest strain fields and any strain fields
without anomalies or that had a small correlation with strong
earthquakes were excluded.

3 Data

3.1 Catalog and calculated parameters

The earthquake data used in this study was derived from the
official national earthquake catalog of the China Earthquake
Networks Center (CENC). A b-value test was performed on the
seismic data in the study region from January 1975 to December
2022, with the lower limit of the smallest complete magnitude of the
earthquake being set to ML 2.7. The probability of moderate and
strong earthquakes occurring in the study region is quite small, and
the release of strain energy has a significant effect on this region.
Therefore, earthquakes with intensities greater than moderate were
not considered to belong to the normal seismic activity in our study
region, and the upper magnitude limit was set to Ms 5.0. We

employed the K-K theory (Luo et al., 2019) to remove the
aftershocks of Ms >5.0 earthquakes. A grid of 0.5° × 0.5°(Yang
et al., 2017) was used for the study region, and the time-sliding
algorithm was adopted, with a time interval of 12 months, sliding
span of 1 month, and the data were discretized. Seismic strain release
matrix S was constructed in accordance with Eq. 1, and natural
orthogonal function expansion analysis was conducted. Covariance
matrix R was solved to obtain the eigenvalues of the field and the
main strain fields corresponding to these eigenvalues. The temporal
factors corresponding to the eigenvalues of the main fields were
obtained, along with the spatial isolines of different study regions.

3.2 Tectonic and geological settings

The study region is located at (100.5°–103.5° E, 35.5°–38.5° N) in
the Qilian Mountain block area on the northeastern boundary of the
Tibetan Plateau, where a series of approximately parallel faults has
developed, that is, inclined toward the NWW, as shown in Figure 1.
These parallel faults include the Xunhua Nanshan, Dabanshan,
Tuolaishan, Lenglongling, Jinqianghe, Qilian Mountain northern
boundary, and Changma–Ebo faults. Moreover, several other
NNW-trending faults are present, such as the Wuwei–Tianzhu,
Zhuanglanghe, and Riyueshan faults, along with numerous
secondary faults. Accordingly, this fault system is an important
and active system on the northeastern edge of the Tibetan Plateau
(Figure 1A). Over the past 40 years, three consecutive
Ms >6.0 earthquakes have occurred in the Menyuan region
(Figure 1B), with the Lenglongling fault being the seismogenic
origin of the 1986 and 2016Ms 6.4 thrust earthquakes (He et al.,
2019; Qu et al., 2021). The seismogenic origin of the 2022 strike-slip
Ms 6.9 earthquake inMenyuan was a combination of the Tuolaishan
and Lenglongling faults (Pan et al., 2022; Yuan et al., 2023). The
seismic activity ofMs >6.0 earthquakes in theMenyuan region could
indicate that the earthquakes have accumulated a relatively high
strain field capable of triggering strong earthquakes whenever the
main active faults slide and rupture (Zuo et al., 2023).

4 Results

4.1 Strain field time factor

We used the natural orthogonal function expansion method to
study the spatiotemporal characteristics of the seismic strain fields in
the Menyuan region in the 10 years prior to the occurrence of the
1986 and 2016Ms 6.4 earthquakes and the2022 Ms 6.9 earthquake.
The results are shown in Table 1.

The parameters included the calculation grid and time-period,
temporal factors, and time of anomaly of the first four strain fields as
well as anomaly types, mean square error, and accuracy of the
previous four strain fields. The accuracy of the first four strain fields
was above 89%, whereas that of the 2022Ms 6.9 earthquake was
above 99 Figure 2 shows the characteristics of strain field changes
over time, before the threeMs >6.0 earthquakes. In our study, the
analyzed the temporal factor of the strain field that exceeded the
mean square error as the criterion for anomalies. The anomalies
(Luo et al., 2023) were classified based on timing before the
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earthquake as: long-term (10 years), medium-term (1-2 years),
short-term (3 months), and imminent (tens of days).

One or several anomalies of the four strain field factors appeared
every time before a strong earthquake. Whether the magnitude of
the anomaly exceeded the absolute value of the mean square error

was used as the criterion for determining whether there was an
anomaly. More than two medium-term anomalies appeared before
the 1986 and 2016 earthquakes, and one medium-term anomaly
appeared before the 2022 earthquake. Two long-term anomalies and
no short-term anomalies were detected (Table 1), and the first two

FIGURE 1
(A) Study area of the northeasternmargin of the Tibetan Plateau. Black lines showmajor faults. The red rectangle represents the location of the study
area. (B) The northeast direction of the red rectangle is the Hexi Corridor, and the south is the Menyuan basin. Regional seismic setting of the 1986, 2016,
and 2022 Menyuan earthquakes. The epicenters of the earthquakes are indicated by stars in accordance with data derived from the China Earthquake
Networks Center (CENC). The focal mechanism of the 1986 MenyuanMs 6.4 earthquake derives from the United States Geological Survey (USGS),
that of the 2016 Menyuan Ms 6.4 earthquake is from Yin et al. (2018), and that of the 2022 Menyuan Ms 6.9 earthquake is from Xu et al. (2022).

TABLE 1 Strain field temporal factors.

No. Earthquake Grids
(n,m)

Time span of
the data

Temporal
factor

Time of anomaly
(year-month)

Mean square
error

Type of
anomaly

Accuracy
r

1 1986-8-26 (36,137) 1975-01–1986-08 T1 1984-10–12 ±1.2055 medium term 0.8966

T2 1980-01–03 ±1.0913 Long and
medium term

1985-04–06

Ms 6.4 T3 1982-04–06 ±0.5318 Long term

T4 1982-02–04 ±0.4491 Long term

2 2016-1-21 (36,118) 2006-01–2016-01 T1 2008-01–03 ±3.0313 Long term 0.9720

2012-05–07

T2 2014-10–12 ±2.0792 medium term

Ms 6.4 T3 2007-07–09 ±1.9303 medium and long
term

2014-10–12

T4 2014-01–03 ±1.2192 medium term

3 2022-1-8 (36,118) 2012-01–2022-01 T1 2019-07–09 ±3.0583 Long term 0.9932

2012-03–05

T2 2014-01–03 ±1.2645 Long term

Ms 6.9 T3 2019-08–2020-02 ±0.1960 medium term

T4 2018-06–08 ±0.1610 Long term

n, number of grids; m, time interval. Tk is the kth (1 to 4) strain-field time factor.
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temporal anomalies were related to the 2016 earthquake. Generally,
the overall changes in the four strain field temporal factor curves
were stable before the three Ms >6.0 earthquakes. Relatively few
anomalies exceeded the threshold (the mean square error, indicated
by the red line in Figure 2).

4.2 Strain field spatial evolution

In our study of the seismic strain field spatial isoline evolution
patterns in the study region before and after strong earthquakes, the
environs of the isoline values (or absolute values) greater than 0.05 ×
105 were usually defined as danger zones (Luo et al., 2018). The
positive values of the isolines represented seismic strain field release
and the negative values represented seismic strain field accumulation.
The danger zone in the intersection between strain field release and

accumulation usually corresponded to the location of the main shock.
Combined with the geological structure in the region, the strain field
accumulation and release regions of the active faults could be
considered the seismogenic location of future strong earthquakes
(Yang et al., 2017; Luo et al., 2019). Figure 3 shows the spatial
distribution of the strain fields in the region before and after the
August 1986 earthquake. From January to March 1986, two types of
large area seismic danger zones—Strain field accumulation and
release—Occurred in the middle of the eastern region of the Qilian
Mountain. From April to June 1986, the number of anomalies in the
seismic danger zone increased, and these were divided into multiple
anomalies. From July to September 1986, the area of the two
anomalous zones increased, and the earthquake occurred around
the two danger zones of the Lenglongling fault. From October to
December 1986, the danger zones of the strain field isolines gradually
increased in size, before finally slowly disintegrating.

FIGURE 2
Temporal factors of the first four strain fields of threeMs ≥6.0 earthquakes. (A) August 26, 1986 Menyuan CountyMs 6.4 earthquake; (B) January 21,
2016 Menyuan CountyMs 6.4 earthquake; (C) January 8, 2022Menyuan CountyMs 6.9 earthquake. The blue dotted line represents the anomaly, the red
line is the mean square error, and the black arrow represents the magnitude of the Ms ≥6.0 earthquake.
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FIGURE 3
Spatial distribution of the strain field before and after the 1986 earthquake. Strain field from (A) January toMarch 1986; (B) April to June 1986; (C) July
to September 1986; (D)October to December 1986. The gray and black lines are the fault and strain field contour, respectively. A negative value indicates
accumulated strain, and a positive value indicates released strain. Isoline value 0.1 represents 0.1 × 105. The yellow stars represents the epicenter of the
Menyuan Ms 6.4 earthquake on 26 August 1986.

FIGURE 4
Spatial distribution of the strain field before and after the 2016 earthquake. Strain field from (A) July to September 2015; (B) October to December
2015; (C) January to March 2016; (D) April to June 2016. The gray and black lines are the fault and strain field contour, respectively. A negative value
indicates accumulated strain, and a positive value indicates released strain. Isoline value 0.1 represents 0.1 × 105. The yellow stars represents the epicenter
of the Menyuan Ms 6.4 earthquake on 21 January 2016.
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Figure 4 shows the spatial distribution of the strain fields in the
region before and after the earthquake in January 2016. A strain-
field accumulation danger zone appeared in the middle of the
eastern area of the Qilian Mountain from July to September
2015. The area of the strain-field danger zone remained
unchanged from October to December 2015, although a strain
field release danger zone appeared in the northeast of the study
region. From January to March 2016, the two large areas of strain
field accumulation and release seismic danger zone anomalies
appeared to converge and split into multiple anomalies. Here, at
the same time, the earthquake occurred in the center of the
anomalous zone. However, no main shock occurred at the
intersection of the danger zone. From April to June 2016, the
strain-field isoline danger zone gradually enlarged and,
ultimately, slowly disintegrated.

Figure 5 shows the spatial distribution of the strain fields in the
region before and after earthquake in January 2022, where a strain
field accumulation danger zone surfaced in the middle eastern
Qilian Mountain from July to September 2021. From October to
December 2015, the strain-field danger zone area decreased, and a
strain-field release danger zone simultaneously appeared in the
north- and southwest of the danger zone, forming an anomalous
intersection of these strain field accumulation and release danger
zone areas. From January to March 2016, strain field accumulation
and release anomalous danger zones formed along the intersection
of the Tuolai Mountain fault and the Lenglongling fault zone and, at
the same time, the earthquake occurred at the intersection of the
danger zone. From April to June 2022, the strain-field isoline danger
zones gradually increased before finally slowly disintegrating.

A comparison of Figures 3–5 indicated differences in the strain
field isoline anomaly evolution patterns before and after the
earthquakes. There were also similarities in that the anomalies in
strain accumulation and release first appeared in the study region,
followed by several anomalous areas appearing. Additionally, the
danger zone increased in size before slowly disappearing after the
main earthquake. These findings explained the inference (Zhang
et al., 2020) that the 2016MenyuanMs 6.4 earthquake was the result
of delayed rupture deep in the focus of the 1986 Menyuan Ms
6.4 earthquake. Moreover, our findings were consistent with those of
He et al. (2019) that the 2016 Menyuan Ms 6.4 earthquake was a
repeating earthquake of the 1986 Menyuan Ms 6.4 event.

4.3 Relationship between spatial anomalies
and strong earthquakes

The study region has long been subjected to the northeasterly
pushing of the Tibetan Plateau and resistance from the Alxa block,
which has led to the gradual deformation of the Haiyuan-Qilian
Mountain fault zone, as well as accumulation of considerable seismic
strain that has formed a locked seismogenic unit. The high
concentration of stress and strain in the environs of the locked
zone has led to earthquakes or fault branches in the Haiyuan-
Qilianshan fault zone. Such events have triggered changes in the
accumulation of stress and strain, which, in turn, has altered the
spatial distribution of the seismic strain field. Accordingly,
seismogenic information on the 1986 Menyuan Ms 6.4,
2016 Menyuan Ms 6.4, and 2022 Menyuan Ms 6.9 earthquakes

FIGURE 5
Spatial distribution of the strain field before and after 2022 earthquake. Strain field from (A) July to September 2021; (B)October to December 2021;
(C) January to March 2022; (D) April to June 2022. The gray and black lines are the fault and strain field contour, respectively. A negative value indicates
accumulated strain, and a positive value indicates released strain. Isoline value 0.1 represents 0.1 × 105. The yellow stars represents the epicenter of the
Menyuan Ms 6.9 earthquake on 8 January 2022.
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was included in this study of the seismic strain field in the Menyuan
region, where the dynamic processes of strong earthquakes are
reflected.

Figure 6A shows the spatial distribution of the seismic strain
field from 1 February 2016 to 7 January 2022. The seismic strain
anomalies were concentrated mainly in the Lenglongling and
Sunan–Qilian faults in a hexagonal distribution and a northeast
direction. The center of the anomalies was located on the
Lenglongling fault, with a value of approximately 4.3 × 105;
however, 2022 earthquake occurred on the boundary of the strain
field anomaly with a value of approximately 2.5 × 105. Figure 6B shows
that the seismic strain field anomalies from 1 January 2006 to
20 January 2016 were concentrated around the Lenglongling fault
and followed a hexagonal distribution in a northeast direction, with a
larger area of anomalies. The 2016 earthquake occurred near the high
anomalous value area (4.5 × 105). Figure 6B shows that the seismic
strain field anomalous area was larger from 1 January 1975 to
25 August 1986, was moving in an easterly direction, and was
concentrated mainly around the Gulang and Huangcheng-Shuangta
faults. The 1986 earthquake occurred at the boundary of the anomaly,
with a value of approximately 2.8 × 105. Figure 6C shows two high-
value areas that appeared in the seismic strain field anomalies from
1 January 1975 to 31 December 2022. The high-value northeastward-
trending hexagonal anomalous area was centered on the Lenglongling
fault and corresponded to all three earthquakes. Another high strain

field anomalous value in Tianzhu County, Gansu Province could
indicate a seismogenic unit of future strong earthquakes. A
comparison between Figures 6A–C showed that the seismic strain
field high anomalous values were concentrated predominantly around
the Lenglongling fault, with the environs of the high anomalous value
area corresponding mainly to the three MenyuanMs >6.0 earthquakes
east of the Lenglongling fault. The vicinity of the Tianzhu fault could be
a seismogenic unit of future strong earthquakes. These areas predicted
as sites for potential future strong earthquakes were consistent with the
strong earthquake danger zones proposed by Xu et al. (2022), Fan et al.
(2022), and Yuan et al. (2023).

5 Discussion

5.1 Comparison between seismic strain field
and tectonic stress

This study aimed to understand the strain field factors that
contributed to three earthquakes in the Menyuan region in 1986,
2016 and 2022. These factors determined the outcome of the relative
shear stress produced by the two focal mechanism solution nodal
planes of the 2022 Menyuan Ms 6.9, 2016 Menyuan Ms 6.4, and
1986 Menyuan Ms 6.4 earthquakes (Figure 7). The outcomes of the
focal mechanism solutions of the three earthquakes were consistent

FIGURE 6
Spatial distribution of the seismic strain in the study area from 1975 to 2022. Spatial distribution of the seismic strain field from (A) 1 February 2016 to
7 January 2022; (B) 1 January 2006 to 20 January 2016; (C) 1 January 1975 to 25 August 1986; (D) 1 January 1975 to 31 December 2022. The white line is
the fault, the yellow stars represents the epicenter of theMs ≥6.0 earthquake and the black point is the epicenter ofMs 3–5 foreshocks. The area enclosed
by sky blue, yellow, and red is the abnormal area of the seismic strain field.
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with the results shown in Figure 1. Figure 7 shows that the relative
shear stress generated by the stress tensor on the 2022 MenyuanMs
6.9 earthquake focal mechanism solution (Xu et al., 2022) nodal
plane I (strike 290°, dip angle 81°) was 0.64, and the relative shear
stress generated on nodal plane II (strike 197°, dip angle 74°) was
0.52. The relative shear stress generated by the stress tensor on the
2016MenyuanMs 6.4 earthquake focal mechanism (Yin et al., 2018)
nodal plane I (strike 143°, dip angle 40°) was 0.99; whereas the
relative stress generated on nodal plane II (strike 347°, dip angle 53°)
was 0.83. The relative shear stress generated by the stress tensor on
the 1986Ms 6.4 earthquake focal mechanism [United States

Geological Survey (USGS)] nodal plane I (strike 125°, dip angle
37°) was 0.98, and the relative shear stress generated on nodal plane
II (strike 346°, dip angle 60°) was 0.81. These values indicated that
the relative shear stress of the two Menyuan Ms 6.4 earthquakes in
2016 and 1986 reached a maximum (the maximum shear stress was
1), i.e., the accumulated stress was released completely, with a
relatively significant effect on the environs of the earthquake
focus. The relative shear stress of the 2022 Menyuan Ms
6.9 earthquake only exceeded the average value, and the complete
release of the accumulated stress in the tectonic area had negligible
effect on the environs of the earthquake focus. The strain field results

FIGURE 7
Simulated focal mechanisms and relative shear stress of the stress system in the Menyuan region. The abscissa is the strike of the focal mechanism,
and the ordinate is the dip angle. NS represents the positive fault-and-strike slip type, SS represents the strike-slip type, NF represents the positive fault-
and-strike slip type, TS represents the reverse fault-and-strike slip type, TF represents the reverse fault-and-strike type, and U represents uncertain focal
mechanism solutions. Theoretical simulation results are compared with the source mechanism solutions of three actual source Menyuan
earthquakes, with magnitudes 6 or above (using the source mechanism solution results in Figure 1). The red characters represent the Ms 6.9 Menyuan
earthquake in 2022, white characters represent the Ms 6.4 Menyuan earthquake in 2016, and the gray characters represent the Ms 6.4 Menyuan
earthquake in 1986. Grid squares represent shear stress from low (blue) to high (red).

TABLE 2 Relationship between temporal and spatial anomalies of the strain field and foreshock activity.

No. Earthquake Foreshock Foreshock
location (°N,°E)

Foreshock
magnitude

(Ms)

Temporal
factor

Relationship between
foreshock and isoline

anomaly

Distance between
foreshock and
earthquake (km)

1 1986-8-26 1982-6-8 37.67, 102.57 4.0 T3、T4 Isoline anomaly edge 43

Menyuan 1984-12-7 37.23, 102.68 4.7 T1 Isoline anomaly cente 88

Ms 6.4 1985-7-14 37.83, 101.82 4.1 T2 Isoline anomaly edge 110

2 2016-1-21 2012-5-11 37.75, 102.00 4.9 T1 Isoline anomaly edge 32

Menyuan 2014-3-12 37.62, 102.27 3.6 T4 Isoline anomaly edge 55

Ms 6.4 2014-9-20 37.73, 101.53 5.0 T2、T3 Isoline anomaly cente 12

3 2022-1-8 2018-8-26 37.70, 102.23 3.7 T4 Isoline anomaly edge 86

Menyuan 2019-7-27 37.82, 100.98 3.1 T1 Isoline anomaly edge 24

Ms 6.9 2019-8-9 37.70, 101.58 4.9 T1、T3 Isoline anomaly cente 30

2019-8-22 37.23, 101.82 3.3 T1、T3 Isoline anomaly cente 78
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were consistent with the numerical simulation results under the
tectonic stress system for the 1986 and 2016 earthquakes. The results
for the 2022 earthquake were slightly different, but still within the
acceptable error range.

5.2 Factors affecting strain field anomalies

We found that the main factors affecting the temporal and
spatial anomalies of the seismic strain field are the occurrence of
magnitude-4-5 foreshocks or clusters and the intensity and
frequency of foreshock activity (Table 2). The largest foreshocks
or clusters were usually located in the center of a spatial anomaly and
the first time factor anomaly. The activity level of foreshocks
increased significantly before the three earthquakes, which was
mainly characterized by high intensity and high frequency
foreshocks. In 1986 and 2016, there were several foreshocks of
magnitude 4-5 in the region 4 years prior to the earthquakes.
Additionally, a Ms 4.9 earthquake cluster occurred in the region
3 years prior to the 2022 earthquake. The strongest foreshock or
cluster is usually located in the center of spatial anomaly and
distributed in the first time factor anomaly of the strain field.

By comparing the difference between the seismic strain field
method and the seismic frequency field method (Luo et al., 2023),
the method chosen to study the temporal and spatial anomaly
characteristics around strong earthquakes mainly determines the
level of foreshock activity around the source. If the frequency of
foreshocks around the source increases significantly, and the
intensity of the earthquake is magnitude 3-4, the seismic
frequency field method is preferred. If the foreshock frequency
around the source increases, it is mainly caused by earthquakes
of magnitude 4-5, the seismic strain field method is more suitable. If
the foreshock activity around the source is of high frequency and
high intensity, either method may be used. Usually, a comparative
study of both methods is more reliable conclusions.

5.3 Application of orthogonal function
method in earthquake prediction

Many groups consider the spatiotemporal empirical orthogonal
function method to be a state-of-the-art toolkit in the study of
prediction, evaluation, and detection of small-scale and, short-term
and long-term variation in data sets (Dawson, 2016; Chao and Liau,
2019; Neha and Pasari, 2022). Therefore, in this study, the natural
orthogonal function method was used to extract the temporal and
spatial anomalies of the seismic strain field, analyze the relationship
between the anomalies and strong earthquakes, and predict the
likelihood of an earthquake occurring. Prediction of earthquakes has
always been a controversial scientific issue, but has been carried out
systematically in China. In recent years, significant progress has
been made in short-and medium-term prediction techniques based
on seismicity (Huang et al., 2017). These are generally divided into a
physical process-based model and smooth seismic activity model
(Tiampo and Sihchernakov, 2012) with 7 newmethods in the former
and 10 in the latter. The natural orthogonal function expansion
method used in this study is the 11th method of the smooth seismic
activity model, and the latest development in the field of statistical

seismology. It provides more spatiotemporal information for
earthquake prediction than other methods.

6 Conclusion

This study investigated the spatiotemporal anomalies of the
seismic strain field before and after threeMs >6.0 earthquakes in the
Menyuan region. We found that there were long- and medium-term
anomalies before the earthquakes in the first four strain fields.
Additionally, the more abnormal the anomalies were, the higher
their predictive ability became. We found that the intersection
region of strain accumulation and strain release became the
potential location for strong earthquakes and the danger region
gradually disappeared −3–6 months after the event. Seismic strain
field results were consistent with numerical simulation results for the
1986 and 2016 earthquakes but less reliable for the 2022 earthquake.

Due to the relatively short time that the seismic catalog has been
available, longer seismic observation data will be needed in the
future to evaluate and revise the feasibility and effectiveness of the
method used in this study.
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