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Ultra-deep carbonate fault-controlled reservoirs are characterized by large burial
depths, low dissolution degrees, strong heterogeneity, and limited effective well
data. Accurate 3D characterization based on seismic data is essential for efficient
development of this type of reservoir. However, traditional seismic prediction
methods are insufficient to accurately characterize different reservoir levels in the
exploration and development of fault-controlled ultra-deep reservoirs. We
propose a set of improved multi-level characterization methods for fault-
controlled reservoirs. The improved methods could recover seismic
information obscured by strong reflections and reduce the uncertainty of
seismic interpretation. This study combined seismic strong reflection
suppression and sedimentary strata seismic reflection interference elimination,
proposed improved inversion methods, and advanced attribute calculation
methods to improve the identification accuracy of reservoirs. In particular, we
proposed the karst cave carvingmethod based on improved inversionmethod and
karst cave enhancement algorithm, the dissolved pore zone identificationmethod
based on optimization energy envelope algorithm, and the fault-fracture zone
characterization method based on optimized atomic decomposition texture
contrast. These methods were thoroughly validated by theoretical 3D models
and field data. The proposed multi-level characterization methods can effectively
improve the identification accuracy of fault-controlled karst reservoirs, provide a
benchmark for predicting similar strong heterogeneous carbonate reservoirs, and
provide reliable support for further facies modeling.
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1 Introduction

Carbonate fault-controlled reservoirs are a type of reservoir formed by multi-stage
tectonic evolution and fluid dissolution, characterized by caverns, dissolution pores, and
fractures of different stages and levels (McDonnell et al., 2007; Jhosnella et al., 2012; Li et al.,
2016). Although carbonate karst reservoirs are rare worldwide, they hold a significant
amount of oil and gas resources (Soudet et al., 1994; Dembicki and Machel, 1996; Loucks
et al., 2004; Chen et al., 2005; Janson et al., 2010; Ning et al., 2022). For example, in the Tarim
Basin in western China, Ordovician paleokarst oil and gas resources account for 72.84% of
the total basin resources (Yang et al., 2007). In addition, numerous carbonate karst oilfields
such as Tahe, Lunnan, and Tazhong have been discovered in the Tarim Basin (Liang, 2008;
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Zhai and Yun, 2008). Many significant oil and gas discoveries in the
Tarim Basin in recent years have been fault-controlled karst
reservoirs, emphasizing the need to explore ultra-deep fault-
controlled karst reservoirs. Due to continuous exploration and
research in geology, geophysics, drilling, logging, testing and
other relevant theories and technologies, remarkable exploration
progress has been made in the deep and ultra-deep (7,200–8,000 m
buried depth) Ordovician carbonate system in the Tarim Basin and
similar other geological provinces (Khan et al., 2020a; Khan et al.,
2020b). Ordovician oil and gas resources in the Shunbei field are
estimated to have a total of 1.7 billion tons (Ma et al., 2022).

Well data in the target zone of fault-controlled karst reservoirs
are limited due to technical factors such as drilling fluid leakage or
drilling tool loss, and drilling depth is often limited to the surface
layer. Nevertheless, these reservoirs usually exhibit significant
vertical extent and diversity (Smosna et al., 2005; Qi and Yun,
2010; Deng et al., 2018; Li et al., 2019). Therefore, characterization
methods based on 3D seismic data are crucial for understanding
fault-controlled karst reservoirs. In the exploration and
development of fault-controlled karst reservoirs, emphasis is now
placed on accurately characterizing the spatial location and
quantitatively describing the different reservoir types, which is a
challenging task. Several studies have been conducted to investigate
the techniques for characterizing these reservoirs, including the use
of seismic properties such as amplitude variation rate, peak
frequency amplitude, P-impedance, waveform classification,
coherent volume, and curvature, among others (Hardage t al.,
1996; McMechan et al., 2002; Han et al., 2006; Zhao et al., 2010;
Wang et al., 2014; Burberry et al., 2016). However, in locations with
significant epigenic dissolution, such as the Tahe field, these
strategies are most effective. Recent studies have also investigated
the characterization of ultra-deep fault-controlled karst reservoirs in
the Shunbei field, describing large caves with facies-controlled
P-impedance or instantaneous energy, describing dissolution
pores with amplitude variance and discontinuous properties
(such as coherence and semblance), and identifying fault and
fracture zones with gradient structure tensor or fault-likelihood
(Li et al., 2020; Liu et al., 2020; Wen et al., 2020; Liu et al., 2021).

3D seismic characterization methods for ultra-deep karst
reservoirs in Shunbei are now showing potential. However,
current approaches still have drawbacks. The reservoirs are often
buried very deeply and the accuracy of seismic reflection imaging of
the target layer is limited. Additionally, due to weak epigenic
karstification, the seismic reflection of the reservoir is susceptible
to interference from strong seismic reflection and the sedimentary
stratigraphic reflection, resulting in a high degree of multi-solution.
In order to solve the above problems, our research has innovated the
methods of identifying the ultra-deep fault-controlled reservoirs,
which includes the following points: We have constructed a new
inversion objective function based on an optimized low-frequency
model, which improves the accuracy of P-impedance inversion and
provides a high-quality database for subsequent large cave
identification; In order to further improve the accuracy of cave
identification, we created a three-dimensional sedimentary strata
parameter calculation method as well as a nonlinear expression,
which led to another very significant improvement in the accuracy of
cave identification; Based on the energy envelope algorithm, phase
transformation processing and sedimentary strata suppression

algorithm, we constructed an expression to find the dissolved
pore and fracture zones, which effectively reduces the
interference effect of sedimentary strata on the identification of
the dissolved pore and fracture zone and makes the calculation
results describe the real location of the target; Through the study, we
proposed to use the matching pursuit algorithm in the wave
decomposition process, which can effectively suppress the
interference of strong seismic reflections, and combined with the
improved texture attributes and PCA optimization processing
method to effectively improve the identification of the fracture
zone. The efficiency of the proposed methods has been
demonstrated through forward modeling studies and field
applications in the Shunbei area.

2 Geology and stratigraphy

The Shunbei area is located in the hinterland of the Tarim Basin
to the northwest of the Shuntuogole Low Uplift (Qi, 2020)
(Figure 1A). The Shunbei field is a typical ultra-deep oil and gas
reservoir. The main target formation is located at a depth of more
than 7,800 m. The Tarim Basin is located on the northwest side of
China’s Qinghai-Tibet Plateau, south of the Junggar Basin. It is a
large kratonic basin in western China. The overall topography of the
Tarim Basin is high in the west and low in the east, with an area of
56 × 104 km2, making it the largest inland basin in China. The
Shunbei field is bounded to the east and west by the Manjiar and
Awati depressions. It is bounded to the south and north by the
Tazhong and the Tabei uplifts. Apart from the absence of Jurassic
deposits, the stratigraphy of the area is well developed. The
Cambrian-Middle Ordovician has stable shallow-water carbonate
platforms that provide the basis for the formation of fault-controlled
reservoirs. In the Shunbei field, the oil and gas exploration and
development targets are the Yijianfang and Yingshan formations of
the Ordovician strata. The Ordovician strata are divided from
bottom to top into the Penglaiba (dolomite), Yingshan (sandy
dolomite), Yijianfang (sandy dolomite), Qiaerbake (sandy
dolomite), LiangliTahe (sandy dolomite), Santamu (sandstone)
and Kepingtage (mudstone) formations (Figures 1B, D).

The Shunbei field has undergone multi-stage tectonic evolution
and karstification stages (Figure 1C). At the end of the Middle
Ordovician, the Tabei and Tazhong uplifts began to rise, the stable
carbonate platform in the Tarim Basin began to diverge, and the
ShuntuoguoLe Low Uplift began to form; At the end of the Late
Ordovician, the Tabei and Tazhong uplifts were again strongly
uplifted, and the ShuntogoLe Low uplift was again strongly
subsided and finally formed. Small to medium scale strike-slip
faults of different levels and orientations are developed in the
ShuntuoguoLe Low Uplift. Subsequently, the ShuntuoguoLe Low
Uplift has long been located in a stable tectonic part of the Tarim
Basin hinterland, maintaining long-term stable overall subsidence.
Pre-existing strike-slip faults have undergone multiple phases of
inherited strike-slip resurgence, but the overall tectonics has not
changed. As a result, the reservoir characteristics and reservoir types
in the Shunbei field are extremely diverse. In contrast to the Tabei
uplift, the structural position of the Shunbei field has long been
relatively low. Both the degree of regional unconformity and
epigenetic karst are both relatively underdeveloped. Large-scale
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strike-slip faults significantly control the distribution of oil and gas
reservoirs. The reservoir space consists primarily of a fracture-cave
system formed by structural faults (including large caves, structural
fractures and structural breccia fractures). There are also secondary
reservoirs such as dissolution cavities and pores developed along
faults and fractures. Most of the reservoirs are distributed along the
main strike-slip fault zone (Qi, 2020; Yun, 2021; Ma et al., 2022).

3 Reservoir space types of fault-
controlled karst reservoirs

During the formation of strike-slip faults, the stress field and
fluid dissolution are mainly responsible for the formation of the
reservoir space of the Shunbei target layers. The most severe rock
damage occurs in the core of the main fault under the influence of
stress. As the fault expands from its center to its sides, the breccia
zone eventually changes into the fracture fragmentation zone,
followed by the tight surrounding rock. Under the effects of

stress and fluid dissolution, the breccia and fracture spaces can
further expand to form additional reservoir spaces, including large
caves, fault cavities, and fracture cavities.

Based on typical outcrops (Figure 2A), well data, and seismic
characteristics (Figure 2B), reservoirs in the study area can be
divided into three categories: large cave zone (red area in
Figure 2C), dissolved pore and fracture zone (yellow area in
Figure 2C), and fault-fracture zone consisting of inter-gravel
fracture, intra-gravel fracture, and tectonic fractures (pink area in
Figure 2C) (Li et al., 2019). According to drilling and geological
studies, high-quality fault-controlled reservoirs are typically
developed along main faults. Different reservoir types are
combined and superimposed. Due to engineering reasons, it is
often difficult to obtain logging curves of fault-controlled
reservoirs. Consequently, drilling fluid leakage and the tool loss
are often used as important indicators of reservoir quality. The large
cave zone is characterized by a large decrease in P-wave velocity, a
significant change in the drilling time curve, and a predominance of
“beaded reflection” or “cluttered weak reflection” in the seismic

FIGURE 1
Geological and tectonic background. (A) Main tectonic units in the Tarim Basin (modified from Deng et al., 2019); (B) Stratigraphic succession,
seismic horizon and lithology of the Shunbei Oilfield; (C) Location and structural setting of the Shunbei area; (D) Typical seismic profile and seismic
horizon.
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reflection. The dissolved pore and fracture zone is characterized by a
modest drop in P-wave velocity, an anomalous drilling time, and a
predominance of “chaotic reflection” in the seismic reflection. As for
the fault-fracture zone, it is typically characterized by an anomalous
discrepancy in resistivity values between deep and shallow curves,
minor changes in drilling time curves, and a more chaotic seismic
reflection with a wider spatial spread. The goal of this research is to
develop effective and reliable new methods for fault-controlled karst
reservoir identification that will increase precision and reduce
uncertainty. The faults in Figure 2 are calculated using deep
learning and are not the focus of the methods addressed in this
research.

4 Data and improved methods

This research investigates the identification of ultra-deep fault-
controlled karst reservoirs by integrating outcrop, logging, drilling,
and seismic data. The 1 Zone and 5 Zone in Shunbei are selected for
case study. The Ordovician Yijianfang Formation and Yingshan
Formation are the target strata, with burial depths exceeding
7,800 m. By utilizing the obtained high-precision 3D seismic data
and guided by well data and geological knowledge, this study
establishes combined well-seismic methods for the identification
of multi-level fault-controlled karst reservoirs.

4.1 Well and seismic data

In the Shunbei 1 and 5 zones of the study area, the Yijianfang
Formation and the Yingshan Formation have 3 wells with
conventional logging curves, such as density, P-wave velocity,
gamma and resistivity curves, which can be used to analyze
reservoir properties. Moreover, 31 wells provide information on

the location of drilling fluid leakage or lost drilling tool, a critical
factor for effective reservoir identification (Duan et al., 2020).

The observed seismic data in the study area has a bin size of
25 m × 25 m, a sample interval of 1 ms, and a dominant seismic
frequency of 19 Hz. The seismic frequency is mainly distributed
between 7 and 40 Hz. In order to more accurately depict the
distribution of the reservoirs, this study applied a deep learning
algorithm to interpret the faults. The main geological horizons are
T7

4, T7
6, T7

8, T8
0, and T8

1 (Figures 1B, D). In order to effectively
identify the Shunbei fault-controlled karst reservoirs, a variety of
reservoir identification methods have been improved and applied
with satisfying results. In this section, the optimization methods are
elaborated.

4.2 Identification method of large cave
zones

Generally, large caves form at the end of the dissolution
process, as a result of the dissolution of tight limestone by surface
water or deep hydrothermal fluids along faults. The longer the
period of dissolution, the greater the potential for the formation
of large caves. During tectonic evolution, some of these cavern
reservoirs may be subsequently filled. Depending on the amount
of filling, caverns can be further categorized as either unfilled or
filled. Unfilled caves provide a high-quality reservoir space.
When drilling this type of reservoir, drilling fluid leakage and
drilling tools loss are possible. Under the influence of flowing
water and gravity, certain caverns frequently fill with sediments,
typically a complex mixture of sand and mud. The intergranular
pore is the primary reservoir of the cave.

There are generally two types of seismic identification methods
for large karst caves. The first is an attribute calculation-based
identification method (Cheng et al., 2020), which directly extracts

FIGURE 2
Outcrops and geological model cross-section of the fault-controlled karst reservoir in the Shunbei field. (A)Outcrops; (B) Seismic data; (C)Different
reservoir zones in the Shunbei field.
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attributes from observed seismic data. This method is simple and
convenient, and it fully respects the seismic reflection. However, it is
also prone to errors in the location, number, and volume of
identified caves due to the influence of the wavelet. The second
method is an inversion of geological parameters, which can
eliminate the wavelet effect to restore the cave position and
achieve a more accurate cave volume (Hamid, et al., 2018; Li
et al., 2020; Liu et al., 2020). However, for the Shunbei karst
reservoirs with low dissolution degree, the conventional inversion
of the karst cave reflection is easily confused with the strong
stratigraphic reflection, resulting in low imaging accuracy
(Figure 3). The inverted P-impedance in Figure 3B is obtained
from the seismic data in Figure 3A. In Figure 3B, the bright yellow
color indicates low impedance. Because karst caves are more porous
than the surrounding rocks, their velocity and density are lower,
resulting in a drop in P-impedance. The arrows in Figure 3B show
that the caves are submerged due to the low impedance interference
from the stratigraphic reflection, making it difficult to distinguish
their shapes.

To solve the problem that conventional inversion methods are
difficult to accurately characterize large caves, a new cave
identification method is proposed in this study. The
improvements cover three aspects. First, a low-pass filter term is
constructed using the Hanning window function and Fourier
transform. The new term can optimize the objective function of
the inversion, thus improving the accuracy of the inversion results.
Second, based on the joint constraint of well logging and seismic
attributes, an improved low-frequency model is constructed to
ensure accuracy and characterize the lateral heterogeneity
features. This provides an optimization constraint for the
improved inversion method. Third, a background interference
reflection suppression calculation method is established to realize
the extraction of background interference reflection based on the
dynamic window, on which the nonlinear transformation
equation is constructed to obtain high accuracy identification
results of large caves.

4.2.1 Improved impedance inversion method
Impedance inversion methods can be classified into two

categories: stochastic statistical inversion and deterministic
inversion. The accuracy of the former is highly dependent on the
quantity and quality of logging data. However, there are few
P-impedance curves in fault-controlled reservoir target layers.
Stochastic statistical inversion tends to generate high-frequency
deviations, making it difficult to achieve ideal results. In this
study, the deterministic inversion method was chosen for
P-impedance inversion, and the traditional inversion objective
function is as follows:

F Ip( ) � λ1Fseismic Ip( ) + λ2Fsparse Ip( )+λ3Ftrend Ip( ) (1)
Ftrend Ip( ) � λ3 min L − Ip

���� ����2 (2)

In Eq. 1, F(Ip) is the inversion objective function; Fseismic ,
Fsparse and Ftrend are seismic data constraint, sparse constraint
and low-frequency information constraint terms, respectively; λ1,
λ2 and λ3 are hyper parameters of three constraint terms,
respectively. Eq. 2 is the low-frequency constraint term, L is
the low-frequency P-impedance model, Ip is inverted
P-impedance, and λ3 is the hyper parameter of the low-
frequency P-impedance model. The mathematical meaning of
Eq. 2 is to minimize the two norms of the inverted parameters
and the low-frequency model. This method allows the inverted
parameters to be obtained directly with low-frequency
information, without the need for additional low-frequency
compensation steps. The hyper parameter λ3 controls the
weight of low-frequency model component compensation.
When the value of λ3 is high, low-frequency compensation is
increased. Conversely, when the value of λ3 is modest, it indicates
a reduction in low-frequency compensation. This method is very
sensitive to the value of λ3. Usually, the selection of λ3 depends
mainly on the interpreter’s experience and continuous iterative
debugging (Ma and Sun, 2018). This method is not only
susceptible to human factors, but also has inefficient. To

FIGURE 3
Conventional P-impedance inversion result profile. (A) Seismic reflection amplitude; (B) Inverted P-impedance obtained by conventional inversion.
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address this issue, this paper proposes an improved low
frequency constraint term Ftrend

′ for the construction of low-
frequency constraints. The expression is:

Ftrend
′ Ip( ) � λ3 min L −HTP−1ΛPHIp

���� ����2 (3)

In Eq. 3, Λ is a diagonal matrix composed of Hanning window
functions; P and P−1 are positive and negative Fourier transforms,
respectively; HT and H are matrices that extend the inversion window
in reverse, which can reduce truncation artifacts. The product of these
items acts as a filter for the inverted parameters, making the low-
frequency model to constrain the low-frequency components of the
inverted parameter. The modified constraint can reduce sensitivity of
the hyperparameters to the objective function. The remaining
parameters are identical to those in Eq. 2. The low-frequency model
is based on the logging data and seismic data. Specifically, it is achieved
by analyzing the mid-low frequency components of the logging data
and the relative impedance data obtained from the seismic data. It is
then possible to compute the mapping relationship between the well
and the seismic. Using this mapping relationship, the relative
impedance data can be converted to the low frequency model.

4.2.2 Enhancement and optimization of cave
characterization

The heterogeneity of the reservoirs can be highlighted by the
new P-impedance inversion method. However, there are still low-
impedance anomalous disturbances from sedimentary strata near
the reflections from karst caves. The use of a single threshold value in
cave detection can lead to an illusion. To further improve the
accuracy of karst cave detection, a background interference
reflection suppression calculation is proposed to eliminate the
interference.

First, mathematical methods are employed to obtain the
background trend of a 3D data volume. The karst cave reflection
can be obtained by separating the P-impedance background trend from
the inverted P-impedance. The calculation of background trend analysis
has been applied to coal seam contours mapping, surface chemical
exploration, and structural horizon trend calculation, etc. These
situations all focus on processing 2d horizons. Typically, 2D trend
horizons are fitted using polynomials. However, the 2d trend horizon
fitting polynomials cannot be directly used to obtain the 3D background
trend. To address this issue, this paper proposes a 3D background trend
calculation method. The specific methodologies of calculation are as
follows:

Under the constraints of the stratigraphic framework, point
M(x, y, z) is picked as the 3D window’s center. The X-axis, Y-axis
and Z-axis directions of the 3Dmatrix are set with 2n + 1, 2m + 1, and
2q + 1 samples respectively. N � (2n + 1) × (2m + 1) × (2q + 1) is
the entire number of samples contained in the 3D window. The N
samples contained within the 3D window are then rearranged
according to their values (M1 <M2 <M3 </<MN ). The window’s
median value is MN/2, and the background trend value of point
M(x, y, z) is Mtrend(x, y, z) � MN/2.

Using the abovemethod, the background trend data (IPtrend) of the
inverted P-impedance (IP) can be calculated. Karst cave reflection can
be calculated by subtracting IPtrend from IP. To further highlight the
karst cave reflection, an exponential operation is used to optimize the
cave identification. Specifically, the equation is as follows:

IPM � e− IP−IPtrend( )×α (4)
In Eq. 4, IPM is the predicted caves. α is the scaling factor, which

can be debugged according to the study field.

4.3 Identification method of dissolved pore
and fracture zones

Around caves and faults, it can be seen from the outcrop that
there are associated dissolved pore and fracture zones. These zones
are formed primarily by the dissolution and widening of small-to
medium-sized fractures on either side of strike-slip faults. This type
of reservoir consists of dissolved pore and fracture networks. Its
distribution is controlled by strike-slip faults, which serve as both
reservoir space and communication channel (Cheng et al., 2020).
Therefore, for a comprehensive analysis of fault-controlled
reservoirs, it is crucial to correctly identify this reservoir type.
This section focuses on the identification of this type of reservoir
and proposes a modified method to improve the accuracy of the
identification.

Due to the influence of pores and fractures, the seismic reflection
of dissolved pore and fracture zones typically displays anomalies.
These anomalous responses can be amplified by the energy envelope
(Fenvelope). The equation is as follows:

Fenvelope �
������������
f 2 D( ) + g2 D( )

√
(5)

In Eq. 5, f (·) is the real part obtained by Hilbert transformation
of seismic data, and g(·) is the imaginary part.

Due to the strong influence of the sedimentary strata and the
unconformity surface, it is impossible to precisely define the
boundary of the dissolved pore and fracture zones. This can lead
to interference responses, which may result in overestimation of
the volume of this type of reservoir. In order to diminish the
interference caused by the sedimentary strata and the
unconformity surface, the background trend suppression
method proposed in Section 4.2 is still utilized to optimize the
seismic data and eliminate the interference. The phase shift
transformation is then applied to restore the exact location of
the characteristic reservoir. Based on Eq. 5, the energy envelope
(Fenvelope) reflecting the dissolved pore and fracture zone is then
calculated. The exact expression is:

Fenvelope �
������������������������������������
f 2 shif t D − Dtrend( )[ ] + g2 shif t D − Dtrend( )[ ]

√
(6)

In Eq. 6, Dtrend is the seismic background trend derived from
seismic data D. shif t(·) stands for the phase transformation
calculation. f (·) and g(·) represent the real and imaginary
components of the seismic data after background suppression,
which is attained using Hilbert transform.

4.4 Identification method of fault and
fracture zones

During the formation of strike-slip faults, tectonic stress and
fluid dissolution result in the formation of fault-fracture zones
consisting of micro-fractures. These percolation-capable zones
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form primarily around the main faults. The fault-fracture zones
serve as vital flow channels for reservoirs. Their distribution
characteristics have a significant impact on the extent of karst
reservoirs. The seismic events of the fault-fracture zones are often
chaotic and irregular (Figure 2). By precisely characterizing the
fault-fracture zone, one can not only determine the extent of the
fault-controlled reservoir, but also effectively constrain its interior
description and reservoir modeling.

Interior fault characteristics of fault-controlled reservoirs are
typically described using conventional fault attributes (e.g.,
coherence, curvature, etc.). For instance, the eigenvalue
coherent is sensitive to discontinuous seismic events, and its
recognition results are often linearly distributed, which is
insufficient to accurately describe the distribution of fault-
fracture zones. The structural tensor algorithm is extensively
used to address the problem of fault-fracture zone identification
in the Shunbei field (Li et al., 2020; Liu et al., 2020). In the case of
high degree of dissolution, the detection performance of the
gradient structure tensor is better. However, the region of the
Shunbei field with low degree of dissolution is strongly influenced
by strong seismic reflection events. The structural tensor data can
only partially describe large karst caves with low dissolution, as
demonstrated by the practical application. To address the
problem of fault-fracture zone identification, this study
proposes a method that improves the detection accuracy of
fault-fracture zones and is applicable to fault-fracture bodies
with different degrees of dissolution.

Figure 2 clearly demonstrates that the seismic reflection of
the fault-fracture zone is disorganized. Texture is a measure that
reflects the uniformity or smoothness of the target. Texture
roughness can characterize disorganized features in terms of
texture feature analysis. The coarser the texture, the more
developed the fracture zone. In characterizing the spatial
relationship and amplitude pattern of seismic data, the gray
level co-occurrence matrix algorithm (Gao, 2011) can extract
texture features from seismic data. In this research, this
algorithm has been applied to the detection of fault-fracture
zones.

The gray level co-occurrence matrix texture feature algorithm
considers the seismic amplitude as the gray level of the image,
and various amplitude values correspond to pixels of different
gray levels (Gao, 2003). If the amplitude of seismic data with a
given window range is divided into N different grades, it can be
considered to have N different gray levels. The selection of N is
primarily determined by the numerical distribution of the
seismic amplitude and the required resolution. Consequently,
each amplitude unit in 3D seismic data D(a, b, c) (a, b, c are the
spatial positions of the data point in the 3D seismic amplitude
matrix) can be mapped to one of N different gray levels, each of
which has a unique digital representation. For example, the gray
level ranges from 0 to 15 when N is 16, allowing digitization of the
grayscale matrix and generation of the 3D grayscale texture
matrix GT(a, b, c).

Based on the grayscale texture matrixGT(a, b, c), the gray level co-
occurrence matrixGi(m, n)(i � x, y, z) can be obtained along the x, y,
and z axes. The size of the gray level co-occurrencematrix isN × N . For
example, in the x-axis direction, the data in the m th row and n th
column of Gx(m, n) represent the number of times in the x-axis

direction that a grayscale sample point m and a grayscale sample
point n in the GT are adjacent. In other words, the gray level co-
occurrence matrix records the adjacent frequency of each pair of
grayscale data. The gray co-occurrence matrix Gx(m, n) along the
x-axis can be calculated using this method. Since the data points are
adjacent, the calculated gray level co-occurrencematrix is axisymmetric,
and the matrices Gy(m, n) and Gz(m, n) along the y-axis and z-axis
can be obtained in the same way.

When the difference between m and n is larger, it implies that
the heterogeneity of the seismic is more heterogeneous and the fault-
fracture zone is more developed. In the principal diagonal of
Gi(m, n)(i � x, y, z), the ability to characterize heterogeneity is
weakest. The ability to characterize heterogeneity increases
progressively from the principal diagonal to both.

In order to further optimize the ability of gray-level co-
occurrence matrix to characterize heterogeneity, a grayscale
texture contrast algorithm is presented in this research. On the
basis of the calculated gray level co-occurrence matrix
Gi(m, n)(i � x, y, z), the contrast weight coefficient ω � m − n is
multiplied by each item at different positions in the matrix. In
particular, at the principal diagonal position m − n � 0, which
represents adjacent sample points with the same gray level, the
contrast weight coefficient is 0, indicating that there is no contrast. If
the difference between m and n is 1, the contrast weight is 1. If the
difference betweenm and n is 2, the contrast weight is 4. As the value
of m − n increases, the contrast weight increases exponentially. The
specific equations of the grayscale texture contrast gcontrast are:

gcontrast � ∑N−1
m,n�0

Gi m, n( )
R

m − n( )2 i � x, y, z( ) (7)
Rx � 2NyNz Nx − 1( ) (8)
Ry � 2NxNz Ny − 1( ) (9)
Rz � 2NxNy Nz − 1( ) (10)

In above equations, Nx, Ny, and Nz are the numbers of seismic
data sampling points along the x, y, and z axes, respectively. R denotes
the maximum probability of obtaining a specific data pair in the 3D
grayscale texture matrix. The grayscale texture contrast value at the
center point of the 3D seismic data can be obtained using Eq. 7.

There are still issues, although the fact that the grayscale texture
contrast method can effectively characterize the distribution of fault-
fracture zones. The interference is caused by the strong seismic
reflection shielding effect of the T7

4 unconformity surface. Typically,
the observed seismic reflection events consist of a group of
compound harmonics. The effective reflection in the lower part
of the reservoir is obscured by the strong seismic reflection of the
unconformity interface. Consequently, it is challenging to identify
the fault-fracture zone. In order to extract effective data from seismic
data and suppress the shielding effect, we explored a set of methods
for optimizing the observed seismic. Wavelet decomposition is a
seismic attribute analysis technique based on waveform
characteristics. It can transform seismic data into the frequency
domain and decompose the original seismic data into a series of
wavelets with varying shapes and dominant frequencies (Zhu et al.,
2016). These series of wavelets can be considered as atoms of seismic
data. Their equations are as follows:

Seismic t( ) � ∑AiWi f , α,φ( ) + noise (11)
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In Eq. 11, Ai denotes the amplitude of the i th atom Wi; f , α, φ
are the frequency, central position and phase of each atom,
respectively; noise represents the interference noise.

Atoms can be extracted using Morlet wavelet, Gaussian
function, Hamming window function, Hanning window
function, etc. This paper employs the matching pursuit
method (Sinha, et al., 2005; Yang et al., 2021). The matching
pursuit method not only improves the resolution in the frequency
domain, but also in the time domain. It is able to perform the
atomic decomposition of seismic waves and extract the effective
information from them, thereby reducing the shielding effect of
strong reflection events. Texture contrast attribute for fault-
fracture zone identification can be calculated based on strong
seismic reflection suppression. However, due to a certain amount
of noise interference after the strong seismic reflection
suppression, the subsequent predictions still contain
anomalous responses. The reason is that these interference
noises are confused with fractures when calculating the fault-
fracture zone, which leads to errors. To solve this problem, the
interference noise was reduced using the Principal Component
Analysis (PCA) algorithm after strong seismic reflection
suppression. The fault-fracture zone was then calculated using
the data that after strong seismic reflection suppression, PCA
denoising and texture contract calculation.

5 Results

In order to verify the effectiveness and applicability of the new
method developed in this study, it was tested and applied based on
the forward numerical model as well as the field observation data of
the Shunbei area. This section is divided into four parts, the first to
third subsections include the comparison of the results obtained by
our proposed new method for the identification of large cave zones,
dissolved pore and fracture zones, and fault-fracture zones with
those calculated by conventional methods. The last subsection
shows the effect of applying the new method of comprehensive
use of multi-scale identification to the field data in Shunbei area. In
each of these sections, the application effect of each method is
discussed in detail.

5.1 Large cave zones

To evaluate the effectiveness of the P-impedance inversion
method proposed in Section 4.2.1, data from a research area in
the Shunbei 1 Zone were selected (Figure 4A). Figures 4B, C
compare P-impedance inversion results before and after
improvement. The well point in Figure 4 is the measured
P-impedance curve. In comparison, the conventional inversion

FIGURE 4
Comparison of P-impedance inversion results before and after improvement. (A) Seismic; (B) Inverted P-impedance by conventional inversion; (C)
Inverted P-impedance by the improved method; (D) Crossplot of the measured logging data and the conventional P-impedance inversion results; (E)
Crossplot of the measured logging data and the improved P-impedance inversion results.
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results show obvious low-frequency banding effects (black circles
in Figure 4B). However, for fault-controlled reservoirs with
strong heterogeneity and few well data, this method reduces
the ability to characterize reservoir heterogeneity and easily
obscures details of lateral changes. If the reservoirs are
identified based on these inversion results, there will be a
significant error in reserve estimation. In contrast, the new
method can more accurately reflect the characteristics of caves
(Figure 4C). The new inversion results are more consistent with
geological understanding. To quantify the new inversion method,
a cross plot analysis of the measured P-impedance (y-axis data in
Figures 4D, E) and the inverted P-impedance (x-axis data in
Figures 4D, E) was performed. The measured data in Figures 4D,
E are the logging data after filtering and resampling to the seismic
frequency range. The inverted P-impedance is extracted from the
pseudo wells. It can be seen that the distribution of the two is
basically in the range of the 45° slope in Figure 4E. The
correlation coefficient between measured and inverted data
based on the new method is 0.86971 (Figure 4E), while the
correlation coefficient based on the conventional method is

0.582894 (Figure 4D). The new inversion method provides
reliable data for subsequent characterization of karst caves.

To verify the effectiveness of the proposed cave identification
method, we constructed a 3D karst cave model based on the
observed data from the Shunbei field (Figure 5A). The model
includes feathers of karst caves and sedimentary strata. The
arrows in Figure 5A indicate the locations of the karst caves. To
create the synthetic seismic records, the reflection coefficient was
calculated using this geological model and convolved with a wavelet
with a dominant frequency of 25 Hz (Figure 5B). According to the
synthetic records, caves developing at the top of the target layer are
easily obscured by sedimentary strata (inside the black ellipse).
Figure 5C illustrates the inverted P-impedance derived from the
seismic in Figure 5B. The inverted results improve the resolution of
the caves compared to the seismic reflection, but are still affected by
the low impedance of the sedimentary strata. For instance, as shown
in Figure 5C, the shallow low impedance stripe response interferes
with the reflection of the caves within the red ellipse, making it
difficult to discern the contour of the caves. When carving the cave
with the threshold value, the response of the cave inside the yellow

FIGURE 5
3D model cross-section of karst caves. (A) Geological model; (B) Synthetic seismic data; (C) Inverted P-impedance; (D) P-impedance background
trend; (E) P-impedance with background interference suppression; (F) Predicated karst caves.
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ellipse is more susceptible to removal than that of the shallow low-
impedance strip. This problem may cause the following cave
identification to be incorrect. Figure 5D presents the IPtrend as
determined by the method described in Section 4.2.2. Figure 5E is
the difference between the inverted IP (Figure 5C) and IPtrend

(Figure 5D). The region of low-impedance in the figure indicates the
karst caves. Figure 5F shows the caves (IPM) predicted by Eq. 4.
Comparing Figures 5C, E, it is clear that the accuracy of cave
identification in Figure 5E has been significantly improved,
especially for the cave zones marked in the figure. Comparing
Figures 5A, F, it is clear that the method proposed in this paper
can accurately characterize the location of caves.

To further verify the applicability of the proposed method, an
application area in the Shunbei field was selected. The Shunbei field
has a lower degree of dissolution than the Tahe field, and its fault-
controlled reservoirs are more developed. In addition, the cave
reflection in the Shunbei field is weaker than that in the Tahe
field, making it more susceptible to being confused with the
reflection of sedimentary strata. Figure 6 shows a cross section of
the Shunbei 5 Zone through a well. In the figure, the black curve
represents the well trajectory. The green markers indicate the
location of drilling fluid leakage, indicating the presence of
reservoirs. Figure 6A shows the seismic reflection amplitude data.
Figure 3B shows the conventional inverted results. Figure 6B shows
the P-impedance obtained with the new inversion method.
Comparing Figure 6B to Figure 3B, the new method provides
more information and can more accurately represent horizontal
heterogeneity. The bright red color in Figure 6B indicates a low-
impedance value, revealing that the response of the caves is obscured
by the low-impedance of the sedimentary strata (as indicated by the
arrows in Figure 6B). And the exterior contours of the caves are
difficult to identify. Figure 6C shows the cave results predicted by the
new identification method. The results are in excellent agreement
with the reservoir position revealed by the drilling data. In addition,
the caves are concentrated around the main faults, and their size
gradually decreases from the shallow to the deep target layer, which
is consistent with geological theory.

The theoretical model test and the field case demonstrate that
the novel method effectively suppresses background interference

and more accurately describes the boundaries of caves. The
characteristics of the cave distribution are consistent with
geological knowledge, thus validating the feasibility and
effectiveness of the proposed method.

5.2 Dissolved pore and fracture zones

A 3D dissolved pore and fracture equivalent model was added
to the model in Figure 5A with reference to the measured data
(Figure 7A). The red dashed line indicates the extent of the
dissolved pore and fracture zone. Figure 7B shows the
synthetic seismic. A comparison of Figure 7B and Figure 5B
shows that when the dissolved pore and fracture zones are
added, the seismic events become more chaotic and the
amplitude energy varies to different degrees. Figure 7C shows
the energy envelope derived from the seismic data in Figure 7B.
Figure 7C shows that although the non-optimized energy
envelope can identify the spatial location of the dissolved pore
and fracture zones to some extent, there are still errors in the
identification results (white arrows in Figure 7). For instance, the
reservoir near 4,600 ms is affected by the upper lithologic interface
and its boundary cannot be accurately characterized. In addition,
the response of the reservoir near 4,650 ms is obscured by the
interference of the sedimentary strata. In addition, the reservoir
response near 4,700 ms is comparable to the energy level of the
sedimentary strata near 4,650 ms. If a single threshold is used,
these errors would lead to an inaccurate description of the
distribution of dissolved pore and fracture zones in subsequent
modeling. Figure 7D shows the results of the improved energy
envelope. The range of dissolved pore and fracture zones derived
by the new method is consistent with the theoretical model in
Figure 7A, effectively reducing the interference of the lithologic
interface and sedimentary strata. Thus, it is possible to
characterize the spatial distribution range of 3D dissolved pore
and fracture zones using a single threshold.

Figure 8A shows the seismic data of the Shunbei field, and the black
part of the figure is the strike-slip fault identified based on the deep
learning algorithm. Figure 8B shows the non-improved energy envelope

FIGURE 6
Comparison of the application effect of karst caves identification method in field data. (A) Seismic amplitude reflection; (B) Inverted P-impedance
obtained by the improved method; (C) Predicated caves by new method.
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derived from the seismic data shown in Figure 8A. Figure 8C shows the
improved energy envelope. As shown in Figures 8B, C, it is obvious that
the improved method can more accurately identify the distribution of
cavity belts. In addition, the upper part of the reservoir has a higher
degree of dissolution than the lower part. The longitudinal zonal
distribution indicates that faults control the distribution of dissolved
pore and fracture zones. Two leakage points are marked on the
trajectory of Well C in Figure 8 (green lines), which is consistent
with the predication results. The comparison shows that there is a good
match between the dissolved pore and fracture zones and the location
of the strike-slip fault in the study area, which is consistent with
geological knowledge and validates the applicability of the proposed
identification method.

5.3 Fault and fracture zones

Figure 9A shows the seismic amplitude reflection, while
Figure 9B shows the identification results of the fault-fracture
zone based on Eq. 7. Comparing the two figures, it can be seen
that the proposed method can accurately delineate the fracture-
damaged zone around the main faults. In the figure, the bright red
color indicates areas where fractures are developed, while the blue
color indicates areas where the fractures are not developed. Figure 9
demonstrates that the fracture-damaged zone has a typical funnel
shape and that the intensity of the fractures progressively decreases
from the main fault to the sides. However, there is till a problem, as
shown in Figure 9B, interference is caused by the strong seismic

FIGURE 7
Comparison of the dissolved pore and fracture zone identification results based on theoretical models. (A) Theoretical model; (B) Synthetic seismic;
(C) Non-modified Energy envelope; (D) Modified energy envelope.

FIGURE 8
Comparison of the application effect of the dissolved pore and fracture zone identification method in field data. (A) Seismic data and deep fault. (B)
Non-modified Energy envelope; (C) Modified energy envelope.
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reflection shielding effect of the unconformity surface (inside the
black dashed circle in Figure 9B).

Based on the matched pursuit algorithm, we implemented a
wave decomposition optimization process for seismic data, which is
used to eliminate the interference of the strong seismic reflection.
Figure 10 compares seismic data before and after processing to
suppress the strong seismic reflection. An enlarge view of the
unconformity interface is shown at the bottom of the figure. The
comparison shows that the strong seismic reflection at the
unconformity interface has been effectively suppressed and the
precision of the target reservoir details has been effectively
improved (at the yellow arrows in Figure 10).

The anomalous information resulting from the strong seismic
reflection can be effectively suppressed (Figure 11A). However, the

subsequent predictions still contain anomalous responses due to
some interference noise after the strong seismic reflection
suppression (indicated by yellow arrows in Figure 11B). The
reason is that these interference noises are confused with
fractures in the calculation of the fault-fracture zone, which leads
to errors. To address this issue, the interference noise was reduced
using the Principal Component Analysis (PCA) algorithm after
strong seismic reflection suppression (Figure 11C). The fault-
fracture zone (Figure 11D) was then calculated using the data
that after strong seismic reflection suppression, PCA denoising
and texture contract calculation.

Comparing Figures 11A, C, it is clear that PCA processing has
successfully suppressed the noise. Similarly, Figures 11B, D show
that the artifacts have been significantly reduced after PCA

FIGURE 9
Grayscale texture contrast results. (A) Seismic amplitude; (B) Texture contrast.

FIGURE 10
Comparison of suppression effect of strong seismic reflection. (A) Original seismic data; (B) Seismic reflection with suppression processing.
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optimization (as indicated by the yellow arrows in the figures). In
addition, a comparison of Figures 9B, 11D reveals that the method
proposed in this study not only effectively weakens the shielding
effect of strong seismic reflections, thereby improving the accuracy
of the target characterization, but also preserves the true response of
the fault-fracture zone.

To further verify the effectiveness of the fault-fracture zone
identification method, a new model was created by adding the fault-
fracture zone information (Figure 12A) to the model in Figure 7A, as
shown in Figure 12B. Figure 12C shows the synthetic seismic.
Comparing Figures 7B, 12C, it can be seen that the addition of
fracture information makes the seismic events appear more chaotic.
Figure 12D is a superimposed profile of the faults, predicted caves
and fault-fracture zone. The seismic data in Figure 12C are used to
predict fault-fracture zone. Figure 12E shows the synthetic seismic
with optimization of the strong reflection suppression and PCA
processing. By comparing Figures 12C, E, it can be seen that the
optimized seismic effectively suppresses the effect of the strong
reflection, thereby improving the accuracy of reservoir
characterization (as indicated by the arrows in Figures 12C, E).
Figure 12F is an overlay profile of the faults, identified caves and
fault-fracture zone. The predicted fault-fracture zone is derived from
the optimized seismic data of Figure 12E. The light purple color
indicates the developed part of the fault-fracture zone, while the blue

color indicates the undeveloped part. Comparative analysis reveals
that the optimized method eliminates the influence of the interface
(in the red dashed boxes in Figure 12). The detection results show a
strong correlation with faults and karst caves, demonstrating that
the new method accurately describes the extent of fault-fracture
zones.

To further support the applicability of the fault-fracture zone
identification method presented in this study, we select another field
data set for testing. Figure 13 illustrates the results in a cross section
that extends over 6 wells in a northeast to southwest orientation.
Figure 13A shows the original seismic data. Figure 13B shows the
predicted fault-fracture zone based on the modified method. The
results can accurately capture the spatial distribution range of fault-
fracture zones. The predicted fracture body is consistent with the
geological comprehension and reservoirs indicated by the
drilling data.

5.4 Comprehensive application and results
of multi-level characterization methods

The fine identification of multi-level fracture-controlled karst
reservoirs can be facilitated by the proposed integrated methods.
Using multi-level characterization methods, the spatial distribution

FIGURE 11
Texture contrast results. (A) Seismic data with strong reflection suppression; (B) Calculated texture contrast based the seismic data with strong
reflection suppression; (C) Seismic data with strong reflection suppression and PCA optimization; (D) Calculated texture contrast based on the final
optimization seismic from figure (C).
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FIGURE 12
Comparison of the effect of the fault-fracture zone recognition method. (A) Added fault and fracture. (B) Theoretical model. (C) The synthetic
seismic data. (D) The calculated fracture zone based on the synthetic seismic. (E) Optimized seismic data. (F) Calculated fracture zone based on the
optimized seismic.

FIGURE 13
Recognition effect of fault-fracture zone based on the ShunBei field data. (A) Original seismic; (B) Recognition of fault-fracture zone based
proposed method.
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FIGURE 14
Comparison between seismic data and the results of multi-level integrated identification of reservoirs. (A) Seismic data; (B) Results of multi-level
integrated identification of fault-controlled karst reservoirs; (C) Identified multi-level fault-controlled karst reservoirs overlaid the faults interpretation
results.

FIGURE 15
Comparison of the seismic data map and the maps of multi-level integrated identification of reservoirs. (A) Seismic data; (B) Predicted fault and
fracture zones; (C) Predicted dissolved pore and fracture zones; (D) Predicted large cave zones.
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of the fracture-controlled karst reservoirs in the Shunbei field can be
effectively analyzed in three dimensions. A series of optimization
processing, inversion and interpretation techniques are applied to
the seismic data (Figure 14A) to identify different levels of fault-
controlled karst reservoir zones, such as large cave zones, dissolved
pore and fracture zones, and fault-fracture zones (Figure 14B). As
shown in the profile of the characterization results (Figure 14B), the
reservoirs are mainly developed around the main fault zones
(Figure 14C), which are significantly controlled by strike-slip
faults. The shallow parts of the reservoirs are more developed in
terms of faults and fractures.

It is clear from the map diagram (Figure 15) that the karst caves
have a relatively limited extent and were formed mainly around the
main faults. The dissolution pore and fracture zones are mainly
present in the area surrounding karst caves and extent in the
direction of the faults. The fault-fracture zones are the most
developed, allowing the main faults and their associated fractures
to be clearly characterized, as well as the extent of the reservoirs.

6 Discussion

Ultra-deep fault-controlled carbonate reservoir, as a special type
of reservoir, have attracted in-depth research by many scholars. The
formation of fault-controlled karst reservoirs is controlled by various
factors such as sedimentation, tectonics and dissolution. For
reservoirs, such as the Shunbei oilfield, which have strong
heterogeneity characteristics and little effective well information.
Accurate identification of effective reservoir information in 3D
seismic data and comprehensive characterization of different
reservoir types are essential for efficient field development. The
resolution and signal-to-noise ratio of the seismic data for the target
reservoir are low. At the same time, the influence of the
unconformity surface and sedimentary strata reflections makes
high-precision reservoir identification challenging. To analyze the
heterogeneity of the target reservoir, we first resolved the different
reservoir types and their characteristics by combining outcrop,
logging and a priori geological understanding. The different
reservoir types in fault-controlled karst reservoirs are both
independent and interrelated. Their independence is reflected in
the fact that strike-slip faults and their associated fracture zones are
structural reservoirs, while dissolved pores and caves are dissolution
reformation reservoirs. The main controlling factors of different
reservoir types are different. Their interrelationship is reflected in
the fact that the formation of dissolution pores requires fractures
and fractures to provide fluid transport channels and reaction space.
The areas with high degree of dissolution are mostly the areas where
faults and fractures are more developed.

Large cave zones tend to have high porosity and low
P-impedance characteristics. The conventional method for
identifying large caves consists of two steps: first, inversion is
performed to obtain the P-impedance, and then the threshold
value is selected to predict the cave location based on the
inversion results. However, the influence of low-impedance
interference reflection limits the accuracy of the conventional
identification method. Therefore, to improve the accuracy of cave
identification, each step of the conventional method is improved in
this study, and a cave enhancement algorithm is proposed. The

impedance inversion method is improved, specifically, the
construction method of the low-frequency model and the
objective function of the inversion are improved, and the
inversion accuracy of the P-impedance and the ability to
characterize heterogeneity are improved. The improved inversion
method can be applied to the P-impedance calculation of any type of
reservoir, which can effectively improve the accuracy of inversion,
not only for fault-controlled carbonate reservoirs. Eq. 4 is the cave
enhancement algorithm, based on which the difference between
different values can be further increased, making the selection of the
threshold value more accurate and thus improving the accuracy of
cave identification. The method can effectively highlight the range of
targets identified. The equation can be adapted by scaling factors to
identify other high or low impedance targets, such as high
impedance volcanic rock or low impedance fluid in sand. The
equation can also be extended to calculate other sensitive elastic
parameters, i.e., the impedance in the equation can be replaced by
other elastic parameters. In the application, the scaling factor can be
based on the calibration results of the log interpretation.

The seismic reflection of the dissolved pore and fracture zone is
more chaotic and its response is easily disturbed by the sedimentary
strata reflection. Therefore, a sedimentary strata suppression
method is proposed in this study. Based on this method, the
phase transformation and energy envelope calculation can realize
the accurate identification of the dissolved pore and fracture zone. In
the sedimentary strata reflection interference suppression method,
the time window step is at least twice larger than the identification
target when the sedimentary strata reflection is sought. The
sedimentary strata interference suppression method can
effectively enhance the heterogeneity of the identification target,
and the method can be extended to the identification of channel
deposits.

The method of identifying the fracture zones is a new set of
calculations different from the conventional methods. The method
combines strong seismic reflection suppression and a texture
optimization algorithm. The strong seismic reflection suppression
method can well suppress the strong seismic reflection events and
present the effective reflection information masked by the strong
reflection interference. This method can be used not only in fault-
controlled reservoirs, but also in thin sand identification. The texture
optimization algorithm can be extended to the calculation of
fractures in other lithologies, and we have applied the method to
the prediction of fractures in tight-sandstone with promising results.
Fracture density can also be calculated based on the fracture data
obtained from this calculation to provide more references for
reservoir description.

This research proposes a multi-level optimal identification method,
whichmakes it more credible to investigate the complex characterization
of ultra-deep fault-controlled karst reservoirs and achieve a detailed
description of the reservoirs. However, there are still some issues that
require additional focus, especially in the following aspects:

How to further improve the resolution of seismic characterization.
Accurate identification of fault-controlled karst reservoirs is difficult due
to the complex geology, deep burial depth, low resolution of seismic
data, lack of well information, and insufficient geological knowledge.
This poses a significant challenge to the efficient development of oil and
gas reservoirs. A set of 3D identificationmethods has been developed to
address these challenges. These methods have been successfully
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implemented in the Shunbei Oilfield and have significantly improved
the accuracy of reservoir identification. However, due to the resolution
limitations of seismic data, accurate identification of karst reservoirs
remains difficult. Further research is required to improve the resolution,
as the scale of the currently identified reservoir zones is basically an
average of a group of reservoir zones of the same type.

It is necessary to further dissect the fillings of large caves in
order to understand them. However, most of the current physical
property inversion methods are qualitative, which makes it
challenging to achieve a quantitative identification. Therefore,
investigating a variety of quantitative physical parameter
inversion methods can provide a pathway for later analysis of
karst cave fillings and improve the precision of reservoir
description. Due to the lack of logging data, there are limited
means to validate the accuracy of the predicted dissolved pore-
fracture zone, and fracture zone. Future advances in drilling and
logging technology are expected to provide more accurate data for
evaluating reservoir predictions.

7 Conclusion

The ultra-deep fault-controlled reservoirs in the Shunbei field
are easily covered by strong seismic and sedimentary strata
reflections, making accurate reservoir characterization a
challenge. To achieve accurate reservoir prediction, seismic
data must be characterized at multiple levels. Different
reservoir characteristics should be constrained together,
effectively reducing the likelihood of multiple interpretation
solutions. The strong reflection interface of the fault-
controlled karst reservoir has a strong shielding effect on the
internal details of the reservoir. Therefore, effective strong
reflection suppression processing is required to reveal the
reservoir details obscured by strong interference. Sedimentary
strata can significantly interfere with the volume prediction of
fault-controlled reservoirs, potentially leading to significant
errors in the subsequent reserve calculations. To ensure the
accuracy of reservoir interpretation and analysis, it is essential
to highlight strong heterogeneous zones.

Seismic data is a comprehensive response consisting of
numerous categories of information. The method proposed in
this study can effectively extract target information, classify
attributes, analyze level-by-level, and characterize fault-controlled
reservoirs at multiple levels. This is an effective way to reduce the
likelihood of multiple solutions in predicating fault-controlled
reservoirs and improve the accuracy of reservoir identification,
providing a new approach for the exploration and development
of similar reservoirs.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

QM is responsible for the idea and writing of this article, and TD
is responsible for the data analysis part. All authors contributed to
the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Burberry, C. M., Jackson, C. A. L., and Chandler, S. R. (2016). Seismic reflection
imaging of karst in the Persian Gulf: Implications for the characterization
of carbonate reservoirs. AAPG Bull. 100 (10), 1561–1584. doi:10.1306/
04151615115

Chen, G., Pan, W., Sa, L., Han, J., and Guan, W. (2005). Application of prediction
techniques in carbonate karst reservoir in tarim basin. Appl. Geophys. 2 (2), 111–118.
doi:10.1007/s11770-005-0042-4

Cheng, H., Zhang, J., and Zhang, W. B. (2020). Discussion on identification,
prediction and development pattern of faulted-karst carbonate reservoirs:A case
study of TH10421 fracture-cavity unit in block 10 of Tahe oilfield, Tarim Basin. Oil
Gas Geol. 41 (5), 996–1003. doi:10.11743/ogg20200510

Dembicki, E. A., and Machel, H. G. (1996). Recognition and delineation of paleokarst
zones by the use of wireline logs in the bitumen-saturated Upper Devonian Grosmont
Formation of northeastern Alberta, Canada. AAPG Bull. 80 (5), 695–712. doi:10.1306/
64ed8886-1724-11d7-8645000102c1865d

Deng, S., Li, H. L., Zhang, Z. P., Wu, X., and Zhang, J. B. (2018). Characteristics of
differential activities in major strike-slip fault zones and their control on hydrocarbon
enrichment in Shunbei area and its surroundings, Tarim Basin. Oil Gas Geol. 39 (5),
878–888. doi:10.11743/ogg20180503

Deng, S., Li, H. L., Zhang, Z. P., Zhang, J. B., and Yang, X. (2019). Structural
characterization of intracratonic strike-slip faults in the central Tarim Basin. Am. Assoc.
Pet. Geol. Bull. 103 (1), 109–137. doi:10.1306/06071817354

Duan, T. D., Zhang, W. B., Lu, X. B., Li, M., Zhao, H. W., and Shang, X. (2020).
Architectural characterization of Ordovician fault-controlled paleokarst carbonate reservoirs,
Tahe oilfield, China. Interpretation 8 (4), 953–965. doi:10.1190/INT-2019-0012.1

Gao, D. L. (2011). Latest developments in seismic texture analysis for subsurface
structure, facies, and reservoir characterization: A review. Geophysics 76 (2), W1–W13.
doi:10.1190/1.3553479

Gao, D. L. (2003). Volume texture extraction for 3d seismic visualization and
interpretation. Geophysics 68 (4), 1294–1302. doi:10.1190/1.1598122

Hamid, H., Pidlisecky, A., and Lines, L. (2018). Prestack structurally constrained
impedance inversion. Geophysics 83 (2), 89–103. doi:10.1190/geo2016-0703.1

Han, G. H., Qi, L. X., Li, Z. J., and Fan, Z. J. (2006). Prediction of the Ordovician
fractured-vuggy carbonate reservoirs in Tahe oilfield. Oil Gas Geol. 27 (6), 860–870.
doi:10.11743/ogg20060617

Hardage, B. A., Carr, D. L., Lancaster, D. E., Simmons, J. L., Elphick, R. Y., Pendleton,
V. M., et al. (1996). 3-D seismic evidence of the effects of carbonate karst collapse on

Frontiers in Earth Science frontiersin.org17

Ma and Duan 10.3389/feart.2023.1149678

https://doi.org/10.1306/04151615115
https://doi.org/10.1306/04151615115
https://doi.org/10.1007/s11770-005-0042-4
https://doi.org/10.11743/ogg20200510
https://doi.org/10.1306/64ed8886-1724-11d7-8645000102c1865d
https://doi.org/10.1306/64ed8886-1724-11d7-8645000102c1865d
https://doi.org/10.11743/ogg20180503
https://doi.org/10.1306/06071817354
https://doi.org/10.1190/INT-2019-0012.1
https://doi.org/10.1190/1.3553479
https://doi.org/10.1190/1.1598122
https://doi.org/10.1190/geo2016-0703.1
https://doi.org/10.11743/ogg20060617
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149678


overlying clastic stratigraphy and reservoir compartmentalization. Geophysics 61 (5),
1336–1350. doi:10.1190/1.1444057

Janson, X., Zeng, H. L., Loucks, B., Wang, Q. Z., Wang, C. Y., Li, S. X., et al. (2010). An
ultra-deep paleokarst system in the Ordovician, North-Central Tarim Basin, China:
Outcrop analog and synthetic seismic models. Basin, China: SEG Technical Program
Expanded Abstracts, 1531–1534. doi:10.1190/1.3513132

Jhosnella, S., Matteo, D. L., Maria, M., Axum, C., Andrea, S., Kjetil, B., et al. (2012).
Characterization of a deeply buried paleokarst terrain in the Loppa High using core data
and multiattribute seismic facies classification. AAPG Bull. 96 (10), 1843–1866. doi:10.
1306/02271211137

Khan, M., Liu, Y. K., and Din, S. Z. U. D. (2020a). Presenting meso-cenozoic seismic
sequential stratigraphy of the offshore indus basin Pakistan. Phys. Earth Planet. Interiors
300, 106431. doi:10.1016/j.pepi.2020.106431

Khan, M., Liu, Y. K., Farid, A., and Ahmed, H. (2020b). Indications of uplift from
seismic stratigraphy and backstripping of the well data in Western Indus offshore
Pakistan. Geol. J. 55 (1), 553–570. doi:10.1002/gj.3425

Li, Y., Hou, J. G., and Li, Y. Q. (2016). Features and classified hierarchical modeling of
carbonate fracture-cavity reservoirs. Petroleum Explor. Dev. 43 (4), 655–662. doi:10.
1016/s1876-3804(16)30076-3

Li, Y. T., Qi, L. X., Zhang, S. N., Yun, L., Cao, Z. C., Han, J., et al. (2019).
Characteristics and development mode of the Middle and lower ordovician fault-
karst reservoir in Shunbei area,Tarim Basin. Acta Pet. Sin. 40 (12), 1470–1484. doi:10.
7623/syxb201912006

Li, Z. J., Yang, Z. C., Li, H. Y., Liu, J., Gong, W., Ma, X. J., et al. (2020). 3D seismic
exploration method for ultra-deep fault-related dissolution reservoirs in the Shunbei
desert area. Geophys. Prospect. Petroleum 59 (2), 283–294. doi:10.3969/j.issn.1000-1441.
2020.02.015

Liang, D. (2008). Review and expectation on the discovery of ordovician lunnan-
tahe oilfield, tarim basin. Acta Pet. Sin. 29 (1), 153–158. doi:10.7623/syxb200801034

Liu, B. Z., Qi, L. X., Li, Z. J., Liu, J., Huang, C., Yang, L., et al. (2020). Spatial
characterization and quantitative description technology for ultra-deep fault-karst
reservoirs in the Shunbei area. Acta Pet. Sin. 41 (4), 412–420. doi:10.7623/
syxb202004004

Liu, J., Li, W., Ging, W., and Huang, C. (2021). New additions to the Chinese
agraeciini redtenbacher, 1891 (orthoptera, tettigoniidae: Conocephalinae) with report
the complete mitochondrial genome of palaeoagraecia brunnea ingrisch, 1998. Xinjiang
Pet. Geol. 42 (2), 238–254. doi:10.11646/zootaxa.5072.3.2

Loucks, R. G., Mescher, P. K., and Mcmechan, G. A. (2004). Three-dimensional
architecture of a coalesced, collapsed-paleocave system in the Lower Ordovician
Ellenburger Group, central Texas. AAPG Bull. 88 (5), 545–564. doi:10.1306/
12220303072

Ma, Q. Q., and Sun, Z. D. (2018). Elastic modulus extraction based on generalized pre-
stack PP–PS joint linear inversion. Appl. Geophys. 15 (3), 466–480. doi:10.1007/s11770-
018-0701-x

Ma, Y. S., Cai, X. Y., Yun, L., Li, Z. J., Li, H. L., Deng, S., et al. (2022). Practice and
theoretical and technical progress in exploration and development of Shunbei ultra-
deep carbonate oil and gas field, Tarim Basin, NWChina. Petroleum Explor. Dev. 49 (1),
1–20. doi:10.1016/s1876-3804(22)60001-6

McDonnell, A., Loucks, R. G., and Dooley, T. (2007). Quantifying the origin and
geometry of circular sag structures in northern Fort Worth Basin, Texas: Paleocave

collapse, pull-apart fault systems, or hydrothermal alteration? AAPG Bull. 91 (9),
1295–1318. doi:10.1306/05170706086

McMechan, G. A., Loucks, R. G., Mescher, P., and Zeng, X. (2002). Characterization
of a coalesced, collapsed paleocave reservoir analog using GPR and well-core data.
Geophysics 67 (4), 1148–1158. doi:10.1190/1.1500376

Ning, F., Lin, H., Zhou, C., Yun, J., Li, P., and Song, H. (2022). Characteristics of
strike-slip fault-related reservoirs and the significance for hydrocarbon accumulation in
the central Tarim Basin: Insights from the modern karst model. Front. Earth Sci. 10,
987020. doi:10.3389/feart.2022.987020

Qi, L. X. (2020). Characteristics and inspiration of ultra-deep fault-karst reservoir in
the Shunbei area of the Tarim Basin. China Pet. Explor. 25 (1), 102–111. doi:10.3969/j.
issn.1672-7703.2020.01.010

Qi, L. X., and Yun, L. (2010). Development characteristics and main controlling
factors of the Ordovician carbonate karst in Tahe oilfield. Oil Gas Geol. 31 (1), 1–12.
doi:10.11743/ogg20100101

Sinha, S., Routh, P. S., Anno, P. D., and Castagna, J. P. (2005). Spectral decomposition
of seismic data with continuous-wavelet transform. Geophysics 70 (6), 19–25. doi:10.
1190/1.2127113

Smosna, R., Bruner, K. R., and Riley, R. A. (2005). Paleokarst and reservoir porosity in
the ordovician beekmantown dolomite of the central appalachian basin. Carbonates
Evaporites 20 (1), 50–63. doi:10.1007/bf03175448

Soudet, H. J., Sorriaux, P., and Rolando, J. P. (1994). Relationship between fractures
and karstification-the oil-bearing paleokarst of rospo mare (Italy). Bull. Des. Centres De.
Rech. Exploration-Production Elf Aquitaine 18 (1), 257–297.

Wang, Y. J., Zheng, D., Li, X. Y., Cui, Y. F., Sun, S. H., Wan, X. G., et al. (2014). The
fracture-cavern system prediction method and its application in carbonate fractured-
vuggy reservoirs. Geophys. Prospect. Petroleum 53 (6), 727–736. doi:10.3969/j.issn.1000-
1441.2014.06.014

Wen, S. S., Li, H. Y., and Hong, C. J. (2020). Technology of seis⁃ mic response
characteristics and description of fault⁃ karst reservoir in Shunbei oilfield. Fault⁃ Block
Oil Gas Field 27 (1), 45–49. doi:10.6056/dkyqt202001009

Yang, P., Liu, Y. L., Jia, H. Q., Lu, D., and Li, H. Y. (2007). Carbonate-reservoirs
prediction strategy and technologies in Tarim Basin of China. Basin, China: SEG
Technical Program Expanded Abstracts, 2738–2742. doi:10.1190/1.2793035

Yang, Z. P., Song, W. Q., Liu, J., Chen, J. A., Liu, Q., and Wu, D. (2021). A method of
combining multi-channel signals to suppress the strong reflection through matching pursuit.
Oil Geophys. Prospect. 56 (1), 77–85. doi:10.13810/j.cnki.issn.1000-7210.2021.01.009

Yun, L. (2021). Controlling effect of NE strike-slip fault system on reservoir
development and hydrocarbon accumulation in the eastern Shunbei area and its
geological significance, Tarim Basin. China Pet. Explor. 26 (3), 41–52. doi:10.3969/j.
issn.1672-7703.2021.03.004

Zhai, X. Y., and Yun, L. (2008). Geology of giant tahe oilfield and a review of
exploration thinking in the tarim basin. Oil Gas Geol. 29 (5), 565–573. doi:10.11743/
ogg20080504

Zhao, Y. H., Hu, J. Z., Lu, X. B., and Song, Y. (2010). Study on carbonate reservoir
prediction in the upper ordovician areal coverage of tahe oilfield. J. Oil Gas Technol. 32
(01), 62–67. doi:10.3969/j.issn.1000-9752.2010.01.013

Zhu, B. H., Xiang, X. M., and Zhang, W. H. (2016). Strong reflection horizons
separation based on matching pursuit algorithm and its application. Geophys. Prospect.
Petroleum 55 (2), 280–287. doi:10.3969/j.issn.1000-1441.2016.02.014

Frontiers in Earth Science frontiersin.org18

Ma and Duan 10.3389/feart.2023.1149678

https://doi.org/10.1190/1.1444057
https://doi.org/10.1190/1.3513132
https://doi.org/10.1306/02271211137
https://doi.org/10.1306/02271211137
https://doi.org/10.1016/j.pepi.2020.106431
https://doi.org/10.1002/gj.3425
https://doi.org/10.1016/s1876-3804(16)30076-3
https://doi.org/10.1016/s1876-3804(16)30076-3
https://doi.org/10.7623/syxb201912006
https://doi.org/10.7623/syxb201912006
https://doi.org/10.3969/j.issn.1000-1441.2020.02.015
https://doi.org/10.3969/j.issn.1000-1441.2020.02.015
https://doi.org/10.7623/syxb200801034
https://doi.org/10.7623/syxb202004004
https://doi.org/10.7623/syxb202004004
https://doi.org/10.11646/zootaxa.5072.3.2
https://doi.org/10.1306/12220303072
https://doi.org/10.1306/12220303072
https://doi.org/10.1007/s11770-018-0701-x
https://doi.org/10.1007/s11770-018-0701-x
https://doi.org/10.1016/s1876-3804(22)60001-6
https://doi.org/10.1306/05170706086
https://doi.org/10.1190/1.1500376
https://doi.org/10.3389/feart.2022.987020
https://doi.org/10.3969/j.issn.1672-7703.2020.01.010
https://doi.org/10.3969/j.issn.1672-7703.2020.01.010
https://doi.org/10.11743/ogg20100101
https://doi.org/10.1190/1.2127113
https://doi.org/10.1190/1.2127113
https://doi.org/10.1007/bf03175448
https://doi.org/10.3969/j.issn.1000-1441.2014.06.014
https://doi.org/10.3969/j.issn.1000-1441.2014.06.014
https://doi.org/10.6056/dkyqt202001009
https://doi.org/10.1190/1.2793035
https://doi.org/10.13810/j.cnki.issn.1000-7210.2021.01.009
https://doi.org/10.3969/j.issn.1672-7703.2021.03.004
https://doi.org/10.3969/j.issn.1672-7703.2021.03.004
https://doi.org/10.11743/ogg20080504
https://doi.org/10.11743/ogg20080504
https://doi.org/10.3969/j.issn.1000-9752.2010.01.013
https://doi.org/10.3969/j.issn.1000-1441.2016.02.014
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149678

	Multi-level ultra-deep fault-controlled karst reservoirs characterization methods for the Shunbei field
	1 Introduction
	2 Geology and stratigraphy
	3 Reservoir space types of fault-controlled karst reservoirs
	4 Data and improved methods
	4.1 Well and seismic data
	4.2 Identification method of large cave zones
	4.2.1 Improved impedance inversion method
	4.2.2 Enhancement and optimization of cave characterization

	4.3 Identification method of dissolved pore and fracture zones
	4.4 Identification method of fault and fracture zones

	5 Results
	5.1 Large cave zones
	5.2 Dissolved pore and fracture zones
	5.3 Fault and fracture zones
	5.4 Comprehensive application and results of multi-level characterization methods

	6 Discussion
	7 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References


