
A radiative transfer deep learning
model coupled into WRF with a
generic fortran torch adaptor

Bin Mu, Lu Chen, Shijin Yuan* and Bo Qin

School of Software Engineering, Tongji University, Shanghai, China

Advances in deep learning have created new opportunities for improving
traditional numerical models. As the radiation parameterization scheme is
crucial and time-consuming in numerical models, researchers sought to
replace it with deep learning emulators. However, progress has been hindered
at the offline emulation stage due to the technical complexity of the
implementation. Additionally, the performance of the emulators when coupled
with large-scale numerical models has yet to be verified. In this paper, we have
developed a new tool called the Fortran Torch Adaptor (FTA) to facilitate this
process and coupled deep learning emulators into the WRF model with it. The
performance of various structured AI models was tested in terms of accuracy,
generalization ability, and efficiency in different weather forecasting scenarios.
Our findings revealed that deep learning models outperformed ordinary
feedforward neural networks (FNN), achieving greater accuracy both online
and offline, and leading to better overall forecasting results. When it came to
unusual extreme weather events, all models were affected to some extent, but
deep learning models exhibited less susceptibility than other models. With the
assistance of FTA, deep learning models on GPU could achieve significant
acceleration, ranging from 50x to 300x depending on the parameterization
scheme replacing strategy. In conclusion, this research is crucial for both the
theoretical and practical development of radiation transfer deep learning
emulators. It demonstrates the emerging potential for using deep learning-
based parameterizations in operational forecasting models.

KEYWORDS

radiative transfer, neural network, deep learning, WRF, fortran torch adaptor

1 Introduction

For a long time, meteorology research has been driven by physics-based mechanisms,
with researchers relying on mathematical equations to explain geophysical and climatic
phenomena. They have built deterministic computing systems to simulate and evaluate these
processes. Recently, data-driven research methods represented by deep learning have made
continuous progress, opening up new opportunities for the development of traditional
numerical models (Irrgang et al., 2021). Increasing Data from Earth System Observations
(ESO), advances in computing power, and powerful AI approaches have led to many
innovative developments aimed at addressing numerical models’ shortcomings and
enhancing their capabilities.

Currently, there are three types of approaches to combine AI with numerical models.
The most common application is the post-processing of numerical model results using AI
approaches (Krasnopolsky and Lin, 2012; Rasp and Lerch, 2018), which is favored for its

OPEN ACCESS

EDITED BY

Gert-Jan Steeneveld,
Wageningen University and Research,
Netherlands

REVIEWED BY

Jian Xu,
Chinese Academy of Sciences, China
Quanhua Liu,
Center for Satellite Applications and
Research (NOAA), United States
Lulu Lu,
China University of Geosciences Wuhan,
China

*CORRESPONDENCE

Shijin Yuan,
yuanshijin@tongji.edu.cn

RECEIVED 22 January 2023
ACCEPTED 25 July 2023
PUBLISHED 03 August 2023

CITATION

Mu B, Chen L, Yuan S and Qin B (2023), A
radiative transfer deep learning model
coupled into WRF with a generic fortran
torch adaptor.
Front. Earth Sci. 11:1149566.
doi: 10.3389/feart.2023.1149566

COPYRIGHT

© 2023 Mu, Chen, Yuan and Qin. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 03 August 2023
DOI 10.3389/feart.2023.1149566

https://www.frontiersin.org/articles/10.3389/feart.2023.1149566/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1149566/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1149566/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1149566&domain=pdf&date_stamp=2023-08-03
mailto:yuanshijin@tongji.edu.cn
mailto:yuanshijin@tongji.edu.cn
https://doi.org/10.3389/feart.2023.1149566
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1149566


simplicity. Another important scenario is the application of AI
methods to the data assimilation process of numerical models
(Lee et al., 2020). The most complex and probably most effective
approach is integrating AI directly into the numerical model.
Existing studies have explored replacing various components of
the numerical model with AI emulators, including the dynamic core
of the numerical model (Dueben and Bauer, 2018), sub-grid
convection parameterization schemes (Brenowitz and Bretherton,
2018; Yuval and O’Gorman, 2020), planetary boundary layer
parameterization schemes (Wang et al., 2019) and radiation
parameterization schemes (Chevallier et al., 1998; 2000;
Belochitski, 2011; Pal et al., 2019; Roh and Song, 2020) with AI
emulators. Of all the components that can be replaced by AI
emulators, radiation parameterization is one of the most popular
options.

The radiation parameterization scheme is used to calculate the
energy conversion during the process of radiation transmission in
the Earth system. Although researchers have been able to build
accurate line-by-line radiative models to simulate this (Clough et al.,
1992), due to its expensive computational cost, the numerical
models typically use simplified radiative models such as Rapid
Radiation Transfer Model for GCM (RRTMG) to accomplish this
task (Mlawer et al., 1997; Iacono et al., 2008; Pincus et al., 2019).
Nevertheless, the computation of the radiation parameterization
scheme remains the most time-consuming part of the entire
numerical model running process (Krasnopolsky, 2020).

To accelerate the computation of the radiation parameterization
scheme, researchers considered using neural networks to emulate
and replace it even before the AI craze. Despite the slow training
process of neural networks, they are much faster than traditional
radiative transfer (RT) models based on kinetic equations in the
inference stage. For the first time, the European Centre for Medium-
Range Weather Forecasts (ECMWF) has utilized a neural network
with a single hidden layer to simulate the RT computation process
for each vertical layer in the radiation parameterization scheme
(Chevallier et al., 1998). Moreover, the results have been
incorporated into ECMWF’s four-dimensional variational data
assimilation system (Chevallier et al., 2000). The National Center
for Climate Prediction used neural networks to emulate longwave
(LW) and shortwave (SW) radiation processes respectively, and
successfully replaced the radiation parameterization scheme in the
Global Forecast System (GFS) and the Climate Forecast System
(CFS) for the online production environments, achieving significant
speed improvements (Krasnopolsky et al., 2010). Pal et al. used a
deeper neural network to compute radiation in the Super
Parametric-Earth Energy System Model (SP-E3SM), which was
an order of magnitude faster and produced stable results in a 1-
year forecast (Pal et al., 2019). Song et al. extended this method to the
study of weather forecasts with higher grid precision and stricter
error requirement (Roh and Song, 2020). Replacing RT models with
neural networks is a popular area of research not only in climate
modeling and weather forecasting of the earth system but also in
other scenarios such as remote sensing (Bue et al., 2019; Le et al.,
2020; Liang et al., 2022).

All of the previous research employed the most basic
feedforward neural network (FNN), which typically includes only
one hidden layer. With the rise of deep learning techniques, deep
neural networks (DNN) with complex network structures have

achieved significant success in many fields (Wang, 2016; Ham
et al., 2019). Some researchers have attempted to use DNN
models to emulate the radiation parameterization scheme. For
instance, Liu et al. (Liu et al., 2020) tested the performance of
replacing the RRTMG long-wave module with a convolutional
neural network (CNN) model, which is commonly used in the
field of image recognition. Inspired by the internal calculation
mechanism of the RT model, Ukkonen designed a deep learning
model based on a recurrent neural network (RNN) enabling
information exchange within the neural network layer to replace
the whole radiation module (Ukkonen, 2022). Moreover, some
scholars have achieved better results by incorporating domain
knowledge or physical laws into neural network models, which
are called Physics-informed neural networks (PINNs). Lagerquist
applied U-Net, a more advanced CNN structure, to simulate the
RRTM shortwave module and integrated physical relationships into
the training process using a custom loss function (Lagerquist et al.,
2021). Mishra et al. developed a novel algorithm based on PINNs
that directly simulated the fundamental radiative transfer equation
by minimizing the residual during training. (Mishra and Molinaro,
2021). Chen et al. applied PINNs to solve the radiative transfer
equation and calculate a synthetic spectrum in cosmological studies
(Chen et al., 2022).

The application of AI techniques to replace RT models can be
divided into two steps. The first step is to train a radiation AI
emulator on a radiation dataset, which is the offline simulation stage.
The second step is the replacement stage, where the emulator is
integrated into a large-scale numerical simulation system. These
complex models (whether DNN or PINN) claimed to achieve good
results in the simulation stage. However, the implementation
complexity makes it challenging to integrate them into original
numerical models compared with simple FNN. Currently, there are
hardly any DNN emulators that can complete the second stage and
operate online in real time.

Therefore, despite the impressive offline performance of DNN
radiation emulators, there are still some arguments about their
suitability for radiation emulators. Firstly, due to the lack of
experimental data support for the online use of DNN radiation
emulators, some researchers doubt whether they can maintain their
good performance online as well (Ott, 2020). In other words, it is
necessary to verify that good offline performance on the test dataset
necessarily translates to good online performance when integrated
into the numerical model. Furthermore, there are also doubts about
the efficiency of DNN models. The “deep” of a deep learning model
typically results in a more complex network structure with deeper
layers, which can have a significant negative impact on performance,
particularly when parallel acceleration provided by GPU is not
available. As an example, the experimental results from Ukkonen
(Ukkonen, 2022) indicate that the inference speed of deep learning
models based on RNN models is 20 times slower than that of FNN
inference under the same experimental conditions. Lastly, some
researchers are concerned that the complexity and nonlinearity
introduced by DNN structures might negatively impact
generalization compared with FNN models (Belochitski and
Krasnopolsky, 2021). Due to the black-box working mechanism
of neural networks, although AI models can learn the underlying
correlations contained in the data to some extent, they do not always
follow the basic scientific rules of the physical system it models in

Frontiers in Earth Science frontiersin.org02

Mu et al. 10.3389/feart.2023.1149566

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149566


their predictions (Reichstein et al., 2019). Therefore, they may not
generalize well to unseen scenarios. While deep learning emulators
can significantly improve the accuracy of radiation parameterization
schemes, stable and reliable results are also necessary to make them
practicable in the online operational environment.

To answer these controversial questions, we need to employ
DNN models in online environments. Nevertheless, the primary
issue is the lack of coupling tools to integrate complex DNN models
into numerical models. Currently, popular numerical models are
predominantly written in Fortran, but there is no mature AI
ecological ecosystem in the Fortran language community. There
do exist some tools, such as the popular NN Fortran library
developed by Krasnopolsky (Krasnopolsky, 2014) and Fortran-
Keras Bridge (FKB) (Ott, 2020) introduced by Irvine for porting
trained NNmodels from Keras to the Fortran environment, that can
be used to build AI applications in Fortran. But the restrictions are
also apparent. For example, we are unable to use complex network
structures like CNNs, let alone utilize GPU resources to accelerate
computation. The separation between the AI and Fortran
communities has become the primary obstacle to the application
of deep learning to numerical models.

A generic tool called Fortran Torch Adaptor (FTA) was
developed in this paper to solve the aforementioned technical
challenges. FTA enables running AI models trained with
PyTorch (a popular deep learning framework) directly in the
Fortran environment using GPU resources. This tool is
groundbreaking in bridging the gap between the Fortran
environment and the AI ecosystem and is not limited to the
radiation transfer AI modeling scenario. Moreover, it provides
critical infrastructure for our subsequent experiments to test
complex deep learning models in the online environment. A
more in-depth introduction to it will be provided in Section 2.3.

In this study, we selected several NN models with different
structures which have previously demonstrated good offline results
(Belochitski and Krasnopolsky, 2021; Lagerquist et al., 2021;
Ukkonen, 2022) and used them to emulate and replace the
RRTMG-K radiation parameterization (both longwave and
shortwave) in Weather Research and Forecasting Model (WRF).
And these NN models will be evaluated both offline and online
based on several weather forecast scenarios. Through these
experiments, we will explore the following questions.

1. Whether the offline results of the AI model are consistent with
the online results?

2. Is there an issue with the generalization ability of complex
network models?

3. Considering both accuracy and efficiency, which model is more
suitable for RT emulators? Particularly when GPU acceleration is
enabled.

The contribution of this research is mainly reflected in two
aspects. The first is the Fortran Torch Adaptor, which was created to
incorporate deep learning models into the Fortran environment and
served as the infrastructure for our experiments. The second is
online validation experiments for deep learning radiation emulators.
The performance of the deep learning emulators embedded into a
large-scale model was evaluated through a series of experiments,
demonstrating their superiority over traditional FNN models. In

conclusion, this research is of great significance for the development
of deep learning emulators in both theoretical and practical aspects.

The paper is organized as follows. The preparation of datasets
for training and testing of the NNs is presented in Section 2.1.
Section 2.2 presents different NN models we have used. In Section
2.3, we will introduce FTA and how we used it in the RT modeling
experiment. Offline and online evaluation results are presented
separately in Section 3.1 and Section 3.2. Finally, we present
concluding remarks along with future works in Section 4.

2 Methods

2.1 Dataset

2.1.1 RRTMG-K in WRF
In this study, we used datasets of radiation simulations

generated from the RRTMG-K radiation parameterization
scheme in the WRF model (Skamarock et al., 2019). RRTMG-K
(Baek, 2017) is an advanced version of the widely used RRTMG
scheme, which enhances the efficiency and accuracy of radiation flux
calculations for both spatial and angular integration of the RT
equation. WRF is a leading mesoscale numerical weather
prediction system that has been extensively used as the
operational weather forecasting system, including the NCEP
Global Forecast System (GFS) and the China Meteorological
Administration (CMA) Global/Regional Assimilation and
Prediction System (GRAPES).

Figure 1 presents the pseudocode for the original radiation
module in the WRF model. Initially, the module initializes
radiation-related variables. The primary radiation calculation
logic takes place within a “for” loop, where each vertical column
is independently processed following the rule of Independent
Column Approximation rule. For each vertical column, some
preprocessing work is carried out first to prepare the necessary
input such as ozone properties, aerosol properties, optical cloud
properties, and so on. Subsequently, the subroutines rrtmg_lwrad
and rrtmg_swrad are called to perform the RRTMG SW and LW
radiation calculations.

Unlike previous works (Roh and Song, 2020; Song and Roh,
2021), our approach did not involve replacing the entire radiation
module radiation_driver. Instead, we emulated only the essential
radiant calculation process, leaving the preprocessing logic
untouched. This seems counterintuitive as it incurs additional
adaptation workload and hinders performance improvement.
However, we deemed it necessary to obtain some important
preprocessed physical quantities, such as liquid particle effective
radius, in-cloud liquid water path, and so on, which have been
proven helpful in previous studies (Lagerquist et al., 2021). As a
result, the input size of our model is significantly larger than that of
typical models. The detailed input and output of the generated
dataset are shown in Table 1. There are also someminor adjustments
compared with similar studies. For example, we excluded some
input variables of constant values because they provided no
information for NN prediction. Furthermore, we included three
additional input variables (longitude, latitude, and surface elevation)
which were not present in the original scheme input. This
geographical information is critical to help to capture similar

Frontiers in Earth Science frontiersin.org03

Mu et al. 10.3389/feart.2023.1149566

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149566


characteristics between horizontally and vertically adjacent grids
according to previous studies (Roh and Song, 2020).

2.1.2 Dataset generation process
It should be noted that the data in the dataset does not originate

from the input and output of the WRF model, but rather from the
input and output of the RRTMG-K scheme within the model. Since
the input and output of the parameterization scheme are
intermediate variables generated during model operation, they
cannot be directly obtained from outside the model. Therefore,
we modified the source code of the parameterization scheme to
generate the dataset, ensuring that the input and output of the
original module are not altered by other modules.

In addition to the standard set used for training, we created two
testing sets for high-temperature and typhoon scenarios to test the
AI emulator’s generalization ability in extreme weather conditions.
The standard dataset is used to train AI models. Therefore, we aimed
for it to learn from as many scenarios as possible, including different
regions, seasons, and more. To accomplish this, we simulated the
entire China region in 2021 using the WRF model to generate this
dataset. For the two testing sets, we conducted simulations based on
several typical extreme events that have occurred in recent years in
China. Certain changes were applied to the WRF configurations
dependent on the event characteristics, increasing the challenge of

generalization for the NN models. The details are presented in
Table 2. WRF4.2 was used to generate the radiation datasets used for
NN training and testing in this survey. To approximate the real
scene as much as possible, we chose a WRF setup comparable to the
operational forecast. More specifically, Thompson Microphysics
scheme was selected for the microphysics scheme, YSU boundary
layer scheme was selected for the boundary layer scheme. Unified
Noah Land-surface Model was selected for the land-surface scheme,
and Kain-Fritsch Cumulus scheme was selected for the convection
scheme. The experiments used NCEP FNL (final) operational global
analysis data, which is compiled operationally on 1-degree by 1-
degree grids every 6 hours. The reanalysis data provided by NCEP
was processed by the WRF Preprocessing System as input to the
WRF, and covers the entire China region with a horizontal
resolution of 30 km and 33 vertical layers (or 34 levels) up to
50 hPa, with a grid size of 200 x 150. The WRF control run was
integrated for 1 day every 180 s for both the time step (dt) and
radiation time step (radt). As the optimal forecast time for WRF is
between 24 and 48 h, the standard dataset was generated on a daily
basis for all 365 days in 2021 to reflect the real-world usage scenario.
For the RRTMG-K parameterization, it was set up with 256 g points
for 16 bands over the LW spectrum and 224 g points for 14 bands
over the SW spectrum using a two-stream correlated-k method and
optimized Monte Carlo independent column approximation.

FIGURE 1
Pseudocode for the original radiation module presented in (A) and our proposed radiation module presented in (B). The blue part in the picture
represents the replaced part in the module. The radiation AI emulator in this study only replaces the core radiation calculation logic and retains the
module preprocessing part.

Frontiers in Earth Science frontiersin.org04

Mu et al. 10.3389/feart.2023.1149566

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149566


2.2 Neural network

In this subsection, we present three types of NN architecture for
the RT emulator studied in this paper. Each network architecture
has specific use scenarios, and we will focus on adapting various
network models to the peculiarities of the radiation model to fully
leverage their strengths. In the end, we’ll introduce the model
training processes.

2.2.1 Feedforward neural network
A Feedforward Neural network (FNN) consists of three types

of layers: an input layer, one or more hidden layers, and an
output layer. Each layer usually has an activation function to
introduce nonlinearity and acquire complex representations. As

mentioned earlier, FNN is the most commonly used neural
network for RT emulating, and there are already some
successful cases of online FNN RT emulators in various fields,
from climate simulation (Pal et al., 2019) to weather forecasting
(Roh and Song, 2020).

Deciding on the network depth is an interesting issue when
using FNNs. On the one hand, more hidden layers in a neural
network are more conducive to extracting high-level semantic
information about the features. On the other hand, Krasnopolsky
et al. argued that (Belochitski and Krasnopolsky, 2021) controlling
the stability and nonlinearity of deep networks is more challenging,
and therefore, they are not suitable for building deterministic
network models. Moreover, this concern is not limited to deeper
FNNs but applies to all deep learning models. Therefore, we will

TABLE 1 List of input and output variables for the radiation simulation dataset. They are shown in a single table because the majority of variables in the longwave
and shortwave datasets are the same. The input length for both datasets is 325, and the output length is 38. The longwave and shortwave datasets share most of
the input variables, with only differences in the first two input variables (longwave: surface temperature and surface emissivity; shortwave: cosine of the solar
zenith angle and surface albedo). The output of the two datasets is heat rates and related fluxes for longwave and shortwave, respectively.

List of Input and Output Variables for Longwave(LW) and Shortwave (SW) Neural Network Emulators

Inputs #

Surface temperature 1 (LW)

Surface emissivity 2 (LW)

Cosine of the solar zenith angle 1 (SW)

Surface albedo 2 (SW)

Latitude 3

Longitude 4

Surface elevation 5

Layer pressure 6–37

Layer temperature 38–69

Water vapor volume mixing ratio 70–101

Ozone volume mixing ratio 102–133

Cloud fraction 134–165

Liquid particle effective radius 166–197

Snow particle effective radius 198–229

In-cloud liquid water path 230–261

In-cloud ice water path 262–293

In-cloud snow water path 294–325

Outputs #

Total sky longwave upward flux at the top (LWUPT, SWUPT) 1

Clear sky longwave upward flux at the top (LWUPTC, SWUPTC) 2

Total sky longwave upward flux at the bottom (LWUPB, SWUPB) 3

Clear sky longwave upward flux at the top (LWUPBC, SWUPBC) 4

Total sky longwave downward flux at the bottom (LWDNB, SWDNB) 5

Clear sky longwave downward flux at the bottom (LWDNBC, SWDNBC) 6

Vertical total sky heating rate (LW, SW) 7–38

Frontiers in Earth Science frontiersin.org05

Mu et al. 10.3389/feart.2023.1149566

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149566


investigate the performance of complicated models in the
experiments, particularly in terms of generalization ability.

2.2.2 Convolutional neural network
CNN is a type of neural network designed for image-focused

tasks. The convolutional layer in CNN is adept at capturing spatial
features, such as the arrangement of pixels and their
interrelationships in an image. This capability aids in accurately
identifying an object’s position and its relationship to other objects
in the image. In the context of RT, the localized features from the
vertical column extracted by the convolutional layer are helpful to
improve the offline prediction performance of deep neural networks
compared with FNN, according to Liu’s experiments (Liu et al.,
2020). For example, large local variations in the optical
characteristics of the atmosphere are rather common because of
the existence of clouds or horizontal advection of water vapor. FNN
is not able to leverage this feature as it churns all the inputs together
and ignores the spatial relations within.

In addition to the spatial characteristics of the input, the output
of the radiation emulator also has a spatial structure, where a heating
rate is calculated for each vertical layer. Such tasks fall into the
category of pixel prediction in traditional AI research. U-net is a
specialized type of convolutional neural network designed for such
tasks (Lagerquist et al., 2021). It contains an encoding-decoding
U-shaped structure, with skip connections that retain high-
dimensional encoding feature information and pass it to the
decoder side.

Since RT emulators produce both scalar outputs and vector
outputs, we have made some modifications to the standard U-nets
paradigm. The specific model design is shown in Figure 2. Our
U-nets structure is designed with a conscious distinction between
scalar and vector data and fully utilizes the spatial features of vector
data while taking advantage of the convolutional network in
extracting locality-dependent features. The vector features are
layered into the U-nets network for feature extraction through
the encoding path on the left. The U-nets structure fuses scalar
features with embedding features extracted from vector-type

features and predicts scalar output (fluxes-related information)
through one fully connected layer. The vector-type output
heating rate is obtained by layers from the decoding path of
U-nets combined with the high-dimensional encoding
information from skip connections on the same level.

2.2.3 Recurrent neural network
RNN is typically used for problems associated with temporal

sequences. An RNN layer takes input at a specific point in a
sequence, updates its internal state, and then moves on to the
next point in the series. When dealing with a temporal problem,
the internal state allows the RNN to have a memory so that prior
inputs can influence the current forecast. Although radiative
scenarios lack data with temporal dimensional characteristics, we
can leverage this notion by describing the sequences as vertical
layers. In the RNN layer, information travels down the sequence in
the same way that radiative radiation propagates between vertical
layers in numerical models. Additionally, since the fluxes can
propagate in both directions, a bidirectional recurrent neural
network (BiRNN) consisting of two RNNs of opposite directions
was chosen to mimic this process (Ukkonen, 2022).

The model design of the RNN RT emulator is shown in
Figure 3. The vector features are processed level by level through
a fully-connected layer, fed into the BiRNN, and the heating rate
for each layer is obtained from its output. Scalar features are also
taken into account in predicting heating rates by affecting the
initial hidden state of the BiRNN. For the scalar fluxes-related
outputs, the layered DNN output combined with scalar features is
used to predict them.

These are the three models which were used in the
experiments. The CNN and RNN models share some
similarities. For example, they both consider the spatial
features of the data on the vertical column. The difference
lies in how they handle these features: CNN extracts locality-
dependent features of the vertical layer with convolutional
kernels, while RNN treats the inputs of different vertical
layers as a sequence and extracts features as a whole. Both

TABLE 2 TheWRF configuration used to generate the three datasets. We have prepared a standard dataset for training and two extreme event datasets for testing.
Different WRF configurations were used for each dataset based on their weather event characteristics. Only some important configuration items are listed here.
Refer to the namelist file in the code repository for the complete configurations.

Standard dataset High-temperature testing dataset Typhoon testing dataset

Description The weather data through 2021 The weather data from the 11-20 August
2020 High-Temperature event in the Yangtze

River Delta

The weather data from several typhoon events
that hit the southeast coast of China (NO. 1810,

1410, 0908)

Resolution 30 km 3 km 15 km

Parameterization
settings

- Thompson Microphysics scheme The same configuration as the training set except
for turning off the cumulus scheme because of

the finer resolution

The same configuration as the training set

- YSU boundary layer scheme

- Unified Noah Land-surface Model

- Kain-Fritsch (New Eta) Cumulus scheme

- RRTMG-K longwave/shortwave radiation
scheme

Time step 180 s 30 s 90 s

Region East Asia region Yangtze River Delta Region of China The eastern part of China

Frontiers in Earth Science frontiersin.org06

Mu et al. 10.3389/feart.2023.1149566

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149566


CNN and RNN structures have been specifically designed based
on the characteristics of RT, incorporating domain knowledge
to help neural networks extract features more efficiently.

For the training process, we used the Adam optimizer to
train all three types of models. Hyperparameters such as
learning rate and batch size are tuned within a certain range
through the grid search policy. Due to time and resource
constraints, we can only try to tune the model as much as

possible during training, since we need to test a lot of different
types of models. It is worth noting that the goal of this study is
not to find the best model but rather to test the performance of
various model structures in the same scenario. For the same
reason, we did not attempt to use overly complex structures like
U-net++ as Lagerquist did (Lagerquist et al., 2021). Although
the experiments may not reflect the best results for all types of
structures, they are sufficient for this research.

FIGURE 2
Themodel design of the CNN-based RTmodel. The overall framework of the model is based on a U-net model. The gray part represents the model
input, the blue part is themodel’smain structure, and the green part is themodel output. The blue lines indicate the data flow, and the dotted lines are the
skip connections.

FIGURE 3
Themodel design of the RNN-based RTmodel. Themain structure of themodel is BiRNN,which is used to extract spatial features from vector inputs
in the radiation dataset. The gray part represents themodel input, the blue part is themain structure of themodel, and the green part is themodel output.

Frontiers in Earth Science frontiersin.org07

Mu et al. 10.3389/feart.2023.1149566

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149566


2.3 Fortran Torch adaptor

Fortran Torch Adapter (FTA) is a generic tool developed to
integrate deep learning models into the Fortran environment. It
provides users with an interface to manipulate NN models directly
in the Fortran language through FTA libraries. In this section, we
will provide a detailed introduction to the background,
implementation, and features of FTA. Furthermore, we will
explain how this tool is used in our experiments.

2.3.1 Adaptor description
Deep learning has become increasingly popular in the earth

system model community. However, since Python is the preferred
language for AI, Fortran, which is commonly used for numerical
models, lacks comparable libraries and tools. As a result, previous
studies had to rely on a primitive and cumbersome implementation:
training models in Python, importing model parameters into
Fortran programs, and manually performing the forward
propagation procedure in Fortran. This approach greatly limits
the application of AI in earth system modes. There have also
been some initiatives to address this issue, such as the Fortran-
Keras Bridge (Ott, 2020), which automates the aforementioned
operations. But some major limitations still exist, such as the
inability to use complex model structures and the inability to
access GPU resources for model inference.

We have developed a novel solution by creating a generic tool
(Fortran Torch Adaptor) to utilize AI models in the Fortran
environment based on language interoperability mechanisms.
FTA enables PyTorch models to be used in the Fortran
environment directly with GPU resources. FTA not only allows
the Fortran projects to access the abundant deep learning resources
from the Python community directly but also enables numerical
models to use GPU-accelerated computation regardless of model
architectures, which greatly helps to improve computational
efficiency.

The implementation of FTA is based on the interoperability of
Fortran and C++, as well as the complete C++ API support provided
by the PyTorch community. The overall architecture is shown in

Figure 4. It serves as an intermediary layer, providing simple and
transparent interfaces for Fortran users to operate PyTorch models
while hiding the underlying intricacies of connecting with C++
interfaces via language interoperability. In other words, the user only
needs to use the interface provided by FTA as if calling a normal
Fortran library function and FTA can automatically handle all the
trivial inconsistencies between Fortran and C++ (such as data types,
array memory models, etc.) which makes it extremely user-friendly.

FTA not only provides simple and transparent interfaces for
Fortran users to operate PyTorch models but also offers flexibility
that allows users to customize it to their specific needs. The
customizable parameters include some system environment
configuration options, such as the compiler used, the version of
PyTorch, etc., as well as some usage options, such as the dimension
and type of input and output data of the AI model, whether to use
GPU resources, the storage location of AI models, etc.
Comprehensive tests have been conducted to ensure the usability
of FTA.

Lastly, FTA strives to ensure optimal performance. The
performance advantages of Fortran have made it a popular
language in the HPC field. If FTA were to suffer a significant
performance loss, the cost of using it would outweigh the
benefits. However, compared to other schemes, FTA may have a
small drawback. This is because FTA requires an additional C++
runtime to run the TorchScript model compared to the native
implementation of Fortran neural networks. Moreover, although
FTA supports the use of GPU to accelerate calculation, the
acceleration effect brought by GPU in the AI model reasoning
stage is not significant, and it also incurs the additional cost of
data transfer from memory to video memory. However, this issue is
not unique to FTA; it affects all solutions that attempt to use the
GPU. In the next subsection, we will introduce our solutions to
overcome this challenge. Nevertheless, we still managed to maximize
the performance of FTA during implementation. For example, FTA
reduces unnecessary deep copy operations by sharing a single
memory block among various languages.

All in all, FTA is an easy-to-use, flexible, and efficient tool to
bridge the gap between the AI ecosystem and the Fortran

FIGURE 4
The role of FTA in the computer system. It serves as an intermediary layer, providing simple and transparent interfaces for Fortran users to operate
PyTorch models while hiding the underlying intricacies of connecting with C++ interfaces via language interoperability.

Frontiers in Earth Science frontiersin.org08

Mu et al. 10.3389/feart.2023.1149566

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149566


environment. It is worth noting that this tool is not limited to
integrating AI in earth system models. Any applications written in
Fortran which aim to integrate AI models can benefit from it.

2.3.2 Implementation of WRF with embedded NN
(WRF-NN)

In the experiments, we have trained a variety of deep learning
models with different structures to emulate the RRTMG-K
parameterization in the WRF model and coupled them into the
WRF model via FTA to explore their online performance. This
subsection introduces the implementation details of WRF-NN. As
shown in Figure 1, what WRF-NN does is just get radiation results
from NN inference instead of performing complex physical formula
calculations. Though, there are some noticeable changes in the entire
process.

First, the radiation calculation in WRF-NN is not performed
column by column like the original scheme. Instead, all columns are
directly computed together as a batch in the neural network which
greatly improves efficiency. As mentioned earlier, the FTA solution
has the drawback that its inference speed is not comparable to the
native Fortran neural network due to the additional cost from C++
TorchScript runtime. To make it worse, when GPU is used, the flow
cost from memory to video memory should also be considered. To
address this performance loss issue caused by the flow cost, we
developed a parallel implementation in our experiments. In the
original RRTMG-K implementation, each column of grids is
handled separately and all columns need to be traversed
throughout the execution. If we strictly followed this computing
strategy, each column’s radiation calculation would go through one
data flow procedure, significantly negating the neural network’s
performance advantages. To mitigate this issue, instead of
performing the calculation separately, we perform it in batches,
where a group of grid point calculations is carried out concurrently.
Also, batch calculation can take advantage of the vector instructions
of the CPU such as SIMD, or the parallel computing power of the
GPU, which only incurs one extra cost of data transfer. It should be
noted that the parallelism here is multiple-data parallelism and does
not conflict with the WRF’s thread-level parallelism, implying that
the acceleration effects can be stacked when sufficient resources are
available. As demonstrated in the subsequent experimental section,
the efficiency problem of FTA is eliminated after implementing this
batch-processing technique.

Another point to note is the extra post-processing step. Since we
normalized both the input and output when training NNmodels, we
need to perform the same operations in WRF-NN to ensure
compatibility. We must also denormalize the output when
returning it. Furthermore, to prevent the neural network’s output
results from violating physical constraints and causing the entire
system to fail, we strictly limit the output results within the range
prescribed by physics. For example, negative shortwave flux values
are not permissible.

3 Experiments and results

Our experiments can be divided into two parts: offline and
online. In the offline experiments, we trained several models with
different structures on the generated dataset. For each type of

structure, we examined the results under different scenarios.
After that, we selected some representative models, coupled them
into the WRF model with FTA to replace the original radiation
scheme, and evaluated their online performance.

3.1 Offline results

To select the best models for online experiments, we tried
various combinations of the network’s depth and width for each
model type. The overall model results are presented in Figure 5. The
complete results are presented in the Supplementary Material
because of the large amount of experimental data.

The FNN results are shown in the left column of Figure 5. In
general, the SW FNN model’s performance improved as the
model scale expands. And deeper models exhibited better
performance than wider models at comparable scales. In other
words, both depth and width were helpful to improve model
performance, while broadening the model was less efficient than
deepening it. This finding is in line with the mainstream opinion
that a deeper model can learn more complicated transformations,
leading to better nonlinear representation and useful feature
inputs. However, the performance gains from depth came with
a cost. The dividend delivered by additional layers decreased and
might have negative impacts beyond a certain size. This law also
applied to other model structures. For LW models, the situation
was more complicated. The same rules applied to some extent,
however, the tipping point where depth started to negatively
contribute occurred much earlier than in SW models. The figure
shows that the accuracy of LW models is not comparable to that
of SW models, especially for large-scale models. Taking all the
factors into account, a medium-sized FNN model which consists
of two hidden layers of 512 neurons achieved the best results for
both LW and SW.

For the RNN models, we experimented with two commonly
used RNN units, namely, long short-term memory (LSTM) and
gated recurrent unit (GRU), which are distinguished by different
colors in Figure 5. LSTM has a powerful feature extraction capability
and can yield better results with sufficient data, while GRU has fewer
parameters and requires fewer data to generalize. With sufficient
data generated by the numerical models in this experiment, the
results of LSTM were better than those of GRU, but their inference
efficiency was inferior to that of GRU. Under the same model
structure, the results of LSTM were significantly better than those
of GRU. Similar to the FNN results, the performance of layer
stacking improved more efficiently than increasing neuron
numbers within a single layer. The model based on GRU units
reached its performance bottleneck at a very small scale, while the
LSTM unit improved the performance upper limit of the model. At
least within our testing range, larger LSTM models still performed
better. The acceleration effect of GPU was much more obvious for
RNN models. Due to the inherent recurrent characteristics of RNN
structure, they were tens of times slower than FNN, even with GPU
acceleration. Such performance would be completely unacceptable if
FTA had not made GPU acceleration accessible. In addition, we
noticed that the RNN structure brought substantial accuracy
improvement compared with FNN. Even the simplest GRU
model with only one layer and 32 hidden neurons in each unit

Frontiers in Earth Science frontiersin.org09

Mu et al. 10.3389/feart.2023.1149566

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149566


performs better than the best FNN model, implying that the
complexity of the deep learning model leads to better performance.

As we know, for CNN, convolution kernels play a critical role in
CNN as they are responsible for extracting locality-dependent
features which are the connections between vertical levels in the
RT-emulating scenario. The kernel size corresponds to how many
levels are considered in the CNN network. For example, when the
kernel size is set to 1, the inputs from each level are encoded
independently and the connection information between levels is
lost. On the one hand, expansion of the kernel window helps to bring
more inter-level association information when extracting features.
On the other hand, it also introduces more noise which diminishes
the advantage. When the kernel size is set to 32, which is the total
number of levels, the CNN convolution layer degenerates into a
dense layer, which is not desirable. After conducting some
preliminary attempts, we determined two convolution kernels of
sizes 5 and 11. Further experiments were conducted based on these
kernel sizes. Building upon this, we conducted further investigations
into the impact of U-Net network depth and width on the outcomes.
In the case of the shortwavemodel, both 5 and 11 convolution kernel
sizes yielded commendable results. The U-Net network with a three-
layer encoder, featuring a first layer comprising 64 convolution
kernels and a kernel size of 5, delivered the best correlation
coefficient and MAE results. On the other hand, a network with
the same three-layer encoder but with a first layer comprising
64 convolution kernels and a kernel size of 11 exhibited superior
RMSE results. Moreover, when comparing specific indicators, the
model with a kernel size of 5 demonstrated favorable performance in
predicting heating rates, while the model with a kernel size of

11 excelled in predicting fluxes. Similar outcomes were obtained
for the longwave model. However, due to the increased complexity
of simulating longwave radiation, the larger U-Net with a kernel size
of 11 reached its performance bottleneck earlier. Appendix Table 5
provides detailed results. Overall, when the model size was relatively
small, larger kernel sizes substantially improved accuracy.
Nevertheless, as the model size reached a certain threshold,
smaller kernel sizes proved to be more effective. For instance, in
our experiments, two models with identical structures except for the
kernel size exhibited almost identical results, despite the model with
a kernel size of 11 having twice the number of parameters as the
model with a kernel size of 5.

In conclusion, we examined the effects of different model
structures on the results under different architectures. For FNN,
the depth of the model had a more significant impact on the results
compared to the width of the model. For the CNN model, we
focused on the effects of kernel size and the depth and width of the
encoder-decoder path on the results. We found that models with
larger convolution kernels had an advantage when the model size
was relatively small. For the RNN model, the more advanced LSTM
unit had a significant effect improvement compared to the
GRU unit.

Throughout the model design process, we devoted a lot of
effort to considering the spatial characteristics of the data.
Therefore, we restored the model’s output results and
visualized the spatial structure of which in Figure 6. The
errors of the three model types shared some commonalities.
They all performed better at the top of the atmosphere and
worse near the surface. This distribution of errors can be

FIGURE 5
FNN, RNN, andCNNmodels’ performance on the SW standard dataset is presented in (A) (B) (C), on the LW standard dataset is presented in (D) (E) (F).
A simplified notation to describe themodel structure is used in Table 3. The horizontal coordinate indicates the inference time of themodel in seconds on
the CPU. The vertical coordinate indicates the performance of the correlation coefficient of the model on the test set. Therefore, the further to the top
left, the better this model behaves. Additionally, model size measured by the number of parameters is represented by the area of the circle in the
figure. Different types of models (FNNs, CNNs with different layers; RNNs using different units) are distinguished by different colors.

Frontiers in Earth Science frontiersin.org10

Mu et al. 10.3389/feart.2023.1149566

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149566


explained from the perspective of atmospheric science. The
complex interactions and energy exchange processes between
the surface and the atmosphere, combined with the terrain and
surface features, human activities, and other factors, make the
radiation process of the surface more complex and challenging
to simulate for AI models. Besides, the LW NN emulator
exhibited much greater heating rate errors than SW.
Comparing the three types of models, the FNN model
performed the worst, with errors exceeding 0.25 and 1 K/day
for shortwave and longwave heating rates, respectively, in
extreme cases. The CNN model was able to control the
errors within 0.1 and 0.25, while the RNN model achieved
the best results with errors of 0.05 and 0.15, respectively.
This is consistent with the previous conclusion that the RNN
model has the strongest spatial feature extraction capability.

Based on the results presented above, we selected several
representative NN models of each structure for further research.
The models were selected based on two criteria: efficiency and
accuracy. The most accurate model is certainly tempting, but a
relatively accurate and efficient model may be more suitable for an
operational model. In addition to the standard dataset used for
model training and validating, we also prepared two additional

testing datasets collected from extreme weather events to test the
generalization ability of these models. From Table 3 and Table 4, we
can see that models which achieve better results in the standard
dataset are also better when faced with extreme conditions. For
example, the selected LSTM model performed best in all metrics
both for SW and LW. Compared to the FNN results, its RMSE error
had decreased by 54% and 75% for SW and LW respectively. For
extreme scenarios, all models showed some degradation in
performance, especially for the Typhoon test set. Taking the
LSTM shortwave simulation performance as an example, the
error in the typhoon scenario was 1.8 times that of the standard
dataset, while in the heatwave dataset, it was only 1.3 times. This is
reasonable because there must be cases in the extreme events dataset
that the model has not seen during training. Compared with high-
temperature scenarios, typhoon events are much rarer in the
standard dataset and more difficult to simulate. Among all the
models, the LSTM model that performed the best on the standard
dataset also performed the best on the extreme event dataset. That’s
to say, models with higher accuracy on the standard dataset also had
better generalization capabilities. This proves that concerns about
the potential robustness risk introduced by the complex NN
structure do not exist.

FIGURE 6
Vertical profiles of the error in heating rates using different NNmodels on the standard dataset (SW on the left and LW on the right). FNN used here is
fnn_512-512 (A), RNN used is gru_32_l2 (B), and CNN used is unet11_32-64 (C). The red and blue lines show the mean absolute error and bias
respectively, while the shaded area indicates the 5th and 95th percentile of differences (predicted - true value) at each level. Comparing the threemodels,
the RNN-based radiation simulator exhibits the best spatial error distribution.

Frontiers in Earth Science frontiersin.org11

Mu et al. 10.3389/feart.2023.1149566

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149566


3.2 Online results

As mentioned earlier, we used FTA to replace radiation
parameterization with selected NNs. Rather than emulating the
entire radiation module, we chose to emulate only the core
procedure of radiation calculations. Therefore, we separately
measured the total runtime of the radiation module and the
runtime of the radiation fluxes computation process,
distinguishing between daytime (SW and LW running together)
and nighttime (LW only) emulations. We also compared WRF’s
multicore acceleration scheme with our schemes using the NN
alternatives. The results are shown in Table 5.

All AI emulators provided some levels of acceleration depending
on the architecture of the neural network and whether CPU or GPU
is used. Specifically, when only CPU resources were used, the simple
FNN network could achieve about 10 times acceleration for the LW
radiation computation module, while the customized RNN and
CNN could provide about 1.5 and 1.4 times acceleration,
respectively. If both long-wave and short-wave parametrization
schemes were replaced, the acceleration effect became more
significant, FNN could reach a speedup ratio of 66 times, and
both RNN and CNN reached a speedup of about 10 times.

TABLE 3 Performance on all three datasets for the representative SW NN models. The bold fields represent the best results for that metric. We use a simplified
notation to describe the model structure. For example, an FNN model with structure 256-256 has two hidden layers which both have 256 neurons; an RNN model
with structure gru_32_l3 has three bidirectional RNN layers which all have 32 GRU units; a CNNmodel with structure unet5_32-64 has an encoder pathwith a depth
of two layers (32 kernels in the first layer and 64 kernels in the second) and sets the convolutional kernel size as 5. Please note that the RMSE in the table is the error
value obtained after standardizing several output variables and specific errors for each variable are provided in the results in the appendix. The RNNmodel LSTM_
128_l2 achieved the best results in all metrics for all SW datasets.

Model Structure Parameters Standard High-temperature Typhoon

RMSE R2 RMSE R2 RMSE R2

FNN 128-128 63142 .02539 .9678 .02566 .9710 .04062 .9521

FNN 512-512 449062 .02075 .9774 .02279 .9799 .03788 .9600

RNN GRU_32_l2 26628 .01251 .9948 .01450 .9952 .02074 .9923

RNN LSTM_128_l2 768068 .00963 .9974 .01259 .9968 .01751 .9949

CNN Unet11_32-64 129540 .01516 .9911 .01781 .9891 .02886 .9829

CNN Unet5_64-128-256 1044676 .01619 .9934 .01936 .9927 .03218 .9886

TABLE 4 Same as Table 3, but for LW datasets. The RNN model LSTM_128_l2 achieved the best results in all metrics for all LW datasets.

Model Structure Parameters Standard High-temperature Typhoon

RMSE R2 RMSE R2 RMSE R2

FNN 128-128 63142 .03554 .9124 .03278 .7862 .14890 .7925

FNN 512-512 449062 .03482 .9128 .03104 .8058 .13062 .7739

RNN GRU_32_l2 57924 .01063 .9948 .01372 .9829 .12304 .8065

RNN LSTM_128_l2 768068 .00882 .9969 .01314 .9958 .11395 .9280

CNN Unet11_32-64 129540 .01300 .9932 .01547 .9801 .18194 .8287

CNN Unet5_64-128-256 1044676 .01229 .9949 .01526 .9813 .13500 .9104

TABLE 5 The computation cost of different radiation schemes in seconds. The
radiation AI simulator can greatly improve computational efficiency, especially
with the support of GPUs. Control represents the original RRTMG-K radiation
parameterization scheme and its results in parallel CPU acceleration are also
provided as a reference. * indicates that the time is extrapolated rather than
measured directly. FNN used here is fnn_512-512, RNN used is gru_32_l2, and
CNN used is unet11_32-64.

LW LW+SW

Rad Cal Total Rad Cal Total

Control 3.6004* 6.6216 23.4757* 26.7542

FNN on CPU 0.3501 3.3950 0.3538 3.6078

RNN on CPU 2.3959 5.4952 2.4024 5.7045

CNN on CPU 2.6007 5.7250 2.6081 5.8875

Control (parallel x2) 1.8409* 3.3857 12.0076* 13.6845

FNN on GPU 0.0298 2.9628 0.0298 3.1929

RNN on GPU 0.0681 3.0516 0.0679 3.2271

CNN on GPU 0.0797 3.0330 0.0799 3.2721

Control (parallel x8) 0.4894* 0.9000 3.1606* 3.6020

Frontiers in Earth Science frontiersin.org12

Mu et al. 10.3389/feart.2023.1149566

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149566


When the GPU was used for model inference, the speedup was
significantly improved, with a 120-fold speedup using the FNN
replacing only the long-wave radiation scheme, and a nearly 50-fold
speedup for the RNN and CNN. When both the long-wave and
short-wave schemes were replaced, the FNN speedup was further
improved to about 800-fold, while the speedup ratio was around
300-fold for the more complex RNN and CNN. Compared to
previous work, our FTA solution provides undiminished CPU
acceleration, while the GPU acceleration even takes it a step
further, boosting it by an order of magnitude.

The aforementioned results only pertain to the acceleration of
the replaced flux computation module in the radiation
parameterization scheme, and the overall acceleration of the
entire radiation parameterization scheme is subject to the
limitations of Amdahl’s Law. Our tests have shown that replacing
only the long wave with AI resulted in an overall acceleration effect
roughly equivalent to the MPI parallel scheme with two cores while
replacing both the long wave and short wave simultaneously could

outperform the acceleration effect of eight cores. As mentioned
earlier, the AI parameterization scheme can be combined with the
model’s parallelism scheme to provide a superimposed acceleration
effect.

Improving computational efficiency alone is not enough. We
also examined the actual impact of AI emulators on model
operation. For this purpose, we selected several representative AI
models and incorporated them into theWRFmodel using FTA, then
verified their performance in realistic scenarios. To select the
simulation scenarios, we utilized high-temperature and typhoon
scenarios that generated extreme event datasets. This allowed us to
test the performance of the model in extreme scenarios and compare
its online and offline performance. Since WRF is mainly used for
short-term weather forecasting, the extreme weather event scenarios
were divided into several complete 24-h simulations, and average
results were obtained. We extracted some key indicators, including
LW/SW flux, LW/SW heating rate, skin temperature, and
precipitation, for analysis. Flux and heating rate were obtained

FIGURE 7
Performance of the WRF embedded with different NNs (WRF-NN) in simulating the heatwave event. The x-axis represents the simulation duration,
and the y-axis represents the RMSE error compared to the original WRF model at that time for various indicators, including (A) longwave (LW) flux, (B)
shortwave (SW) flux, (C) LW heating rate, (D) SW heating rate, (E) skin temperature, and (F) precipitation. The results of different models are differentiated
by different line colors and styles. ANN is represented using solid lines, RNN using dashed lines, and CNN using dotted lines.

Frontiers in Earth Science frontiersin.org13

Mu et al. 10.3389/feart.2023.1149566

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149566


from the direct output of the parameterization scheme, while skin
temperature and precipitation were obtained from the WRF output.

Figure 7 displays WRF-NN results under the heatwave scene.
The simulation started at midnight, and was divided into three
stages: the night before sunrise (LW alone 0–3 h), the day after
sunrise (LW/SW runs together 3–17 h), and the night after sunset
(LW runs alone 17–24 h). Let’s first examine the output from the
parameterized scheme in the above four panels. The online error
development trend for different AI models was roughly the same,
with an increase followed by a decrease. The LW radiation scheme
performed significantly better when LW works alone at night than
when LW and SWworked together. During the day after sunrise, the
simulation errors of both long wave and short wave radiation
parameterization schemes experienced an explosive increase,
reaching the peak in 12–16 h and then falling back to a lower

level. This is very similar to the error accumulation mechanism of
the autoregressive model. For example, there is a certain deviation in
the heating rate output of the AI emulators, which affects the result
of skin temperature. In the next iteration, the LW emulator would be
affected because it requires a temperature input. Thus, a small error
can have a lasting effect over time during online iterations. This is
why online AI emulators are much less accurate than they are on the
test set. In addition, by comparing the results of different models,
RNN performed better than CNN and FNN most of the time. It can
be seen that the accuracy of the AI model online and offline is the
same, meaning that the model that performs better offline also
performs better online, which is consistent with the conclusion of
previous studies. Next, we examined the output of the WRF mode
using the AI emulator. The performance of skin temperature was
largely influenced by the LW heating rate, with a maximum error of

FIGURE 8
Performance of the WRF-NN using different simulating strategies in simulating the heatwave event. lstm indicates using LSTM to replace both SW
and LW schemes, lstm_sw indicates that only the SW scheme is replaced and lstm_lw only replaces the LW scheme. The same applies to gru, gru_lw, and
gru_sw. Different strategies are differentiated by different line styles, with replacing both SW and LW represented using solid lines, replacing SW using
dashed lines, and replacing LW using dotted lines. Line colors are used to differentiate the replacement models. The selection of metrics and the
layout of the graph are consistent with Figure 7, including (A) longwave (LW) flux, (B) shortwave (SW) flux, (C) LW heating rate, (D) SW heating rate, (E) skin
temperature, and (F) precipitation.

Frontiers in Earth Science frontiersin.org14

Mu et al. 10.3389/feart.2023.1149566

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149566


about 1 k. The deep learning model did not have a significant
advantage during the daytime, but at night, the deep learning model
outperformed the ordinary FNN model. In terms of precipitation,
there was a discernible disparity in the performance of each model
during the nighttime period after sunset, with the RNN
demonstrating the lowest error at 0.4 mm/h. This discrepancy
could potentially be attributed to the reduced occurrence of
precipitation in high-temperature scenarios. We also conducted
tests under typhoon scenarios; however, these results are not
depicted in the figure due to all emulators’ online results rapidly
shifting out of the valid range within a short duration.

We did some further analysis for emulators’ online errors.
Generally, it originates from two sources. The first is the error of
the AI emulator itself, which refers to the error exhibited by the
emulator in the offline dataset. Our experimental results show that
the online error is much larger than the offline error mainly because
of the second aspect. Therefore, if we can control the growth of the
cumulative error we can significantly improve the results of online
forecasting.

In the previously designed online experiments, AI emulators
were used to replace both the LW and SW schemes, resulting in
errors that interacted with each other, contributing to cumulative
error growth. For example, the LW Flux error shown in Figure 7 was
not only from the LW emulator but also from the deviation from the
SW emulator output in the last time step, which affected the input
vector in this iteration, thereby contributing to the error. To exclude
the interaction of the LW and SW emulators, we attempted to
replace the long- and short-wave parameterization schemes
separately. The results are shown in Figure 8. The results of
replacing the SW radiation parameterization scheme alone were
close to those of replacing both LW and SW, while the results of
replacing only the LW were significantly better than the former two.
It was evident that the error when replacing both LW and SW came
mainly from the cumulative error of the SW emulator. Even LW
using the original physical parameterization scheme could not
improve the overall results. Therefore, the accuracy of the SW
radiation emulator has more significant effects on the results
when the LW and SW radiation emulators are in use, and
improving the SW radiation emulator will be more helpful to
improve the overall output of the numerical model at this time.

4 Conclusion

In this paper, we introduced FTA, a generic tool designed to
integrate deep learning models into the Fortran environment. This
tool was then applied in the experiments of DNN radiation
emulators for online weather simulation. The performance of
DNN radiation emulators was evaluated from different
perspectives. In terms of accuracy, the experiments showed that
the DNN models significantly reduced simulation bias, with RNN
outperforming CNN, which in turn outperforms FNN. The best-
performing model was an LSTMmodel, which significantly reduced
RMSE errors by 54% and 75% for SW and LW, respectively,
compared to the FNN results. Moreover, models that performed
better offline also exhibited superior performance online. This was
not only reflected in the better results from the radiation scheme
output but also positively affected the overall numerical model

outputs such as skin temperature and precipitation in the 24-h
simulations. Additionally, when faced with unseen events, all models
exhibited some degree of performance deterioration. However, we
found that the DNN models with better performance on standard
datasets still outperformed others on two extreme event datasets,
demonstrating their advantage in generalization ability. Lastly, with
the aid of GPU acceleration provided by FTA, DNN emulators could
deliver 50x or 300x acceleration, depending on whether only LW
parameterization or both LW and SW were replaced. Although this
cannot match the running speed of FNN on GPU, it is still a
significant improvement compared to CPU solutions. In
conclusion, our DNN emulators with GPU acceleration
outperform the previous FNN on CPU scheme in all three
aspects of accuracy, generalization ability, and efficiency, making
them a promising tool for online weather forecasting.

This research also offers some valuable insights for future
researchers dedicated to RT emulators for numerical models. In
respect of model selection, our findings suggested that DNN models
should be preferred when GPU resources are available, as even the
simplest DNN model outperformed the best FNN model in our
experiments. For FNN models, model depth is more beneficial than
width for improving model accuracy. The size of the convolution
kernel has a significant impact on the accuracy of CNNmodels when
the model size is relatively small. When the number of convolution
kernels and the depth of the convolution layers reach a certain size,
relatively smaller convolution kernels are more advantageous. For
RNN models, LSTM units show a significant performance
improvement compared to GRU units. Taking into account the
results of the three model categories, the bidirectional LSTM model
has the highest overall accuracy, which is closely related to its
strongest spatial feature extraction ability, reflected in its best
vertical distribution of heating rate error. Additionally, we
highlight the importance of controlling cumulative error growth
to improve overall online error when applying AI emulators. Our
results demonstrated that replacing only LW modules yielded
significantly better outcomes than replacing both SW and LW
modules.

It is important to note that these experiments were conducted
under the premise that the issue of using AI in a Fortran environment
had been resolved by the use of FTA. FTA eliminates barriers to
integrating deep learning into numerical models, making various AI
approaches available to researchers working with Fortran. To the best of
our knowledge, this tool is the first publicly available generic solution to
use interoperable techniques to address this issue. Since its release as an
open-source tool last year, FTA has been adopted by numerous
researchers from similar backgrounds. We believe that as the
intersection of deep learning and meteorology deepens, FTA will
receive more attention and be increasingly utilized by researchers in
this field.

While this study represents a significant milestone, there is still
ample room for improvement before a deep learning radiation
emulator is ready for production use. To improve the accuracy of
the model simulation, advanced PINN models could be used to
achieve better results. Additionally, learning from higher-accuracy
radiation parameterization schemes could also be considered, as the
RRTMG-K model used in this research is an approximate model.
Using the reference model’s results (line-by-line model) directly in
AI training could help reduce bias. Moreover, the generalization

Frontiers in Earth Science frontiersin.org15

Mu et al. 10.3389/feart.2023.1149566

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149566


ability of AI emulators still needs to be strengthened in some
unusual extreme scenarios. Although we may address this issue
by developing various models for different circumstances, a more
comprehensive model is required for operational models that must
deal with unpredictable scenarios at all times. To this end, our team
is currently conducting research on online learning techniques that
allow the AI emulator to adaptively adjust to different conditions.

Data availability statement

The datasets generated in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found at A Radiative Transfer Emulator Dataset
for WRFRRTMG-K (Chen, 2023). All codes in this study are
publicly accessible onGitHub (FTA: https://github.com/luc99hen/
FTA, WRF-NN: https://github.com/luc99hen/WRF).

Author contributions

LC developed the model code and performed the simulations.
LC and BM prepared the manuscript with contributions from all co-
authors. All authors contributed to the article and approved the
submitted version.

Funding

This study is supported in part by the Key Project Fund of
Shanghai 2020 “Science and Technology Innovation Action Plan”
for Social Development under Grant 20dz1200702, in part by the
National Natural Science Foundation of China under Grant
42075141, in part by the National Key Research and

Development Program of China under Grant 2020YFA0608000,
in part by the Meteorological Joint Funds of the National Natural
Science Foundation of China under Grant U2142211, and in part by
the first batch of Model Interdisciplinary Joint Research Projects of
Tongji University in 2021 under Grant YB-21-202110.

Acknowledgments

The authors thank Deng at East China Meteorological Institute
for her generous help with the extreme weather event cases.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/feart.2023.1149566/
full#supplementary-material

References

Baek, S. (2017). A revised radiation package of G-packed McICA and two-stream
approximation: Performance evaluation in a global weather forecasting model. J. Adv.
Model. Earth Syst. 9 (3), 1628–1640. doi:10.1002/2017MS000994

Belochitski, A., Binev, P., DeVore, R., Fox-Rabinovitz, M., Krasnopolsky, V., and
Lamby, P. (2011). Tree approximation of the long wave radiation parameterization in
the NCAR CAM global climate model. J. Comput. Appl. Math. 236 (4), 447–460. doi:10.
1016/j.cam.2011.07.013

Belochitski, A., and Krasnopolsky, V. M. (2021). Robustness of neural
network emulations of radiative transfer parameterizations in a state-of-the-
art general circulation model. Geosci. Model. Dev. Discuss., 1–20. doi:10.5194/
gmd-2021-114

Brenowitz, N. D., and Bretherton, C. S. (2018). Prognostic validation of a neural
network unified physics parameterization. Geophys. Res. Lett. 45 (12), 6289–6298.
doi:10.1029/2018gl078510

Bue, B. D., Thompson, D. R., Deshpande, S., Eastwood, M., Green, R. O., Natraj, V.,
et al. (2019). Neural network radiative transfer for imaging spectroscopy. Atmos. Meas.
Tech. 12 (4), 2567–2578. doi:10.5194/amt-12-2567-2019

Chen, L. (2023) ‘A radiative transfer emulator dataset for WRF RRTMG-K’. doi:10.
5281/zenodo.7553218

Chen, X., Jeffery, D. J., Zhong, M., McClenny, L., Braga-Neto, U., and Wang, L.
(2022). ‘Using physics informed neural networks for supernova radiative transfer
simulation’. arXiv. doi:10.48550/arXiv.2211.05219

Chevallier, F., Chéruy, F., Scott, N. A., and Chédin, A. (1998). A neural network
approach for a fast and accurate computation of a longwave radiative budget. J. Appl.
meteorology 37 (11), 1385–1397. doi:10.1175/1520-0450(1998)037<1385:annafa>2.0.
co;2

Chevallier, F., Morcrette, J. J., Chéruy, F., and Scott, N. A. (2000). Use of a neural-
network-based long-wave radiative-transfer scheme in the ECMWF atmospheric
model. Q. J. R. Meteorological Soc. 126 (563), 761–776. doi:10.1002/qj.49712656318

Clough, S. A., Iacono, M. J., and Moncet, J.-L. (1992). Line-by-line calculations of
atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res.
Atmos. 97 (D14), 15761–15785. doi:10.1029/92jd01419

Dueben, P. D., and Bauer, P. (2018). Challenges and design choices for global weather
and climate models based on machine learning. Geosci. Model. Dev. 11 (10), 3999–4009.
doi:10.5194/gmd-11-3999-2018

Ham, Y. G., Kim, J. H., and Luo, J. J. (2019). Deep learning for multi-year ENSO
forecasts. Nature 573, 568–572. doi:10.1038/s41586-019-1559-7

Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and
Collins, W. D. (2008). Radiative forcing by long-lived greenhouse gases: Calculations
with the AER radiative transfer models. J. Geophys. Res. Atmos. 113 (D13), D13103.
doi:10.1029/2008jd009944

Irrgang, C., Boers, N., Sonnewald, M., Barnes, E. A., Kadow, C., Staneva, J., et al.
(2021). Towards neural Earth system modelling by integrating artificial intelligence in
Earth system science. Nat. Mach. Intell. 3 (8), 667–674. doi:10.1038/s42256-021-
00374-3

Krasnopolsky, V. M., Fox-Rabinovitz, M. S., Hou, Y. T., Lord, S. J., and Belochitski, A.
A. (2010). Accurate and fast neural network emulations of model radiation for the
NCEP coupled climate forecast system: Climate simulations and seasonal predictions.
Mon. Weather Rev. 138 (5), 1822–1842. doi:10.1175/2009mwr3149.1

Krasnopolsky, V. M., and Lin, Y. (2012). A neural network nonlinear multimodel
ensemble to improve precipitation forecasts over continental US, Adv. Meteorology
2012, 1–11. doi:10.1155/2012/649450

Frontiers in Earth Science frontiersin.org16

Mu et al. 10.3389/feart.2023.1149566

https://github.com/luc99hen/FTA
https://github.com/luc99hen/FTA
https://github.com/luc99hen/WRF
https://www.frontiersin.org/articles/10.3389/feart.2023.1149566/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/feart.2023.1149566/full#supplementary-material
https://doi.org/10.1002/2017MS000994
https://doi.org/10.1016/j.cam.2011.07.013
https://doi.org/10.1016/j.cam.2011.07.013
https://doi.org/10.5194/gmd-2021-114
https://doi.org/10.5194/gmd-2021-114
https://doi.org/10.1029/2018gl078510
https://doi.org/10.5194/amt-12-2567-2019
https://doi.org/10.5281/zenodo.7553218
https://doi.org/10.5281/zenodo.7553218
https://doi.org/10.48550/arXiv.2211.05219
https://doi.org/10.1175/1520-0450(1998)037<1385:annafa>2.0.co;2
https://doi.org/10.1175/1520-0450(1998)037<1385:annafa>2.0.co;2
https://doi.org/10.1002/qj.49712656318
https://doi.org/10.1029/92jd01419
https://doi.org/10.5194/gmd-11-3999-2018
https://doi.org/10.1038/s41586-019-1559-7
https://doi.org/10.1029/2008jd009944
https://doi.org/10.1038/s42256-021-00374-3
https://doi.org/10.1038/s42256-021-00374-3
https://doi.org/10.1175/2009mwr3149.1
https://doi.org/10.1155/2012/649450
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149566


Krasnopolsky, V. M. (2014). NN-TSV, NCEP neural network training and validation
system; brief description of NN background and training software.

Krasnopolsky, V. M. (2020). Using machine learning for model physics: An overview.
arXiv:2002.00416 [physics, stat] [Preprint]. Available at: http://arxiv.org/abs/2002.
00416 (Accessed October 8, 2021).

Lagerquist, R., Turner, D., Ebert-Uphoff, I., Stewart, J., and Hagerty, V. (2021). Using
deep learning to emulate and accelerate a radiative transfer model. J. Atmos. Ocean.
Technol. 38 (10), 1673–1696. doi:10.1175/JTECH-D-21-0007.1

Le, T., Liu, C., Yao, B., Natraj, V., and Yung, Y. L. (2020). Application of machine
learning to hyperspectral radiative transfer simulations. J. Quantitative Spectrosc.
Radiat. Transf. 246, 106928. doi:10.1016/j.jqsrt.2020.106928

Lee, A., Sohn, B. J., Pavelin, E., Kim, Y., Kang, H. S., Saunders, R., et al. (2020).
Assessment of cloud retrieval for IASI 1D-Var cloudy-sky assimilation and
improvement with an ANN approach. Weather Forecast. 35 (4), 1363–1380. doi:10.
1175/waf-d-19-0218.1

Liang, X., Garrett, K., Liu, Q., Maddy, E. S., Ide, K., and Boukabara, S. (2022). A deep-
learning-based microwave radiative transfer emulator for data assimilation and remote
sensing. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 15, 8819–8833. doi:10.
1109/JSTARS.2022.3210491

Liu, Y., Caballero, R., andMonteiro, J. M. (2020). RadNet 1.0: Exploring deep learning
architectures for longwave radiative transfer. Geosci. Model. Dev. 13 (9), 4399–4412.
doi:10.5194/gmd-13-4399-2020

Mishra, S., and Molinaro, R. (2021). Physics informed neural networks for simulating
radiative transfer. J. Quantitative Spectrosc. Radiat. Transf. 270, 107705. doi:10.1016/j.
jqsrt.2021.107705

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A. (1997).
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k
model for the longwave. J. Geophys. Res. Atmos. 102 (D14), 16663–16682. doi:10.1029/
97jd00237

Ott, J. (2020). A fortran-keras deep learning bridge for scientific computing. Scientific
Programming, e8888811. doi:10.1155/2020/8888811

Pal, A., Mahajan, S., and Norman, M. R. (2019). Using deep neural networks as cost-
effective surrogate models for super-parameterized E3SM radiative transfer. Geophys.
Res. Lett. 46 (11), 6069–6079. doi:10.1029/2018GL081646

Pincus, R., Mlawer, E. J., and Delamere, J. S. (2019). Balancing accuracy, efficiency,
and flexibility in radiation calculations for dynamical models. J. Adv. Model. Earth Syst.
11 (10), 3074–3089. doi:10.1029/2019ms001621

Rasp, S., and Lerch, S. (2018). Neural networks for postprocessing ensemble weather
forecasts. Mon. Weather Rev. 146 (11), 3885–3900. doi:10.1175/mwr-d-18-0187.1

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., et al.
(2019). Deep learning and process understanding for data-driven Earth system science.
Nature 566, 195–204. doi:10.1038/s41586-019-0912-1

Roh, S., and Song, H.-J. (2020). Evaluation of neural network emulations for radiation
parameterization in cloud resolving model. Geophys. Res. Lett. 47 (21), e2020GL089444.
doi:10.1029/2020GL089444

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., et al. (2019).
A description of the advanced research WRF model version 4. Boulder, CO, USA:
National Center for Atmospheric Research, 145.

Song, H.-J., and Roh, S. (2021). Improved weather forecasting using neural network
emulation for radiation parameterization. J. Adv. Model. Earth Syst. 13 (10),
e2021MS002609. doi:10.1029/2021MS002609

Ukkonen, P. (2022). Exploring pathways to more accurate machine learning
emulation of atmospheric radiative transfer. J. Adv. Model. Earth Syst. 14 (4),
e2021MS002875. doi:10.1029/2021MS002875

Wang, F.-Y. (2016).Where does AlphaGo go: From church-turing thesis toAlphaGo thesis
and beyond. IEEE/CAA J. Automatica Sinica 3 (2), 113–120. doi:10.1109/JAS.2016.7471613

Wang, J., Balaprakash, P., and Kotamarthi, R. (2019). Fast domain-aware neural network
emulation of a planetary boundary layer parameterization in a numerical weather forecast
model. Geosci. Model. Dev. 12 (10), 4261–4274. doi:10.5194/gmd-12-4261-2019

Yuval, J., and O’Gorman, P. A. (2020). Stable machine-learning parameterization of
subgrid processes for climate modeling at a range of resolutions. Nat. Commun. 11 (1),
3295. doi:10.1038/s41467-020-17142-3

Frontiers in Earth Science frontiersin.org17

Mu et al. 10.3389/feart.2023.1149566

http://arxiv.org/abs/2002.00416
http://arxiv.org/abs/2002.00416
https://doi.org/10.1175/JTECH-D-21-0007.1
https://doi.org/10.1016/j.jqsrt.2020.106928
https://doi.org/10.1175/waf-d-19-0218.1
https://doi.org/10.1175/waf-d-19-0218.1
https://doi.org/10.1109/JSTARS.2022.3210491
https://doi.org/10.1109/JSTARS.2022.3210491
https://doi.org/10.5194/gmd-13-4399-2020
https://doi.org/10.1016/j.jqsrt.2021.107705
https://doi.org/10.1016/j.jqsrt.2021.107705
https://doi.org/10.1029/97jd00237
https://doi.org/10.1029/97jd00237
https://doi.org/10.1155/2020/8888811
https://doi.org/10.1029/2018GL081646
https://doi.org/10.1029/2019ms001621
https://doi.org/10.1175/mwr-d-18-0187.1
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1029/2020GL089444
https://doi.org/10.1029/2021MS002609
https://doi.org/10.1029/2021MS002875
https://doi.org/10.1109/JAS.2016.7471613
https://doi.org/10.5194/gmd-12-4261-2019
https://doi.org/10.1038/s41467-020-17142-3
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1149566

	A radiative transfer deep learning model coupled into WRF with a generic fortran torch adaptor
	1 Introduction
	2 Methods
	2.1 Dataset
	2.1.1 RRTMG-K in WRF
	2.1.2 Dataset generation process

	2.2 Neural network
	2.2.1 Feedforward neural network
	2.2.2 Convolutional neural network
	2.2.3 Recurrent neural network

	2.3 Fortran Torch adaptor
	2.3.1 Adaptor description
	2.3.2 Implementation of WRF with embedded NN (WRF-NN)


	3 Experiments and results
	3.1 Offline results
	3.2 Online results

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


