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Risk assessment is critical to ensure the safe operation of oil and gas pipeline
systems. The core content of such risk assessment is to determine the failure
probability of the pipelines quantitatively and accurately. Hence, this study
combines the MATLAB neural network toolbox and adopts an Radial Basis
Functions (RBF) neural network with a strong non-linear mapping relationship
to build a corrosion failure probability prediction model for buried oil and gas
gathering and transmission pipelines. Based on the hazard identification of
pipeline corrosion failure, the model summarizes the causes of corrosion
failure and determines the input and output vectors of the neural network
based on the fault tree. According to the selected learning samples, through
the design and training of network parameters, the RBF neural network that can
predict the system failure probability is finally obtained. Taking the failure
probability of 30 groups of high-pressure gathering and transmission pipelines
of gas storage as an example, the capability of inputting the probability of the
bottom event and outputting the probability of the top event is demonstrated
through training data. Our results show that the calculated failure probability
based on the fault tree analysis model is consistent with the predicted failure
probability based on the RBF neural network model. Hence, the RBF neural
network model is shown to be reliable in predicting the corrosion failure
probability of buried pipelines.
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1 Introduction

Oil and gas pipelines bring a convenient and efficient energy supply to economic
development. Due to the vulnerability of pipeline materials and the particularity of
transmission medium, long-term oil, and gas pipelines face the risk of corrosion failure
(Amaechi et al., 2022; Li et al., 2022; Wu et al., 2022). In the corrosion failure risk assessment
of oil and gas pipelines, the failure probability assessment of pipelines is the core content of a
quantitative risk assessment of corrosion failure. The assessment of failure probability can
provide a basis for making monitoring and maintenance plans for corroded pipelines, which
is more practical. Therefore, it is necessary to study the evaluation method of corrosion
failure probability of oil and gas pipelines.
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Many scholars have studied the calculation method of corrosion
failure probability of oil and gas pipelines. According to the principle
of Bayesian network analysis, Hu et al. (2009) calculated the
probability of pipeline corrosion failure by analyzing the
probability and statistical relationship between the sub-node and
the root node and using conditional independence. Luo and Jiang
(2015) proposed an evaluationmethod for calculating the reliability of
oil and gas pipelines based on the probabilistic artificial neural
network of the Bayesian classification decision. Yu et al. (2016)
combined the grey theory and Markov chain theory to predict the
corrosion life of oil and gas pipelines through the constructed model.
In order to predict the occurrence of pipeline corrosion failure and
reasonably control pipeline corrosion, Liu et al. (2019) established the
failure probability analysis model of the minimum cut-set basic event
parallel system based on the failure fault tree. Based on the JCmethod
and orthogonal transformation, Zhang et al. (2019) proposed a multi-
mode failure probability calculation method for corroded pipelines
considering relevant random variables using a multidimensional
normal distribution function. To improve the prediction accuracy
of pipeline corrosion rate, Li et al. (2021) built an unbiased greymodel
based on the traditional grey model. They introduced the Markov
model to modify the prediction results.

According to the existing research, the mathematical models for
estimating the corrosion failure probability of oil and gas pipelinesmainly
include the Markov model, common cause failure model, Bayesian
network model, and artificial neural network model (Li et al., 2017;
Taleb-Berrouane et al., 2021). However, these estimation methods have
limitations. For example, the main problem of the Markov model is that
it is based on exponential distribution and assumes that the failure
probability of the bottom event remains unchanged. The distribution of
conditional failure probability in the common cause failuremodel cannot
be obtained. Still, it is assumed that it obeys a certain distribution, and the
result deviates significantly from reality. The Bayesian network model
can effectively combine prior knowledge and subjective probability.
However, it requires a lot of data, and its analysis and calculation are
more complex. In the case of complex problems, this contradiction will
bemore prominent. In addition, the traditional fault tree analysismethod
combines the importance method and the fuzzy evaluation method.
Although it can calculate the more comprehensive failure probability, it
cannotmake a large number of probability predictions. At the same time,
the comprehensive application of multiple models makes the fault tree
software unable to play its expected role in the calculation, which also
leads to a considerable amount of calculation. Thus, the neural network
has irreplaceable advantages in predicting the failure probability of oil
and gas pipelines.

So far, the application of neural network models in oil and gas
transportation safety evaluation has not been comprehensive.
Although a neural network model can evaluate pipeline corrosion
rates and risks, there is no mature research on pipeline failure
probability prediction (Xiao et al., 2022; Yu et al., 2022). However,
the RBF neural network can better capture the multidimensional
non-linear correlation between the relevant parameters and the
pipeline failure probability. Hence, this paper attempts to apply
the RBF neural network model to predict the corrosion failure
probability of oil and gas pipelines. An RBF neural network is
adopted for prediction. Through network training and learning of
the known samples, the optimal parameters are derived, based on
which the corrosion failure probability of other samples is predicted.

The rest of the paper is organized as follows. The necessity of the
RBF neural network is analyzed, and its MATLAB implementation
is explained based on the introduction of the RBF neural network
model in Section 2. After identifying the hazards of corrosion failure
of oil and gas pipelines, the input and output vectors of the RBF
neural network are designed, and appropriate network parameters
are selected through training and learning samples in Section 3. In
Section 4, based on the comparative analysis of fault tree analysis
results and RBF neural network prediction results, the feasibility of
using RBF neural network to predict the corrosion failure
probability of buried oil and gas pipelines is verified. Finally, a
summary of the results and further understanding are considered.

2 Neural network model and its
implementation in MATLAB

2.1 Selection of neural network model

The artificial neural network is a theoretical mathematical model
modeled on brain activity. It is a non-linear adaptive system
composed of a large number of processing units (i.e., neurons)
connected in a certain way. A typical feature of a neural network is
that it can predict multivariable models without any correlation
transformation or assumption of relevant input variables. It is based
on actual observation data or other theoretical data used for training
verification. The implicit non-linear relationship between input and
output variables is extracted and approximated by a training neural
network model (Xu et al., 2021; Zhang et al., 2021; Zhang et al.,
2022). The elements of the neural network include neurons, weights,
etc. The relationship between the elements is shown in Figure 1.

According to the relationship between the elements of the neural
network, the neural model can be expressed as follows:

pj � ∑n

i�1ωjixi − ηj (1)
yj � f pj( ) (2)

where pj is the activation level of neurons. ωji is the weight. xi is the
input of neural network. ηj is the network system threshold. yj is the
output of neuron. f(·) is the activation function of neurons, which is
usually a non-linear function.

At present, the BP network and RBF network are used in the
prediction of pipeline failure probability. BP network model is a
feedforward neural network that propagates the error back. It uses

FIGURE 1
Element relation diagram of neural network.
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the stored mapping relationship to output the data to be predicted
without function. That is to say that the output value can be obtained
without function operation. Before reaching the set error square
sum, the weight value and threshold value can be adjusted by
continuous backpropagation. Although the BP network is simple
for calculation, it is easy to fall into a local minimum value, and its
error cannot be reduced no matter how many iterations. Compared
with many disadvantages of the BP network, the RBF (radial basis
function) neural network shows its advantages. Its network topology
can be changed according to specific problems. The network has
adaptive and self-organizing capabilities and can also perform data
fusion in a wide range in computing speed, thus reducing the
network computing time (Peng et al., 2020). Therefore, this study
intends to use RBF neural network to predict the corrosion failure
probability of buried oil and gas pipelines.

2.2 RBF neural network

The RBF neural network is a supervised learning network. It has
a simple structure, fast training speed, and can approximate non-
linear functions with arbitrary accuracy. The most basic RBF neural
network includes three layers: input layer, hidden layer, and output
layer. After the samples are input into the network through the input
layer, they reach the hidden layer. The hidden layer maps the input
to a new space through an activation function, and then the system
will linearly weigh the output of the hidden layer neurons to obtain
the output value of the network (Wang et al., 2021; Yang and Fang,
2022). The topology of the RBF neural network is shown in Figure 2.

In Figure 2, (x1, x2,/, xn) represents the input vector. E(x, bk)
represents the activation function of the hidden layer. Ω represents
the weight matrix between the hidden layer and the output layer.
fn(x) represents the output value of output layer node n. The
function of hidden layer is to map the vector from a low dimension
to a high dimension. When the low dimension is linearly indivisible,
it can be linearly separable when mapped to a high dimension.

2.3 Implementation of MATLAB

Since MATLAB provided a neural network toolbox, it has
become the first choice for engineers to analyze and design

neural networks (Zhu et al., 2021). The neural network toolbox is
one of many toolboxes developed in theMATLAB environment. It is
based on the artificial neural network theory. It uses Matlab
programming language to form many activation functions of
neural networks, such as S-type, linear, competitive layer,
saturated linear, and other activation functions, so that the
designer’s calculation of the selected network output can be
transformed into the call of activation functions. In addition, we
can use MATLAB language to compile various subprograms for
network weight training according to different typical procedures
for modifying network weights and the training process of the
network.

3 Corrosion failure probability
prediction model for buried oil and gas
pipelines

3.1 Hazard identification of corrosion failure
of buried oil and gas pipelines

Based on fault tree analysis, this study analyzes the corrosion
hazards of buried oil and gas pipelines. First, the top event of the
fault tree should be defined. The top event is the starting point and
main body of the fault tree analysis. The top event should be
determined according to the characteristics of the analysis object.
According to the risk degree of possible accidents in the fault tree,
the hazardous event that has the most significant impact on the
system should be taken as the top event of the fault tree. Then, the
specific analysis should be carried out according to the principle of
preparing a fault tree for one accident (Zhou et al., 2021; Chen et al.,
2022; Irfan et al., 2022).

According to the above fault tree analysis principles, this study
regards buried pipeline corrosion leakage as a top event. The direct
cause of pipeline leakage is buried corrosion and internal corrosion,
and any of these two causes will lead to pipeline failure. These two
causes are taken as the second top events and analyzed similarly
until the basic events representing various fault events are found
(Ding et al., 2019; Huang et al., 2020). The specific list of basic events
is shown in Table 1.

3.2 Establishment of RBF neural network
prediction model

The corrosion failure probability of buried oil and gas pipelines
is a non-linear function related to the basic event factors of the fault
tree. The neural network model for predicting the failure probability
of buried oil and gas pipelines established in this study is essentially a
non-linear relationship mapping model between 77 input variables
of failure influencing factors and one output variable of failure
probability. The specific process is as follows.

3.2.1 Design input and output vectors
In this study, 77 basic events determined by fault tree analysis

are taken as neuron parameter vectors of the neural network input
layer. According to the analysis, when hiring experts to evaluate the
basic events of the fault tree, the experts give a linguistic description

FIGURE 2
Topological structure diagram of RBF neural network.
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of their probability of occurrence based on the attributes of the basic
events. There are five natural language variables: little, fairly little,
medium, fairly big, and big. Since the input variable must be a
specific value between (0, 1) when conducting RBF neural network
prediction training, this study will try to convert the language
variable into a numerical variable (Landquist et al., 2016; Guo
et al., 2019; Zhang et al., 2020), as shown in Table 2.

Through the corresponding transformation between language
variables and numerical variables, it can be determined that the

input layer neuron is a 77-dimension numerical vector, and the
output layer neuron is a 1-dimension numerical vector.

3.2.2 Select learning samples
The training verification samples proposed in this study are

from the high-pressure buried gathering and transmission pipeline
network of the Suqiao Gas Storage Complex in North China Oilfield.
At present, there is no general method for selecting the number of
training samples. Theoretically, fewer training samples may make a

TABLE 1 Basic event list of corrosion failure fault tree of buried oil and gas pipeline.

Number Basic event Number Basic event Number Basic event

1 Pipeline stress concentration 27 Short protection distance 53 Untimely maintenance

2 Material itself defects 28 Cathode underprotection 54 Cold deformation

3 Unreasonable design standards 29 Cathode overprotection 55 Sulfide stress corrosion cracking

4 Unreasonable design parameters 30 Non-standard protection 56 CO2 stress corrosion cracking

5 Design approval error 31 Failure of protective material 57 High airflow velocity

6 Mechanical damage 32 Coatings blistering 58 Assistance of airflow dust

7 Inadequate construction supervision 33 Anodic pit corrosion 59 SRB reduction yields H2S

8 Welding non-standard 34 Vandalism 60 Anaerobic bacteria produce acetic acid

9 Unqualified welding materials 35 Improper handling of social relations 61 High relative humidity

10 Poor surface pretreatment 36 Poor surrounding economy 62 With condensate water

11 Incomplete fusion 37 Defects in laws and regulations 63 Scouring strengthens solution stirring

12 Lack of penetration 38 Poor enforcement of laws and regulations 64 Upper H2S concentration higher than lower

13 Fissure 39 Individual lack of legal awareness 65 Erosion Elimination of Corrosion Products

14 Low soil resistivity 40 Insufficient patrols 66 Water vapor film on pipe surface

15 High water content 41 Alarm system failure 67 H2S and CO2 dissolved in water

16 High reduction potential 42 Patrolman poor sense of responsibility 68 H2S solution on the pipe surface

17 Low PH 43 Low awareness of public property 69 Unqualified inner protective layer

18 Corrosion of sulfur compounds 44 Insufficient pipeline safety education 70 Internal protective layer falling off

19 Cl− high content 45 Pipeline mark error 71 Long filling cycle of corrosion inhibitor

20 CO3
2- high content 46 Shallow buried depth of pipeline 72 Less dosage of corrosion inhibitor

21 Iron bacterial corrosion 47 Unqualified anticorrosive coating 73 Corrosion inhibitor unqualified

22 High salinity 48 Coating stripping 74 Inappropriate inhibitor concentration

23 High temperature 49 Coating thinning 75 High flow rate damage inhibitor

24 Fe2+ destruction 50 Coating aging 76 Long-term undetected corrosion inhibitor

25 Direct stray current 51 Reduced adhesion 77 No corrosion inhibitor protection

26 Stray alternating current 52 Poor processing quality

TABLE 2 Conversion between linguistic variables and numerical variables.

Linguistic variables Little Fairly little Medium Fairly big Big

Numerical variables 0.1 0.3 0.5 0.7 0.9

Note: In RBF, neural network prediction, the input variable is the probability of the occurrence of the basic event, which must be a certain value. In the study, the possibility of the occurrence of

the basic event is judged by the expert evaluation method, and then the fuzziness of the possibility of the occurrence of the basic event is solved by the transformation of linguistic variables into

numerical variables. This can solve the uncertainty of input variables in neural network prediction.

Frontiers in Earth Science frontiersin.org04

Zhao et al. 10.3389/feart.2023.1148407

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1148407


neural network insufficient, leading to inadequate extrapolation
ability of neural network prediction. Too many training samples
will make the input variables of the neural network redundant,
increasing the burden of neural network training. At the same time,
the neural network will be overfitted due to excessive information
surplus (Lin et al., 2018; Jiang et al., 2022; Xu et al., 2022). Based on
this, this study extracts the first 25 pipeline segments from the
30 pipeline segments included in the gathering and transportation
network as learning samples to train the network.

3.2.3 Design and training parameters
RBF neural network is a model widely used in system prediction

and has mature technology. According to the design principle of the
RBF neural network, the value of spread has a great impact on the
network performance, which will be discussed in detail later.

Based on MATLAB programming operation, RBF neural network
training curve is shown in Figure 3 (see the Supplementary Material for
Matlab code). It can be observed that the global error of the network can
reach below 0.05 after nine times of training. Therefore, the established
RBF neural network can converge quickly.

3.3 Parameter selection of RBF neural
network

The RBF neural network model mainly includes two parameters:
the radial basis function and the value of the spread. In the study, the
relative error Ei and the determination coefficient R2 are selected as
the evaluation indicators for parameter selection (Gao et al., 2019;
Yang et al., 2022). They are calculated as follows:

Ei � y1
i − yi

∣∣∣∣
∣∣∣∣

yi
(3)

R2 � n∑n
i�1y

1
i yi −∑n

i�1y
1
i∑

n
i�1yi( )2

n∑n
i�1 y1

i( )2 − ∑n
i�1y

1
i( )2[ ] n∑n

i�1 yi( )2 − ∑n
i�1yi( )2[ ]

(4)

where y1
i represents the predicted value of indicator i. yi represents

the actual value of indicator i. n is the number of indicators.

In Eq. 4, the performance of the neural network model is inversely
proportional to the value of the relative error Ei. The value of the
determination coefficient R2 is between [0, 1].When its value is close to
1, the RBF neural network model has the best performance.

The general creation functions of RBF networks include newrb
and newrbe. Combined with the calculation of the evaluation index,
the influence of the value of spread on the performance of the RBF
network mainly includes the following two cases.

3.3.1 Newrb radial basis function network creation
function and spread value

When newrb is selected as the RBF network creation function, the
network is trained according to the spread value, and the corresponding
deermination coefficientR2 is calculated. The result is shown in Figure 4
(see the supplementary material for Matlab code).

FIGURE 3
Training error curve of RBF neural network.

FIGURE 4
Influence of spread value on the performance of newrb radial
basis function network.

FIGURE 5
Influence of spread value on the performance of newrbe radial
basis function network.
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3.3.2 Newrbe strict radial basis function and spread
value

When newrbe is selected as the RBF network creation function, the
network is trained according to the spread value, and the corresponding
determination coefficient R2 is calculated. The result is shown in
Figure 5 (see the supplementary material for Matlab code).

It can be seen from Figures 4, 5 that different spread values have
different effects on RBF neural network performance. For the newrb

function, when the spread is 0.2, the network performance is the best,
and the corresponding test set determination coefficient is 0.6145. For
the newrbe function, when the spread value is 0.5, the network
performance is the best, and the corresponding test set determination
coefficient is 0.6864. Generally, the value of the spread is proportional to
the smoothness of the function. According to the principle of network
parameter selection, newrbe is selected as the radial basis function in this
study, and the spread value is 0.5.

TABLE 3 Corrosion failure probability of buried gathering and transmission pipeline.

Pipe number Start
station

End
station

Pipe
length (km)

Failure probability (fault tree
result)

Failure probability (RBF prediction
result)

1 19,633 19,647 1.455 0.005733 0.0057

2 19,647 19,648 0.103 0.005718 0.0057

3 19,648 19,649 0.104 0.006774 0.0068

4 19,649 19,653 0.416 0.006756 0.0068

5 19,653 19,658 0.519 0.005221 0.0052

6 19,659 19,660 0.104 0.006142 0.0061

7 19,662 19,668 0.623 0.005531 0.0055

8 19,668 19,669 0.104 0.005929 0.0059

9 19,670 19,674 0.416 0.007342 0.0073

10 19,678 19,679 0.104 0.005586 0.0056

11 19,681 19,687 0.624 0.006528 0.0065

12 19,691 19,692 0.249 0.007027 0.0070

13 19,693 19,700 1.743 0.007726 0.0077

14 19,700 19,706 1.493 0.006505 0.0065

15 19,700 19,722 5.477 0.005942 0.0059

16 19,707 19,715 2.132 0.007294 0.0073

17 19,723 19,727 0.995 0.006113 0.0061

18 19,727 19,734 1.743 0.006037 0.0060

19 19,734 19,736 0.498 0.007112 0.0071

20 19,736 19,741 1.245 0.006117 0.0061

21 19,752 19,755 0.747 0.006505 0.0065

22 19,754 19,758 0.996 0.006276 0.0063

23 19,757 19,768 2.739 0.007211 0.0072

24 19,769 19,771 0.498 0.007185 0.0072

25 19,773 19,783 2.489 0.006816 0.0068

26 19,784 19,785 0.249 0.005653 0.0057

27 19,787 19,790 0.747 0.006117 0.0060

28 19,791 19,792 0.249 0.005583 0.0057

29 19,794 19,797 0.747 0.006604 0.0066

30 19,796 19,805 2.24 0.006173 0.0062

Note: the start station and end station are the starting and ending labels of segmented pipes. They are the marks determined when laying pipes. Pipe length represents the length of each

segmented pipeline. The fifth column of data is the pipeline segment failure probability calculated based on the fault tree analysis method. Their values are obtained by the authors. Its first

25 groups of data are used for simulation analysis. The sixth column of data is the prediction data obtained based on RBF., They are calculated by neural network simulation.
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4 Comparative analysis of prediction
results

The corrosion failure probability of buried gathering pipelines is
calculated based on the trained RBF neural network, and the specific
results are shown in Table 3.

According to the data in Table 3, the comparison results are
shown in Figure 6.

It can be seen that the failure probability calculated based on
the fault tree analysis model is consistent with the failure
probability predicted based on the RBF neural network model.
It is feasible to use the RBF neural network to predict the
corrosion failure probability of buried oil and gas pipelines.
Therefore, managers can directly calculate the failure
probability prediction data from the network by combining
the actual original data and using the trained RBF neural
network model. Because the neural network has a strong non-
linear mapping relationship, the RBF neural network model
improves the accuracy of pipeline corrosion failure probability
prediction when the input and output relationships are
completely unknown. At the same time, the RBF neural
network model avoids the huge amount of calculation. It can
save a lot of time and improve calculation efficiency, providing an
evaluation method for the safety and reliability of the oil and gas
transportation system.

5 Conclusion

In this study, an RBF neural network is introduced to predict the
corrosion failure probability of buried oil and gas pipelines. A
prediction model based on Matlab neural network toolbox is
established. The prediction model is applied to calculate the
corrosion failure probability of the high-pressure gathering and
transmission pipeline network of the gas storage. Our results are
consistent with the failure probability results obtained based on the
fault tree model. Hence, the effectiveness of the RBF neural network
prediction model is verified.

In this study, when using neural networks to solve practical
problems, it is found that the radial basis function and the spread
value of the RBF neural network prediction model will significantly
affect the prediction accuracy. Through repeated trial and analysis,
when the radial basis function is newrbe and the spread value is 0.5,
the network performance of the RBF prediction model is optimal.

The accuracy of the prediction results of the RBF neural network
model constructed in this paper is related to various factors. The
selection of model layers, number of neurons, transfer function and
training error values, and even the choice of training samples will
significantly affect the accuracy of the prediction results. Therefore,
for future research, it is necessary to conduct a more in-depth study
on the selection of model-related parameters.
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