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Environmental variables are crucial factors affecting the development and
distribution of landslides, and they also provide vitally important information for
statistically-based landslide susceptibility mapping (SLSM). The acquisition and
utilization of appropriate and themost influential environmental variables and their
combinations are crucial for improving the quality of SLSM results. However,
compared with the construction of SLSM models based on machine learning, the
acquisition and utilization of high-quality environmental variables have received
very little attention. In order to further clarify the research status of the application
of environmental variables and possible development directions in future
research, this study systematically analyzed the application of environmental
variables in SLSM. To this end, a literature database was constructed by
collecting 261 peer-reviewed articles (from 2002 to 2021) on SLSM from the
Web of Science and CNKI platform (www.cnki.net) based on the keywords of
“landslide susceptibility” and “environmental variable.” We found that existing
methods for determining environmental variables do not consider the regional
representativeness and geomorphological significance of the variables. We also
found that at present, environmental variables are utilized generally without the
realization and understanding of their spatial heterogeneity. Accordingly, this
study raises two major scientific issues: 1) Effective identification of important
environmental variables required in SLSM. 2) Effective representation of the spatial
heterogeneity of environmental variables in SLSMmodeling. From the perspective
of the identification of dominant variables and their geospatial pattern of
heterogeneity, targeted solutions for future research are also preliminarily
discussed, including the method for identifying dominant variables from
qualitative and quantitative perspectives and SLSM model construction
considering the specific geospatial patterns. In addition, the applicability and
limitation of the mentioned methods are discussed.
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1 Introduction

Landslide susceptibility refers to the likelihood of a landslide
occurring in a certain area under the influence of local
environmental conditions (Brabb, 1984). Applying the ideology that
the “past and present are the keys to the future” (Furlani and Ninfo,
2015), statistically-based landslide susceptibilitymapping (SLSM) is one
of the most widely used methods in landslide susceptibility assessment.
This method focuses on building the functional relationship between
landslide environmental variables and existing landslide inventories,
and further realize the quantitative or qualitative assessment of the
spatial possibility of landslide occurrence under a set of geological/
geographical environmental conditions (Guzzetti et al., 2005; 2006a;
2006b; Reichenbach et al., 2018). SLSM can be used to effectively predict
and identify locations prone to landslides on the regional scale
(Alcántara-Ayala et al., 2022), and its results can provide
indispensable information for various tasks, such as landslide risk
assessment, formulation of disaster reduction measures, and land use
planning (vanWesten et al., 2008; Erener et al., 2016; Huang et al., 2019;
Zhang et al., 2022). In recent years, it has gradually become a hot topic
of geological hazard research on a global scale (Chen et al., 2020; Huang
et al., 2021a).

Since the mid-1970s, research on SLSM has made significant
progress. According to 250 slopes and topographic and geological
conditions in the southwest of Germany, Neuland (1976) built a
landslide prediction model using the statistical method of binary
discriminant analysis, which is considered to be the earliest
statistical study of landslide susceptibility assessment. Henceforth,
scholars worldwide have published hundreds of papers considering
different environmental conditions and landslide distribution in
different regions, using various statistical methods. These statistical
methods are also called data-driven landslide susceptibility models
(Lima et al., 2022). By sorting and summarizing relevant literature,
these methods can be generally divided into three categories
(Table 1): mathematically-based, geography-based and, pattern
recognition-based. The model construction under these three
categories is based on geostatistical analysis, geospatial analysis,
and machine learning, respectively, with each presenting its own
advantages and disadvantages.

Researchers are constantly attempting to determine a functional
relationship that is more representative of the relationship (assessment
model) between environmental variables (independent variables) and
landslide inventories (dependent variables) (Carrara, 1983; Guzzetti
et al., 1999; Guzzetti et al., 2006b; Budimir et al., 2015; Zhang et al.,
2020) from different perspectives. Particularly in recent years, artificial

intelligence represented by machine learning (ML) has introduced new
tools of function expression and data analysis for SLSM and their
combination significantly promotes the development of model
construction for landslide susceptibility analysis (Huang et al., 2017;
Zhao et al., 2019; Sun et al., 2021; Lima et al., 2022). Gradually, the focus
of SLSM research has shifted to the construction and analysis of
susceptibility models. Research interest in this field appears to be
increasingly shifting towards the testing of new ML models and the
comparison of model performance, striving to develop a better and
more suitable prediction model. However, through the analysis of the
quality of SLSM by applying the susceptibility quality level (SQL) index
(Guzzetti et al., 2006a; Guzzetti et al., 2006b), Reichenbach et al. (2018)
reported that the number of high-quality research remains small.

Environmental variables are among the most important input
information for SLSM models (van Westen et al., 2008). They
represent environmental factors that affect the development of
landslides and have important and complex effects on the spatial
distribution of landslides (Yan et al., 2019). We sorted out the
number of environmental variables used in the literature database,
which was constructed using 261 peer-reviewed articles (from 2002 to
2021) collected from the Web of Science and CNKI platform (www.
cnki.net) according to the following two keywords: “landslide
susceptibility” and “environmental variable.” The number of such
articles showed a significant growth trend (Figure 1) in the past
20 years. In other words, researchers have gradually realized that
environmental variables are crucial for the construction of SLSM
models (Ercanoglu and Gokceoglu, 2002; Jebur et al., 2014;
Kavzoglu et al., 2015; Trigila et al., 2015; Pham et al., 2016; Nguyen
et al., 2019). The purpose is to select as many environment variables as
possible and include the ones that may be the most influential.

However, the premise is that researchers require some prior
knowledge of the main environmental factors affecting landslides in
the study area (Crozier, 1986; Zhao et al., 2019), and the selected
environmental variables should be closely related to the environmental
characteristics of the study area (Pourghasemi et al., 2012; Lima et al.,
2022). The analysis of the literature database reveals that this aspect has
not received sufficient attention. Researchers appear to be more
interested in new modeling techniques, but they pay little attention
to selection and application of high-quality environmental variables
required in landslide susceptibility modeling. Therefore, in this study, a
systematic review based on the literature database was conducted to
further clarify the current status of the application of environmental
variables in SLSM. On this basis, possible future development ideas of
improving the SLSM prediction quality from the perspective of
environmental variables are preliminarily explored.

TABLE 1 Statistical methods used for SLSM.

Category Main method Literature Advantage and disadvantage

Mathematically-
based

Geostatistical analysis, such
as WOE, I, etc.

Wu et al. (2017), Zhang et al. (2022) Advantage: Simple and effective Disadvantage: Model with
subjectivity

Geography-based Geospatial analysis, such as
GIS, GWR, etc.

Clerici et al. (2002), Kamp et al. (2008), Li et al.
(2020)

Advantage: Model with geospatial characteristics Disadvantage:
Distance is the only measure of the spatial weight

Pattern recognition-
based

Machine learning, such as
SVM, RF, ANN, etc.

Taner San (2014), Hong et al. (2019), Azarafza
et al. (2021), Nikoobakht et al. (2022)

Advantage: Model with strong classification and recognition ability
Disadvantage: High model adaptation power leading to overfitting
and accuracy limitation

Notes: WOE, weight of evidence; I, information; GIS, geographic information system; GWR, geographically weighted regression; SVM, support vector machine; RF, random forest; ANN,

artificial neural network.
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2 Acquisition status of environmental
variables

The acquisition of environmental variables is a process of
searching for inducing and contributing factors that have a
certain correlation with the occurrence and distribution of
landslides from different aspects such as the natural environment
and human activities (Pradhan, 2013; Duan et al., 2022). The
ultimate purpose is to ensure that the environmental variables
used for SLSM have a logical and effective impact on the
prediction of landslide susceptibility in the study area (Ayalew
and Yamagishi, 2005; Guzzetti et al., 2012; Jaafari et al., 2019;
Pourghasemi et al., 2020). In general, the approach of researchers
selecting environmental variables can be summarized into two
methods: qualitative selection and quantitative screening.

2.1 Qualitative selection

For a specific study area, the selection of environmental variables
is necessary for every SLSM researcher. Through the analysis of the
literature database, selection methods of environmental variables
could be generally divided into four categories (Table 2): methods
based on existing experience and cognition, direct reference from

literature records, available existing data of the study area, and
comprehensive consideration. At the same time, researchers also
consider the accessibility and operability of data in the process of
selection from the perspective of qualitative analysis (Lee, 2005). The
four methods provide direct and practical guidance and are
widely used.

Environmental factors affecting the occurrence and distribution
of landslides in a region are complex and diverse (Soeters and van
Westen, 1996; Hong et al., 2019), and different regions correspond
to different variables (Guzzetti et al., 2006a). According to the
analysis of the current status of the qualitative selection of
environmental variables in the literature database, although
qualitative selection provides a large number of environmental
variables, several shortcomings still remain, such as the limited
cognition ability of researchers regarding preliminary information
on landslides in specific study areas, influence of commonly used
environmental variables on the current reference and citation, and
difficulties in data acquisition affecting variable selection.
Consequently, environmental variables selected for susceptibility
assessment may not all possess good expressive ability for the
environmental characteristics of the specific study area. For
example, for many types of landslides, especially loess or red bed
landslides, groundwater variables have a critical impact on the
development, movement, and distribution of landslides (Pei et al.,

FIGURE 1
Number of environmental variables applied from the literature database. The order numbers are listed in chronological order of the literature.

TABLE 2 Selection methods of environmental variables.

Method Function Literature

Empirical discriminant Experience/cognition → Prior guidance Pradhan and Lee (2010), Pham et al. (2018), Zhang et al. (2018), Moayedi et al.
(2019)

Documentation Literature documentary records→Direct information
reference

Clerici et al. (2002), Ermini et al. (2005), Yalcin (2008), Guo et al. (2015), Hussin et al.
(2016)

Data availability Data availability → Limitation of the selection scope → A
clear guidance for selection

Zêzere (2002), Pradhan and Lee (2010), Costanzo et al. (2012), Erener et al. (2016),
Juliev et al. (2019)

Comprehensive
consideration

Comprehensive consideration →More basis Myronidis et al. (2016), Hong et al. (2018), Pourghasemi and Rahmati (2018), Hong
et al. (2019), Jaafari et al. (2019), Nsengiyumva et al. (2019), Achour and
Pourghasemi (2020), Zhu et al. (2021)
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2018; Peng, 2018; Zhao et al., 2022), but the actual selection and
application of groundwater variables in SLSM are rare. In some
regions, especially dry and hot valleys, the arid climate conditions
have a significant control over the spatial distribution of geological
disasters such as landslides and debris flows (Chen et al., 2014; Sun,
2020; Liu et al., 2023). However, drought variables have not received
sufficient attention in the current SLSM. Therefore, further in-depth
consideration of landslide geological properties and environmental
characteristics is required for specific regions in the acquisition of
variables.

2.2 Quantitative screening

Some researchers (Lee et al., 2012; Wu et al., 2013; Samia et al.,
2017; Lucchese et al., 2021) immediately constructed their
susceptibility assessment model after completing the qualitative
selection of environmental variables. In contrast, some
researchers (He et al., 2019; Al-Najjar and Pradhan, 2021; Chen
and Chen, 2021) carried out quantitative screening after completing
preliminary selection. Through the analysis of the current status of
variable screening in the literature database (Figure 2A),

approximately 28% of the studies were found to have further
carried out follow-up screening after qualitative selection. Since
2015, the screening of environmental variables has shown a distinct
growth trend, and the number of studies with screening reached
39%. In other words, with the continuous deepening of SLSM
research, an increasing number of researchers are acknowledging
that the screening of environmental variables before constructing
the models is conducive to ensuring better conditional
independence and higher prediction ability of environmental
variables involved in the assessment (Kavzoglu et al., 2015; Chen
et al., 2018a; Amato et al., 2019; Hong et al., 2020; Saha et al., 2021).

At present, the screening of environmental variables is primarily
based on 1) correlation analysis between variables and landslide
distributions, 2) analysis of the conditional independence of
variables, and 3) combination analysis (Figure 2B). The first
approach accounts for the largest proportion (45.9%) of all
screening approaches. In this approach, environmental variables
with high correlation are screened by analyzing the relationship
between the environmental variables and the landslide spatial
distribution. The main screening methods include machine
learning (Pradhan and Lee, 2010; Kavzoglu et al., 2015; Amato
et al., 2019), correlation analysis (Jebur et al., 2014; Ciurleo et al.,

FIGURE 2
(A) Indicates the proportion of screening and non-screening. (B) Indicates the proportion of different screening methods.
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2016; Steger et al., 2016; Huang et al., 2017; Chen and Li, 2020), and
information gain (Chen et al., 2018b; Ngo et al., 2021). The second
approach accounts for 35.1%. In this approach, the quality of
environmental variables involved in the evaluation are improved
by eliminating collinearity and redundancy factors, such that
variable screening can be realized. The main methods include the
collinearity test (Dou et al., 2019; Zhao, 2020; Azarafza et al., 2021;
Chen and Chen, 2021), and chi square test (Hong et al., 2017; Pham
et al., 2019). The third approach accounts for 18.9% and essentially
involves the combination of different screening methods in the first
two approaches (Dou et al., 2020; Hong et al., 2020; Fang et al.,
2021).

As different screening methods are widely used, there is no
universal and fixed criterion for selecting environmental variables
for SLSM (Pradhan and Lee, 2010; Hong et al., 2019). Nevertheless,
the original intention of researchers to carry out the screening of
environmental variables is consistent, namely, to select variables
with high quality as far as possible.

In reality, the development and distribution of landslides are
closely related to the geomorphological evolution (Gómez and
Kavzoglu, 2005). However, current screening methods do not
sufficiently consider regional geomorphic characteristics.
Moreover, the geomorphological significance of environmental
variables is poorly discussed and justified (Reichenbach et al.,
2018). Consequently, the environmental variables used for SLSM
may not necessarily be the most suitable and provide effective
information required for modeling. Furthermore, some selected
variables may even be controversial. Therefore, the acquisition of
higher quality environmental variables for SLSM remains to be
further explored.

3 Application status of environmental
variables

3.1 Quantity of variables

In the study of SLSM, the number of environmental variables
used has always been controversial. Some researchers believe that
effective assessment requires only a few important variables
(Ohlmacher and Davis, 2003; Dahl et al., 2010; Akgün, 2012;
Pereira et al., 2012). In contrast, some researchers believe that a
large number of variables is more conducive to providing more
comprehensive environmental information, implying more accurate
landslide susceptibility assessment (Sabatakakis et al., 2013; Dou
et al., 2015; Rowden and Aly, 2018; Jaafari et al., 2019). At the same
time, many researchers (Remondo et al., 2003; Pradhan and Lee,
2010; Floris et al., 2011; Manzo et al., 2013; Jebur et al., 2014) have
proved that the increase of the number of environmental variables
cannot guarantee the quality and accuracy of susceptibility
assessment, and that it may even be counterproductive.
Moreover, in the presence of excessive environmental variables,
the susceptibility prediction model may even have multicollinearity,
high complexity, and limited explanatory power (Amato et al.,
2019).

In this study, the numbers of variables used in different literature
were found to be variable, with even large differences (Figure 1). In
the literature database, 29 environmental variables were used at

most, and 2 at least. The average number is about 10. A series of
factors, such as the geological/geographical environment of the
study area, disaster development/inducing conditions of the
landslides, availability of regional data, and researchers’ cognition
of landslides in the specific region, will affect the quantity of the
environmental variables used for the susceptibility assessment
(Guzzetti et al., 1999; Lee and Pradhan, 2007; Nefeslioglu et al.,
2011; Felicísimo et al., 2013; Yang G. et al., 2019). As observable,
there is no optimal solution for the quantity of environmental
variables applied in SLSM. In the actual landslide susceptibility
assessment, a corresponding number of representative
environmental variables should be selected based on the specific
environmental characteristics of the study area.

3.2 Type of variables

In the literature database, 91 types of environmental variables were
recorded. According to the attributes, they can be divided into six types:
morphological, geological, hydrological, land cover, climatic, and
human activity (Figure 3A). Morphological variables are the most
used among all types, accounting for more than 40%, followed by
geological variables (18.66%), hydrological (16.2%), land cover
(14.53%), and human activity (6.18%). Climatic variables are the
least applied, accounting for only 3.84%. According to the similarity
criteria of names and meanings of variables (Reichenbach et al., 2018),
the six main types of environmental variables can be further subdivided
into 23 subcategories. Figure 3B reveals the distribution of each
subcategory of environmental variables. On the whole,
7 subcategories account for nearly 55% of the total, namely, slope,
formation lithology, aspect, elevation, curvature, distance to fault, and
distance to river. Among them, slope is the most widely used category,
accounting for more than 10%.

3.2.1 Morphological
The most widely used subtypes of morphological variables are

slope, aspect, curvature (plane curvature and profile curvature), and
elevation, which offer simple and direct measurement of the terrain.
The wide use of these simple terrain variables is attributable to two
factors: 1) They can be easily obtained through digital terrain data
(usually DEM) (Xu and Xiao, 2013); 2) They are the most direct and
effective measures of regional terrain/geomorphology and more
effective for susceptibility prediction than other types of
environmental variables (Fabbri et al., 2003).

As shown in Figure 3B, the slope variable is the most widely used
among all environmental variables (carrara and Guzzetti, 1995;
Fabbri et al., 2003; Budimir et al., 2015; Lima et al., 2022).
Reichenbach et al. (2018) further pointed out that the slope
variable is the most effective for identifying susceptible and non-
susceptible areas of landslides. The main reasons are as follows: 1)
The terrain slope plays an important role in controlling the balance
between the sliding force and the anti-sliding force of the slope (Wu
and Sidle, 1995). Compared with gentle slopes, steep slopes require
stronger anti sliding force to maintain stability. 2) Different slope
conditions have distinct differences in the ability to collect and store
surface water and groundwater. To some extent, the slope
determines the impact of surface runoff and groundwater level
fluctuation on slope stability (Sun, 2020). Although simple
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terrain variables such as aspect, elevation and curvature are also
widely used, due to the variable influence of different local
conditions in different regions, the rationality of their use has
not been effectively demonstrated in theory and practice
(Reichenbach et al., 2018), and the rationality of their application
in different environmental regions requires further analysis and
consideration.

In addition, a type of composite terrain variables also exists, such as
surface roughness (SR), topographic position index (TPI), relief degree
of land surface, and surface cutting depth. Compared with direct terrain
variables, these composite terrain variables can more comprehensively
and effectively capture and reflect the overall terrain characteristics of a
large area (Lee and Min, 2001; Peng et al., 2014), which can provide
strong support for landslide susceptibility prediction. However, in the

actual research process, these composite variables have not been widely
applied. In the literature database, the SR variable was applied in only
22 articles and the TPI variable in only 13 articles. Themain reasons are
as follows: first, it is more difficult to obtain composite terrain variables
than simple terrain variables; second, the composite variables may have
very good applicability in some specific areas (Carrara and Guzzetti,
1995), but their effectiveness in other different environmental
heterogeneous areas has not been generally confirmed.

3.2.2 Geological
A series of geological variables (Figure 3B) have been applied in

landslide susceptibility modeling, such as formation lithology,
distance to fault, and geological structure. Among them, the
variables of formation lithology are the most widely used. On the

FIGURE 3
Utilization of environmental variables. (A) Proportion of different environmental variables in different years. (B) Application of different types (main
categories and subcategories) of environmental variables. GS, Geological structure; EQ, Earthquake; OG, Other geological; TWI, Topographic wetness
index; SPI, Stream power index; GD, Gully density; STI, Sediment transport index; OH, Other Hydrological; OHA, Other human activity; OC, Other
climatic.
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one hand, formation lithology is the material basis for landslide
development and movement. Different lithologies have different
levels of hardness and looseness, shear strength, and weathering
resistance, which have a direct impact on slope stability; therefore,
formation lithology is considered an important factor affecting
landslide susceptibility (Li et al., 2018; Zhu et al., 2021); On the
other hand, the variables of formation lithology can be easily
obtained from existing regional geological maps (Ciurleo et al.,
2017; Yang J. et al., 2019; Fang et al., 2021), which greatly
promotes their application in susceptibility modeling. The
application frequency of distance to fault in geological variables
is only second to that of formation lithology. Faults are the most
active components of crustal movement, with nearby rock masses
having more developed joint fissures and poor weathering
resistance; therefore, geological disasters often occur near large
faults (Hong et al., 2015).

As convenient and effective sources of data for obtaining regional
geological variables, geological maps have been widely used by
researchers (Feng et al., 2016; Zhu et al., 2018; Du et al., 2020;
Huang et al., 2021b). Through the literature analysis, the remote
sensing characteristics of geological variables were found to be
becoming increasingly more prominent with the rapid development
of remote sensing technology, Accordingly, remote sensing has
gradually become another important tool for the inversion and
extraction of geological variables. Many scholars obtained geological
variables such as fault, lithology and structure by interpreting aerial
photos and satellite images (Table 3), which are also rich sources of
geological data for landslide susceptibility assessment.

For some regionswith complex geological conditions, the geological
environment will show significant differences in different sections, such
as different fault distribution densities and regional differences in
formation lithology exposure. Therefore, the regional distribution of
landslides tends to show significant spatial differences (Lin et al., 2021).
However, a notable phenomenon is that although remote sensing
means are being used increasingly more frequently to obtain
geological variables, only few scholars paid sufficient attention to the
spatial heterogeneity characteristics reflected by geological variables in
remote sensing images.

3.2.3 Hydrological
The distance to river is the most widely used hydrological

variable (Figure 3B), accounting for 6.35% of all environmental
variables. To some extent, it indicates the hydrological properties
and saturation characteristics of the regional terrain (Lima et al.,
2022), reflects the influence of hydrological factors on slope stability,
and indirectly indicates the spatial distribution of landslides.
However, in actual SLSM studies, the significance of the
“distance” variables in morphological and geological aspects

remain uncertain and needs to be further discussed (Reichenbach
et al., 2018).

It is worth noting that DEM derived composite variables such as
the topographic wetness index (TWI), stream power index (SPI),
and sediment transport index (STI) are widely used among
hydrological variables. Particularly in recent years, the magnitude
and proportion of the application of these hydrological composite
variables have shown a significant increasing trend (Figure 4). One
of the most important reasons is that these composite variables can
effectively represent the hydrological distribution characteristics of
water and sediment movement in the region (Lian et al., 2008), and
also indirectly reflect the correlation between regional hydrology
and other factors, such as pore water pressure and permeability, that
affect slope stability (Zhang et al., 2021; Yin et al., 2022). With these
advantages, they are being increasingly applied to the prediction and
determination of the spatial distribution of landslides.

In nature, different environmental regions have corresponding
water resources and water environments (Yu, 2000), and the spatial
distribution of hydrological elements is extremely uneven across
regions, showing significant heterogeneity (Dong, 2015; Zheng et al.,
2022). Therefore, the accurate representation of the spatial
heterogeneity of hydrological variables is crucial for landslide
susceptibility analysis. However, only few scholars have discussed
this issue in detail thus far.

3.2.4 Land cover
Land cover variables and slope stability are closely related. At

present, scholars generally select land cover variables from two
aspects: vegetation and land use (Figure 3B). Vegetation is one of
the important and key factors. As vegetation is the natural protective
barrier of mountain slopes, it has the effects of slope reinforcement,
reducing water and soil loss, and mitigating mountain disasters
(Stokes et al., 2009; Qiu, 2012; Dai, 2021). Therefore, good
vegetation coverage is often an important predictor of regional
surface stability (Carrara et al., 1991).

In addition, under the influence of natural and human factors,
land cover variables are highly prone to change in space, which in
turn directly or indirectly affect the spatial distribution of landslides,
and ultimately lead to significant spatial differences in landslide
susceptibility (Reichenbach et al., 2014). With the advantages of
wide coverage and high resolution, remote sensing technology
provides an important and effective means for determining the
spatial change characteristics of land cover variables (Liu et al., 2010;
Zhang, 2016; Li et al., 2021). The analysis of the literature database
revealed that although remote sensing means account for a high
proportion in the acquisition methods of land cover variables (60%
and 70% for land use and vegetation variables, respectively),
researchers essentially began using remote sensing representation

TABLE 3 Remote sensing means for obtaining geological variables.

RS means Use Literature

Aerial photogrammetric
survey

Geological structure factor survey and Fault inversion Ayalew and Yamagishi (2005), Rossi et al. (2010)

Satellite image
interpretation

Formation lithology and mineral composition inversion, Missing fault
identification and Distance to fault extraction

Gómez and Kavzoglu (2005), Lee (2007), San (2014), Kavzoglu et al.
(2015), Pham et al. (2016), Pham et al. (2019), Azarafza et al. (2021),
Youssef and Pourghasemi (2021)
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only in recent history (Bordoni et al., 2020; Lin et al., 2021; Saha
et al., 2021). The spatial heterogeneity of variables in remote sensing
images is rarely included in the prediction and analysis of landslide
spatial distribution.

3.2.5 Climatic
Rainfall is one of the most widely used climate variables

(Figure 3B). Rainfall can induce slope deformation, which is
closely related to the spatial distribution of regional landslides
(Li, 2020). Moreover, historical rainfall records are easy to
obtain. Therefore, most researchers first consider rainfall when
selecting climatic variables (Guo et al., 2015; Chen and Li, 2020;
Balogun et al., 2021).

It is generally believed that the spatial distribution of
landslides, debris flows, and other geological disasters is
primarily controlled by rainfall variables. However, this is not
the case in some regions. For example, in the Xiaojiang basin of
Yunnan Province, the spatial distribution of debris flow disasters
does not simply increase with rainfall, but it has a significant
coupling relationship with the drought climate variables (Chen
et al., 2014). Rainfall has more of an inductive effect (Yang et al.,
2023), while the drought variable, representing regional
weathering and material accumulation, has a significant
control over the spatial distribution of disasters. For example,
in the Sanjiang region at high altitude, eight areas with strong
landslide development exhibit large differences in temperature
conditions (Yao et al., 2020), but the rainfall variable does not
show a significant dominant role. Furthermore, in the Haibalo
debris-flow basin in northwest Yunnan, outbreaks of large-scale
debris flows are often the result of the joint actions of rainfall and
glacier melt water attributable to temperature rise (Zhao et al.,
2020). It is observable that the heterogeneity of climatic
conditions has an important impact on the development and
distribution of geological disasters (Pourkhosravani et al., 2022).
Therefore, the significant spatial heterogeneity of climate
variables profoundly affects and controls the development and
distribution of geological disasters. This phenomenon deserves
in-depth analysis in future research because it may provide
deeper insight into landslide susceptibility.

3.2.6 Human activity
With the rapid development of the economy and society, human

activity variables are becoming increasingly more important in
susceptibility assessment. The distance to linear engineering
(highways, railways, etc.) is the most commonly used human
activity variable. Although some scholars (Bai et al., 2010; Lepore
et al., 2012) believe that the rationality of the impact of these
variables on the spatial distribution of landslides has not been
fully proved, distance variables related to human activities have
always been favored by many researchers in the study of SLSM
(Pham et al., 2018; Shao et al., 2020). The main reason is that such
factors can be directly and conveniently obtained through DEM or
topographic data with the help of GIS platforms.

Reichenbach et al. (2018) believe that different forms of linear
engineering over slopes (surface cutting or underground crossing,
etc.) will have distinct direct impacts on the stabilities of slopes.
Moreover, such different forms will also indirectly lead to spatial
differences in landslide distribution. With different types of
engineering activities, human activity variables exhibit spatial
heterogeneity characteristics similar to those of other
environmental variables. Therefore, the effects of such
heterogeneity characteristics on landslide susceptibility is worth
exploring in the future.

4 Discussion and prospect

Compared with the construction of SLSM models based on ML,
environmental variables have received very little attention.
Nevertheless, their qualities directly determine the scientific
nature and accuracy of the results of landslide susceptibility
prediction. Therefore, an in-depth exploration on improving the
quality of SLSM from the perspective of the acquisition and
utilization of the environmental variables will be very important
in the future. Through the literature review, this study identified two
major scientific issues that need to be solved urgently: 1) Effective
identification of important environmental variables required in
SLSM. 2) Effective representation of spatial heterogeneity of
environmental variables in SLSM modeling.

FIGURE 4
Application of composite hydrological variables.
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4.1 Identifying dominant environmental
variables

Existing methods of the qualitative selection and quantitative
screening of environmental variables have provided direct and
practical tools for researchers and also improved the quality of
the environmental variables involved in the assessment to a certain

extent. However, against the background of the relatively low overall
quality of SLSM (Reichenbach et al., 2018) and lack of in-depth
consideration of environmental characteristics in variable selection,
the method for identifying dominant variables for assessment
requires further improvement. First, geo-environmental
conditions significantly affect the spatial distribution of landslides
(Guzzetti et al., 2005). To ensure sufficient representativeness of the

FIGURE 5
Proposed approach for identifying dominant environmental variables. Influencing factors are variables that may affect the spatial distribution of
landslides. Step ① indicates the screening procedure of expressive variables based on field investigations and the researchers’ recognition of
environmental characteristics. Variables after step① indicate those that are more expressive in environmental characteristics, and are screened from the
qualitative perspective. Step ② indicates the identification procedure of dominant variables based on the correlation analysis of landslides and
variables, analysis of variable quality, and the influence analysis of variables on geomorphological evolution. Variables after step ② indicate those with
strong correlation with landslide, high quality, and significant geomorphological significance screened from a quantitative perspective.

FIGURE 6
Landslides distribution in Hong Kong Island. Landslides are dense in the north and sparse in the south, and the heterogeneity in landslide distributions
produces different susceptibility prediction results accordingly (Chau and Chan, 2005).
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landslide engineering geological properties and regional
environmental characteristics of a specific study area, the selected
environmental variables should be able to reflect such important
influencing factors. Furthermore, as a common geological disaster in
mountain areas, landslides are among the most intense surface
processes and external forces of regional geomorphological
evolution in the short and long terms (Broeckx et al., 2018), and
the spatial distribution of landslides reflects the development and
evolution characteristics of the landform to a large extent (Hu,
2019). It can be inferred that the regional geomorphological
evolution will also record important environmental information
required for predicting the spatial distribution of landslides to a large
extent. Therefore, the above two perspectives provide important
clues for solving the first scientific issue.

Based on the current research status and existing basis, this
study proposes the following method (Figure 5) for identifying the
dominant environmental variables for SLSM modeling. Firstly, as
many variables with potential effects on the spatial distribution of
landslides should be collected as possible based on the methods in
Table 1 and the researchers’ cognition of the geo-environment of the
study area. Subsequently, based on field surveying and the
environmental characteristics of the study area, environmental
variables with good representativeness of the environmental
characteristics should be screened out. Finally, on the basis of
traditional methods (Figure 1B), it is necessary to further explore
the impact of regional geomorphological evolution on landslide
distribution and further identify the geomorphological significance
of environmental variables and determine the dominant variables
for modeling.

4.2 SLSM analysis considering geospatial
patterns

Heterogeneity is a significant spatial distribution characteristic
of variables in the natural environment (Cheng et al., 2020; Fu et al.,
2021; Liu et al., 2022). As mentioned in Section 3.2, environmental
variables required for landslide susceptibility modeling also exhibit
significant spatial heterogeneity on the surface, which will lead to
different dominant environmental variables and their combinations
in different heterogeneous regions. However, considering the
current research status, although a few researchers have begun to
pay attention to the heterogeneity of environmental variables in
landslide susceptibility research (Chang et al., 2022), the realization
and understanding of the spatial pattern of the heterogeneity of
environmental variables are lacking. Therefore, further exploration
is urgently required.

In reality, different regional environmental characteristics will
lead to regional differences in the spatial distribution of landslides,
which will further lead to different results (Figure 6). According to
field surveys, the established spatial distribution of landslides and
heterogeneity of environmental variables determine the unique
distribution of landslide susceptibility in a given study area,
leading to specific spatial patterns. Therefore, in future SLSM
research, it is necessary to draw on the idea of research concepts
and methods involving the geospatial pattern (Fu, 2014), which
would provide a means for solving the second scientific issue.
Moreover, SLSM models should be constructed by considering

the specific geospatial patterns of the study area. This may be a
research direction worth considering for improving the quality of
SLSM in the future.

4.3 Applicability and limitation

In fact, as important input information in SLSM studies at the
regional scale, the environmental variables involved in the
evaluation represent environmental factors affecting the
development and distribution of landslides in the study area.
Therefore, their acquisition and application should be based on
the actual environmental characteristics. Every region has distinctive
dominant variables in a specific environment. The identification
method discussed in this study (Figure 5) can realize the acquisition
of dominant variables from the qualitative (Figure 5 Step ①) and
quantitative (Figure 5 Step②) perspectives. The purpose is to select
the most representative and high-quality evaluation factors.
However, this method also has some limitations, in that a certain
theoretical basis of geomorphology is required and researchers are
required to have a deep understanding of environmental
characteristics.

The geospatial pattern represents the difference of regional
environmental characteristics, which is directly related to the
distribution pattern of landslide susceptibility. In fact, the spatial
heterogeneity of environmental variables required for SLSM cannot
be fully reflected for all regions. For example, the SLSM analysis
method mentioned in this study may not be applicable to areas with
small area and insignificant environmental differences. In contrast,
it may have good reference value for areas with significant
differences in environmental characteristics such as landform,
geology and climate.

5 Conclusion

Based on the literature database composed of 261 peer-reviewed
articles (from 2002 to 2021), this paper systematically summarizes
the status of the acquisition and utilization of environmental
variables used in SLSM. Moreover, possible research directions in
the future are explored.

(1) As one of the important input information of SLSM models,
environmental variables significantly affect the accuracy of
susceptibility predictions. However, compared with the
construction of ML-based susceptibility models, the
acquisition and utilization of high-quality environmental
variables have received very little attention.

(2) This review revealed that although the current acquisition
methods of environmental variables provide direct and
practical guidance for researchers to some extent, the
environmental variables still lack representativeness of the
landslide engineering geological properties and
environmental characteristics of specific regions and their
geomorphological significance. In other words, the
environmental variables used in susceptibility assessment are
not all dominant factors. Accordingly, one major scientific issue
is raised: Effective identification of important environmental
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variables required in SLSM. In view of this, an approach for
identifying dominant environmental variables is preliminarily
proposed. Nevertheless, the identification method requires a
deep understanding of environmental characteristics and a
certain theoretical basis of geomorphology.

(3) This review also revealed that the current approach of utilizing
various types of environmental variables is generally not based on
the acknowledgment and understanding of the spatial
heterogeneity of variables. Accordingly, another major scientific
issue is raised: Effective representation of the spatial heterogeneity
of environmental variables in SLSM modeling. Given that the
established distribution of landslides and the heterogeneity of
environmental variables constitute a specific spatial pattern, the
concepts and methods of the geospatial pattern (Fu, 2014) should
be fully taken into consideration for areas with significant
environmental heterogeneity in future SLSM research.
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