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Introduction: It is well-known that maize and wheat are main food crops in the
world. Thus, promoting high quality and abundant maize and wheat crops
guarantees the development of the grain industry, which is needed to support
world hunger. Weeds seriously affect the growing environment of maize, wheat,
and their seedlings, resulting in low crop yields and poor seedling quality. This
paper focuses on the identification of maize and wheat seedlings and field weeds
using deep learning.

Methods: Maize and wheat seedlings and field weeds are the research objects. A
weed identification model based on the UNet network model and ViT
classification algorithm is proposed. The model uses UNet to segment images.
A Python Imaging Library algorithm is used to segment green plant leaves from
binary images, to enhance the feature extraction of green plant leaves. The
segmented image is used to construct a ViT classification model, which
improves the recognition accuracy of maize and wheat seedlings and weeds in
the field.

Results: This paper uses average accuracy, average recall, and F1 score to evaluate
the performance of themodel. The accuracy rate (for accurately identifyingmaize
and wheat seedlings and weeds in the field) reaches 99.3%. Compared with
Alexnet, VGG16, and MobileNet V3 models, the results show that the
recognition effect of the model trained using the method presented in this
paper is better than other existing models.

Discussion: Thus, this method, which accurately disambiguates maize and wheat
seedlings from field weeds can provide effective information support for
subsequent field pesticide spraying and mechanical weeding.
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1 Introduction

In crop production, weeds are considered to be the key negative factor affecting
agricultural production, i.e., the most harmful factor for agricultural production (Wang
et al., 2019).Weeds compete withmaize and wheat seedlings for nutrients, fertilizer, sunlight,
and growth space, which impedes ventilation and lighting in the field. This competition
seriously affects the growth environment of maize and wheat, reduces the yield of maize and
wheat, and also affects farming operations (Gharde et al., 2018). A large amount of research
data shows that the competition with weeds for resources in the field has a strong correlation
with crop yield loss, resulting in an increasing proportion of crop yield loss (Wang et al.,
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2020) As a main food crop, maize and wheat have the largest crop
sizes, the largest consumption, and the most economic value (Basit
et al., 2019; Venkataraju et al., 2022). Clearing weeds in the field in
time is helpful in maintaining crop yield and realizing precision
agriculture. To efficiently remove weeds in the field, it is necessary to
accurately determine information about maize and wheat seedlings
and the types of weeds in the field (Ahmad et al., 2021).
Traditionally, management methods focus directly on weeds, and
manual weeding, chemical weeding, and mechanical weeding are
used to control weeds in the field (Abbas et al., 2018). There are
advantages and disadvantages to using traditional methods to
control weeds. Manual weeding has a clear wedding goal, which
is to not harm maize, wheat, and seedlings; it can also root out and
improve the control effect of weeding, but the operation efficiency is
low, time-consuming, and labor-intensive, and the labor cost is high.
Chemical weeding methods have high weeding efficiency and low
cost, but depending on the professional knowledge of researchers,
improper use of herbicides will cause crop damage and
environmental pollution (Manisankar et al., 2022). Mechanical
weeding methods have high weeding efficiency, low labor
intensity, and low labor cost. But may cause damage to maize
and wheat seedlings (e.g., remove weeds in the field under the
condition of close planting).

With the progress of artificial intelligence, it has been applied in
earth science, such as water level prediction (Deng et al., 2022),
precipitation prediction (Luo et al., 2022), rock classification (Chen
et al., 2023) and flood prediction (Ebtehaj and Bonakdari, 2022), and
so on. It is very important for agricultural production. Deep learning
is an important direction of artificial intelligence. We use deep
learning to identify maize, wheat and field weeds. Currently, image
feature extraction based on machine vision and the recognition
network modeling and deep learning are widely used in agricultural
image recognition. Wu et al. (2021) use machine vision recognition
methods to identify crops or weeds by extracting the texture, shape,
color, or size features of images. Experiments show that weeds can be
accurately identified in specific crops and specific environments, but
the method is not suitable for large-scale identification or
classification of crops. Osorio et al. (2020) proposed a
recognition method based on a gradient histogram (HOG) and
support vector machine (SVM). The HOG algorithm is used to
extract image features, which mainly includes gradient calculations
of the image, statistics of the gradient direction andmagnitude of the
image, grasping the characteristics of local shapes using the
extracted edge and gradient features, using an NDVI index as the
preprocessing stage of background estimation, then adding SVM for
crop detection, and finally segmenting only weed class objects, and
then determining the coverage of the weeds by calculating the pixel
ratio. Although HOG can capture local shape information well, has
good generalization ability, and shows good performance in
identifying maize and wheat seedlings and weeds in the field, the
process of feature acquisition is complicated and the dimensionality
is high, which leads to poor real-time performance. Additionally, the
blocked crops are not easily detected. Bah et al. (2018) collected data
on field weeds via unmanned aerial vehicle (UAV), and then trained
data sets from the images collected by using CNNs and unsupervised
training data markers, and established a recognition model of maize
and wheat seedlings and field weeds. Compared with traditional
recognition methods, experimental results show that CNN-based

training is simple and fast, and the experimental results are close to
the performance of monitoring training data markers. However, the
image resolution acquired by unmanned aerial vehicles is low and is
affected by light conditions. Because maize and wheat are similar to
weeds, this complication makes it difficult to distinguish between
crops and weeds. Jiang et al. (2020) put forward a GCNAlexnet-101
network model to extract features through CNN. This model can
improve the recognition accuracy of crops and weeds under the
condition of limited label data, and its accuracy rate is better than
that of Alexnet-101. However, the method doesn’t consider the
influence of soil on crops and leaves with abnormal leaf morphology
due to poor crop growth. Louargant et al. (2018) introduced an
unsupervised classification algorithm that uses multispectral images
to collect data and identifies maize and weeds in the field by
combining spatial and spectral information. Without considering
the low resolution or distortion of images, this method does not need
to manually label data, thus reducing the cost of data labeling. Du
et al. (2022) trained the ALWeeds data set using MobileNet V2. The
model can still maintain high accuracy on low-memory equipment,
but its application environment is limited and is only suitable for
weeding in enclosed environments with light control. Fu et al. (2020)
introduced a VGGI model, which is improved on the initial VGG
model. It reduces the number of convolution layers to reduce the
network parameters while ensuring good classification accuracy, but
the VGGI model can’t maintain high accuracy in complex
backgrounds or with images having different shooting angles.
Wang et al. (2018) built a multi-scale convolution neural
network model and introduced a method of multi-scale layered
features to identify maize and weeds. The accuracy rate of weed
identification by this method can reach 98.92% and has a good effect
on the overlapping part of maize and weeds. However, the training
process of this model is complicated and computationally expensive.
Tannouche et al. (2022) evaluated and tested six models,
i.e., VGG16, VGG19, Inception v3, Inception v4, MobileNet V1,
and MobileNet V2, to detect weeds. The experimental results show
that Inception v4 has the highest accuracy on the mixed image set,
and MobileNet V2 has a fast processing speed and a small model.
However, since there are many kinds of weeds, and its model
recognition ability is limited, accurately identifying different weed
species is nearly impossible. Pei et al. (2022) used a lightweight
model such as YOLOv4-Tiny to detect image data sets. YOLOv4-
tiny uses a structure that is a simplified version of YOLOv4. To
improve its performance, an ACON activation function and CBAM
model are used. In this way, the marking cost is reduced, the
efficiency is greatly improved, and the accuracy of crop detection
is improved. A large number of experiments prove that the ACON
activation function (Ma et al., 2021) is superior to Relu and Swish
activation functions in classification and detection. CBAM (Wang
et al., 2022) is an Attention mechanism module that combines
spatial features and channels, which can enhance the ability to
extract network features. Compared with attention mechanism
modules, which only pay attention to one aspect, CBAM can give
attention to both aspects and achieve better results. Although the
YOLOv4-tiny model has achieved good recognition results in all
single aspects, it is difficult to detect when maize seedlings, wheat
seedlings, and weeds overlap and block each other.

Therefore, disambiguating maize and wheat seedlings from field
weeds is an important but difficult task. Although the reviewed
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training models have achieved very good performance and can
achieve good identification effects, their application scope is often
limited. Most reviewed methods can’t accurately distinguish
between maize seedlings, wheat seedlings, and weeds under
complicated background conditions or the mutual shielding of
maize leaves, wheat leaves, and weeds. This study explores the
identification of maize and wheat seedlings and weeds in the
field and proposes an identification method based on the UNet
network model and ViT classification algorithm. This method pays
more attention to the extraction of local features and edge features of
images, and can accurately disambiguate maize and wheat seedlings
from weeds in the field. This will in turn effectively promote the
healthy growth of maize and wheat seedlings, and improve the yield
and quality of maize and wheat. The main contributions of this
paper are summarized as follows:

1 Combining Unet and ViT, the important characteristics of
target crops and weeds are highlighted, and this further improves
the ability to identify different weeds and crops in complex
environments. This is also the first time that a UNet network
segmentation model and ViT classification model are combined
to identify maize and wheat seedlings and weeds.
2 Unet is used to remove the background, and the PIL algorithm
is utilized to segment the leaves of green plants and get a clear
weed image.
3 Compared with Alex, VGG16 and MobileNet V3, the proposed
method is superior to MobileNet V3 in accuracy, recall and
F1 value.

2 Methodology

Data sets containing images of maize, wheat, and weeds at
various growth stages were used, where D represents the data set,
x1, y1 represents the first sample, xn represents n samples, X
represents the sample features, Y represents the sample label, xi

represents the latitude of the sample feature vector is D, and yi
represents that there are 12 categories in the data set. The model
training component of the data set uses the label category of the
input image that can be accurately identified.

In this study, a method to identify maize and wheat seedlings
and weeds in the field by combining the UNet network model and
ViT classification algorithm is developed. The proposed method can
effectively improve the identification accuracy of maize and wheat
seedlings and weeds in the field. As shown in Figure 1, the UNet
network model for image segmentation can generate a network
segmentation model. Next, the PIL algorithm is used to segment
green plant leaf features, i.e., the input of the classification model,
and the ViT classification model is used to output the image
classification results.

When using UNet to segment images, the image background
of the dataset of maize and wheat seedlings and weeds in the
field used in this study has noise and different resolutions. To
better improve the segmentation effect of the model, a
preprocessing step extracts the relevant information of the
image by eliminating irrelevant noise and interference in the
image; this step effectively improves the accuracy of the
algorithm (Ranganathan, 2021). First, we use PIL to batch
adjust the resolution of images to 256×256 with a bit depth
of 8, and store them in PNG format for use. Second, a random
rotation, flipping, scaling, translation, and clipping is used to
expand the data set. By performing these data enhancement
operations on the image, the training data is effectively
increased and the robustness of the model is improved.
These operations also improve the generalization ability of
the model and helps to avoid over-fitting. After the image
data sets are preprocessed uniformly, a closed polygonal
polyline of Labelme is used to label the data sets. The labeled
JSON file is converted into an 8-bit binary label map, as shown
in Figure 3. Labelme pays more attention to the edge and outline
details of the image, which can focus the model on the leaf
details and obtain better segmentation results.

FIGURE 1
Flow Chart of maize and Wheat Seedlings and Field Weeds.
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FIGURE 2
Model architecture diagram.

FIGURE 3
Sample segmentation diagram of partial data sets.
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UNet is used to train and label the data set. Through this
network, the input image is segmented at the pixel level;
specifically, the leaves of maize and wheat seedlings and field
weeds are separated from the complex background. Thus, the leaf
characteristics of maize and wheat and weeds are extracted to
improve the recognition ability of maize and wheat seedlings and
field weeds.

In this paper, a convolved layer (conv) with a convolution kernel
of 3 × 3 is used to extract the characteristic information of maize,
wheat, and weeds. When performing the convolution, uniform
padding is used to ensure that the output layer size is equal to
the input layer size. Relu is the active layer, MaxPooling is the
maximum pool layer of 2 × 2, and UpConv is the transposed
convolution of 2 × 2. The model architecture is shown in
Figure 2. After each convolution, the height and width of the
characteristic layer of maize, wheat, and weeds remain
unchanged. For each downsampling, the height and width of the
characteristic layer of maize, wheat, and weeds are reduced by half,
and the number of channels is doubled. This layer is performed to
extract the texture and some detailed features of maize, wheat, and
weeds. In the third and fourth layers, 50% of neurons will be
discarded, reducing over-fitting. By transposing the convolution,

the height and width of the characteristic layer of maize, wheat, and
weeds are doubled, the number of channels is halved, and the size of
the picture is gradually enlarged. This step is made to extract the
deep information, contouring, and shape features of maize, wheat,
and weeds. In the process of sampling at each level, the feature map
of maize, wheat, and weeds at the corresponding position of the
encoder is combined with deep features and the shallow features via
Skip Connection, so that more feature information is retained and
the segmentation accuracy is improved. Finally, a Conv+Sigmoid
operation with a convolution kernel of 1×1 is performed to generate
a segmented image, and the segmented result is output, as shown in
Figure 3.

UNet is effectively used to improve the recognition speed
and accuracy of maize and wheat seedlings and field weeds
detection. After maize and wheat seedlings and field weeds were
separated from the complex background, and to better extract
the leaf characteristics of maize and wheat, the PIL algorithm
was used to traverse every pixel point of the whole binary image.
The algorithm evaluated and segmented the green plant leaves
pixel-wise (pixel-by-pixel) and strengthened the extraction of
the main features of maize and wheat and field weeds, as shown
in Figure 3. This improved the performance of the classification
model and realized an accurate classification of images. The
flow chart and pseudo code of the algorithm are shown in
Figures 4, 5.

The segmented data sets of maize and wheat seedlings and
weeds in the field were used to train the ViT classification model.
ViT abandoned the convolution network structure, completely
adopted the pure transformer structure to complete the
classification task, and achieved better results on large-scale
data sets than CNN (Dosovitskiy et al., 2020). The
transformer’s standard is the input sequence, so it was
necessary to convert the input to two-dimensional images of
maize and wheat seedlings and weeds in the field. An image-
blocking strategy was used to divide an H×W×C image into a non-
overlapping patch of size N � HW/P2 using a linear
transformation to map each image block to a D-dimensional
feature vector. By embedding position codes into each patch,
the spatial position information between input image blocks
was retained, as shown in Formula 1. A learnable category
vector x00 � Xclass for the embedded sequence of length N was
used to learn the category information in the process of training
the model,

x � Xclass[ ];X1
pE,X

2
pE, ...;X

N
p + Epos, E ∈ R p2 ·C( )×D, Epos ∈ R N+1( )×D

(1)
where W is the width of the input image, H is the height of the input
image, C is the number of channels, P is the size of patches, and N is
the number of patches. The vector dimension of each image block is
xp ∈ RN×(P2 ·C).

The combined sequence of category vector, image block
embedding, and position coding are imported into the
transformer encoder for feature extraction. This was done to
calculate the weight coefficient of each feature vector via a self-
attention module, and pay attention to the importance of each
feature vector and the relationship between each feature vector. By
alternately stacking the transformer encoder several times, the

FIGURE 4
Flow chart of the proposed method.
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FIGURE 5
The pseudo-code of the proposed method.

FIGURE 6
Part of the data set samples is segmented by the proposed method.
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features corresponding to the learnable class embedding vector Class
Token are extracted from MLP and used for image classification, as
shown in Formula 2,3,4,5. Finally, the probability distribution of the
current image belonging to each category is the output, which is
usually also called a vector. The value of each vector dimension is
0–1, and the highest probability distribution is the category to which
the predicted image belongs.

Attention Q,K,V( ) � softmax
QKT��
dk

√( ) (2)

x′ � MSA LN x−1( )( ) + x−1, � 1...L (3)
x � MLP LN x′( )( ) + x′, � 1...L (4)

y � LN x0L( ) (5)

3 Experiment

3.1 Experimental data set

The data set used to train and evaluate the images in this
experiment was published by Giselsson et al. (2017). Giselsson
dataset includes maize and wheat at different growth stages, and
many kinds of weeds: Black-grass, Charlock, Cleaver, Common
Chickweed, Common wheat, Fat Hen, Loose Silky-bent, Maize,
Scentless Mayweed, Shepherds Purse, Small-flowered Cranesbill,
and Sugar beet. The data set includes 5545 images with different
resolutions. To reduce over-fitting, the Keras ImageDataGenerator
function library is used to preprocess the data set, and the data set is
expanded via random rotation, flipping, scaling, translation and
cropping. The images are then labeled via a closed polygonal
polyline of Labelme and the corresponding class label is
generated. Then, the PIL algorithm is used to segment green
plant leaves, as shown in Figure 6. Finally, the data set is

randomly divided into the training set, testing set, and
verification set according to a ratio of 60:20:20. Table 1 shows
the number of images in each crop and weed species category used
for training, verification, and testing data sets. The training set is
used to construct the recognition model of maize and wheat
seedlings and weeds in the field, the verification set is used to
preliminarily evaluate the recognition ability of the model, and
the test set is used to evaluate the generalization ability of the
final model.

3.2 Experiment settings

To verify the accuracy and performance of the UNet network
model and ViT classification algorithm in identifying maize and
wheat seedlings and weeds in a complex environment, under the
same operating environment and super-parameters, an experiment
was designed that compared the proposed algorithm to three
models, Alexnet, VGG16, and MobileNet V3. The hardware
environment used consists of an Intel (R) Xeon (R) CPU E5-
2690v3 @ 2.60 GHz processor, 32G memory, NVIDIA GeForce
RTX 3060 graphics card, and Win10 operating system. The
programming language used is Python3.9 and a Tensorflow
2.5.0 framework is used to build the model. To ensure
comparative effectiveness, all models adopt the Adam optimizer,
the weight attenuation was set to 1e-4, the learning rate was set to be
consistent, and the number of images trained in each iteration was
set to 8, with a total of 160 iterations. The hyperparameter settings of
Alexnet, VGG16, Mobilenet V3, and the proposed model are shown
in Table 2.

Experimental Accuracy, Precision, and Recall were used as
model evaluation indicators to evaluate algorithmic performance
(Grandini et al., 2020). Because accuracy and recall affect each other,
an F1-Score is used as a comprehensive index to balance the
influence of accuracy and recall and comprehensively evaluate
the classification model. The calculation formulas of accuracy,
precision, recall, and F1 score are as follows:

Accuracy � TP + TN

TP + TN + FF + FN
(6)

Pr ecision � TP

TP + FP
(7)

Recall � TP

TP + FP
(8)

F1 � 2Pr ecision × Recall
Pr ecision + Recall

(9)

where TP refers to predicting positive samples as positive samples,
TN refers to predicting negative samples as negative samples, FP
refers to predicting negative samples as positive samples, and FN
refers to predicting positive samples as negative samples.

3.3 Comparison of experiment results

Figure 7 shows the identification accuracy and loss curve of the
method in the training set and verification set of maize and wheat
seedlings and weeds in the field. As can be inferred from the figure,
when the Epoch is 40, the accuracy of this method in the training set

TABLE 1 The total number of training, validation, and testing images of crop
and weed species for building the proposed model.

Weeds/Crops Training Validation Testing Total

Black-grass 179 75 75 329

Charlock 256 100 100 465

Cleaver 194 79 79 353

Common Chickweed 389 143 143 675

Common wheat 155 66 66 287

Fat Hen 307 117 117 541

Loose Silky-bent 413 153 153 719

Maize 155 66 66 287

Scentless Mayweed 332 125 125 582

Shepherds Purse 161 68 68 297

Small-flowered Cranesbill 320 121 121 562

Sugar beet 252 98 98 448
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and verification set gradually increases and tends to be stable after
the 120th Epoch. When the Epoch is 120, the loss in the training set
and verification set decreases and tends to be stable. When Epoch is
set to 150, the accuracy of the proposed method is 99.3% in the
training set and 98.1% in the verification set, which shows that the
recognition accuracy in the training set and the verification set is
stable. When Epoch is set to 160, the loss rate in the training set and
verification set converges.

Alexnet, VGG16, and MobileNet V3 models are trained with
the same parameters as the methods in this paper. All models
achieved good recognition accuracy in the training set, and the
loss converges to a stable value. When the number of iterations
reaches 40, the accuracy tends to rise steadily, and when the
number of iterations reaches 160, the accuracy of the training set
approaches 99%. Thus, when the number of iterations reaches
150, the loss of each model in the training set gradually converges.
But the effect on the verification set is average. The accuracy rate
of Alex is 80.2%, that of VGG16 is 82.5%, and that of MobileNet
V3 is 88.7%. Thus, the accuracy rate and loss value on the
verification set fluctuate greatly between methods. With the
increase of iterations, the accuracy of the validation set does
not improve, the loss rate does not converge well, and the
generalization ability of the model is poor.

The experimental results of the four different identification
models, Alexnet, VGG16, MobileNet V3, and the proposed
method are shown in Table 3. According to the data in the table,
the accuracy of each model is similar for the training sets, however,
the verification set shows that the training time of Alexnet is short,
but the accuracy is the lowest, which is due to the number of layers
that Alexnet has and its relatively simple network. The training time
for VGG16 is 4 times longer than that of Alexnet, but the accuracy
rate is only increased by 2%. Although MobileNet V3 uses less
training time, its accuracy rate is only 88.7%, which does not reach
the ideal accuracy rate. By contrast, although the training time of the
model is not the shortest, the proposed method shows high
recognition accuracy in the training set and the verification set,
which are 99.3% and 98.1%, respectively. Therefore, the proposed
method can effectively improve the identification accuracy of maize
and wheat seedlings and weeds in the field.

The experimental results, including the total parameter number
and single image prediction time of Alex, VGG16, MobileNet V3,
and the four different recognition models in this paper are shown in
Table 4. The experiment uses 1200 images in the test set for batch
prediction and calculates the prediction time of a single image. The
table shows that MobileNet V3 has the lowest number of
parameters, meaning the model is the smallest, but the prediction

TABLE 2 Hyperparameter setting.

Hyperparameter Alexnet VGG16 MobilenetV3 Proposed method

Number of classes 12 12 12 12

Optimizer Adam Adam Adam Adam

Image patch size 8 8 8 8

Initial learning rate 0.0001 0.0001 0.0005 0.001

Dropout rate 0.5 0.5 0.5 0.5

Epochs 160 160 160 160

FIGURE 7
(A) Accuracy curve of the proposed method. (B) Loss curve of the proposed method.
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time of a single image is the longest, which may be due to the
complex network and deep layers of this model. Although
MobileNet V3 redesigns the time-consuming layer structure and
improves the running time, it is still just as complex as other
networks. The Alexnet model is small, with few layers and the
fastest prediction time. However, it is not suitable for weed
identification because of its low prediction accuracy. From the
total number of parameters and model size, VGG16 and the
proposed method has similar prediction time for a single image,
and it is close to VGG16 when there are many parameters. However,
the guarantee of recognition accuracy makes the proposed method
more efficient when considering the test set.

Comparison results of average accuracy, average precision,
average recall, and F1 score of four different recognition models,
Alex, VGG16, MobileNet V3, and the proposed method, are shown

in Figure 8. The accurate rates of eachmodel are 78%, 82%, 94%, and
97% percent respectively. The data demonstrates that the accuracy
rate and precision rate of Alexnet is not high. The accuracy of
VGG16 is not as good as that of MobileNet V3, and the accuracy of
VGG16 is 82%, while that of MobileNet V3 is 12% higher than that
of VGG16. This is because the channel attention mechanism is
added in the MobileNet V3 network, and the different weights of
each feature layer are analyzed. Thus, the important features are
given more weight, whereas the opposite is given less weight.
Therefore, MobileNet V3 pays more attention to extracting the
important features of the feature layer. Although the accuracy rate of
MobileNet V3 is high, it is still lower than that of the proposed
method. The average accuracy rate, average precision rate, average
recall rate, and F1 score of the proposed algorithm are 97%, 97%,
97%, and 97%, respectively. Alexnet and VGG16 models have the

TABLE 3 Experimental results of different models.

Method Training duration (hour) The accuracy of the training set (%) The accuracy of the verification set (%)

Alexnet 0.8 0.969 0.802

VGG16 3.3 0.987 0.825

MobileNet V3 2 0.988 0.887

Proposed Method 4.5 0.993 0.981

TABLE 4 Total parameter quantity and prediction time of different models.

Method Total parameter quantity Number of layers Model size (MB) Single image prediction time (ms)

Alexnet 14,606,028 8 55.72 87

VGG16 70,317,900 16 268.24 212

MobileNet V3 4,241,804 28 16.18 484

Proposed Method 85,802,501 12 327.31 352

FIGURE 8
Accuracy rate, Precision rate, Recall rate, and F1 score of different models.
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lowest recall rate, and the proportion of positive samples is the
lowest. The difference between Mobilenet V3 and the proposed
model is 3%. According to the F1 score, the F1 score of the proposed
model is higher than that of Alexnet, VGG16, and MobileNet
V3 models by 21%, 18%, and 3% respectively. Therefore, the
proposed method has the best recognition effect in the test set of
maize and wheat seedlings and weeds in the field. Because the
proposed method introduces the self-attention mechanism, the self-
attention mechanism analyzes the correlation between vectors, gives
different weights to feature layers, and calculates the weighting of
feature channels, to improve the representation ability of the model;
this allows the model to pay more attention to the target features.

4 Conclusions and prospect

In this paper, a recognition model based on the UNet network
model and ViT classification algorithm is proposed. First, the UNet
network model is used to separate maize and wheat seedlings and
weeds, in different growth stages, from complex backgrounds. Then,
the PIL algorithm is used to extract the segmented green plant leaf
features. Finally, the image features are input into the Vision
Transformer model to identify and classify maize and wheat
seedlings and weeds in the field. Experiments show that the
average accuracy, average precision, average recall, and F1-score
of the proposed model are 97%, 97%,97%, and 97%, respectively.
This method not only effectively improves the recognition accuracy
of maize and wheat seedlings and weeds in the field, but also
improves the recognition speed of the model. Compared with
other existing research results, this model shows better
performance on the test set than other models, which provides
effective information support for pesticide spraying and mechanical
weeding.

In the current study, Although the proposed recognition model
has high accuracy, it also has some insufficient. Compared with
Alexnet, VGG16, and MobilenetV3 models, the parameters are
5.8 times that of Alexnet, 1.2 times that of VGG16, and 20 times
that of Mobilenet V3. Compared with Alexnet and VGG16, the
recognition speed of the proposed model is 4 times and 1.6 times
slower, but it is 1.3 times faster than Mobilenet V3. The data show
that the proposed model is larger and has more parameters, so the
process of recognition, takes up a lot of computing resources and the
recognition speed is relatively long. In future work, we will plan to
study the following two aspects: (1) Building a lightweight model. To
solve the problem that the existing model has many parameters and
occupies high computational resources, model pruning, and fine-
tuning technology are used to adjust the model weights, and all the
weights close to 0 are set to 0 until the parameters reach the target

sparsity, the calculation amount is reduced. Based on ensuring the
recognition performance, a model with a similar size to the existing
mobile terminal network is obtained. (2) Model deployment and
application. The proposed model will be deployed on Android, and
users can identify crops and weeds by taking photos, making weed
control simple and efficient.
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