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A powerful volcanic eruption that occurred in Tonga on 15 January 2022,
produced strong vibrations in the atmosphere, ocean, and solid Earth. We
identify infrasound waves traveling with an apparent velocity of 0.31 km/s up to
10,000 km from Tonga in seismic and tsunami recordings. Clear signals of these
infrasound waves with a fundamental model of Lamb wave are evident before the
shallow-water gravity wave and after the Rayleigh and body waves. The pressure
amplitudes of the infrasoundwaves at stations of 400–1000 km from the eruption
are 5–10 hPa. The infrasound wave generated trans-Pacific tsunami waves to
arrive 4–5 h earlier than the gravity waves of regular tsunami in the populated
countries near the Pacific oceans. We use numerical simulation methods for the
oceanic plate subduction zone in Tonga to estimate the pressure-temperature
fields and the desulfurization at shallow depths. The simulated total sulfur dioxide
released during the eruption ranges from 0.4 to 2.0 Tg. This is small in comparison
with previous studies of comparable infrasound pressures. The total emission and
sulfur dioxide amounts may have been controlled by the amount of sulfur
contained in the subducted plate as well as the pressure and temperature
conditions of the subduction zones.
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1 Introduction

The Hunga Tonga-Hunga Ha’apai (HTHH) volcano is in the northern part of the
Tonga-Kermedec arc (20.546°S, 175.390°W). Here, the Pacific plate subducts beneath the
Indo-Australian plate at a rate of 10–20 cm/yr and the Wadati-Benioff zone extends to
700 km depth (Kawakatsu, 1985; Bevis et al., 1995; Liu et al., 2012) (Figure 1). The potential
for devastating volcanic eruptions in the Tonga-Kermedec arc has long been recognized.
Recent volcanic eruptions in Tonga occurred in March 2009, November 2014, and August
2019 (Btandl et al., 2020; Zhao et al., 2022). The major eruption on 15 January 2022
(hereafter referred to as the HTHH eruption) generated an ash plume that reached the
mesosphere at nearly 60 km altitude with a maximum diameter of 600 km (https://volcano.
si.edu/volcano.cfm?vn=243040) (Proud et al., 2022). Tsunami waves had a height of up to
15 m near HTHH and were still over 1 m high along all coasts of the Pacific Ocean (Brodsky
and Lay, 2022; Kubota et al., 2022; Matoza et al., 2022; Vergoz et al., 2022; Yuen et al., 2022;
Zhao et al., 2022).
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Figure 2 shows sentinel 2A/B satellite images provided by the
European Space Agency before (2 January 2022) and after
(17 January 2021) the HTHH eruption. The source areas are
heavily covered in clouds, and the satellite images before the
HTHH eruption are blurry for most of the time. On 2 January
2022, the satellite images revealed green seawater to the west and
white steam emission to the southeast of the HTHH. The area of
HTHH island was approximately 3.6 km2 (Figure 2A) on 2 January
2022. After the eruption, only a small remnant of the southwestern
and northeastern ends of the HTHH remained above sea level
(Figure 2B). The subaerial HTHH eruption caused strong
vibrations in the atmosphere, ocean, and solid Earth, and
released Sulfur dioxide (SO2) with heightened concerns for
environmental effects (Dalton et al., 2010; Matoza et al., 2022;
Yuen et al., 2022) (https://volcano.si.edu).

These vibrations caused by the HTHH eruption were well
recorded by seismic stations and ocean bottom pressure sensors
around the world. The infrasound waves associated with temporal
variations in atmospheric pressures have been used to study
eruption dynamics (Johnson and Rippepe, 2011; Watson et al.,
2022). Immediately before the major eruption on 15 January
2022, there was no shallow earthquake of Mw≥4.0 within 50 km
of the HTHH (https://earthquake.usgs.gov/). Within 24 h after the
eruption, the earthquake swarm with moderate-magnitude shallow
events occurred in the eruption area (Kintner et al., 2022). These

earthquakes are too small to generate tsunamis, so the HTHH
eruption and the generated infrasound waves are likely the cause
for the trans-Pacific tsunami waves.

The infrasound waves have dominant frequency ranges smaller
than 20 Hz. These low-frequency signals can travel long distances in the
air, water and solid Earth with weak attenuations (Chen andXue, 2021).
These signals have been related to the volcanic degassing process, which
is often used to evaluate the environmental effects after the volcanic
eruption. The gas emission rate q(t) (kg/s) can be calculated by
integrating the temporal variation in observed pressure:

q t( ) � 2πr∫ p t + r/c( )dt (1)

where p is the infrasound pressure recorded at time t, traveling at
the speed of sound c, to a distance r from the source (Dalton et al.,
2010; Fee et al., 2017). Generic gas compositions for small
explosions include about 1.15% SO2 with respect to the total
gas emission amount (Mori and Burton, 2009). Recent studies
have monitored volcanic sulfur fluxes for large eruptions by
microwave satellites with various sensors (Rowe et al., 2000;
Carn et al., 2016). However, accurate measurement of the gas
emission for remote volcanoes is challenging. The released
amount of SO2 in the serpentinized slab can be roughly
estimated through subduction models under high pressure‒
temperature (P‒T) conditions (Alt et al., 2013; Ji et al., 2017).

FIGURE 1
Plate tectonic backgroundwith earthquake (colored circles) and volcanic (red triangles) distributions in the Tonga subduction zone. The white circle
indicates the location of the HTHH volcano.White curves represent the iso-depth contours of the subducted plate upper surface in the Tonga-Kermadec
arc (Slab2). Yellow arrows indicate the plate subduction velocities (cm/yr). The yellow line denotes the plate boundary.
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In this study, we analyze different vibrations in the
atmosphere, ocean, and solid Earth caused by the HTHH
eruption from seismic and tsunami waveforms. We use
numerical simulations with the local subduction zone
condition to estimate the volcanic sulfur fluxes. We then
compare the estimated infrasound waves and the released SO2

to previous volcanic eruptions. Our study provides a new
constraint for the strength of the infrasound waves and the
emissions of SO2 by the HHTH eruption.

2 The recordings of seismic, infrasound,
and tsunami waves

We analyze waveforms from global seismic stations archived at
the Incorporated Research Institution for Seismology (IRIS) (https://
ds.iris.edu/wilber3/find_event) (Figure 3). The record for the nearest
station, MSVF (Monasavu, Fiji), confirms that the origin time of the
major eruption is at 4:15 amUTC (7:15 am local time) on 15 January
2022. The first pulse after the origin time lasted for approximately
6,000 s. A record section reveals several coherent high-amplitude
pulses (Figure 4A).

The fast wave is the Rayleigh wave with an apparent propagation
velocity of 3.64 km/s (E1). The direct P and S waves arrive at similar
times within the first pulse but are suppressed by the filtering of
0.005–0.02 Hz (50–200 s) (Yuen et al., 2022). The Rayleigh wave is
an elastic wave that traveled through the crust and upper mantle.
Smaller pulses with Rayleigh-wave apparent velocities are also clear
in the 7-h (25,000 s) long records on 15 January 2022 at 5:30 UTC
(E2) and at 8:25 UTC (E3) (Poli and Shapiro, 2022). The slow wave
is recorded between 2,000 and 20,000 s after the Rayleigh wave at the
stations with distances of 7°–70°. It has an apparent propagation
velocity of 0.31 km/s, consistent with infrasound waves in the
atmosphere. Both signals have emergent onsets and long
durations as mass-wasting events (Bai et al., 2022). These
characteristics are distinct from recordings of regular earthquakes
occurring in lands and oceans, which show impulse P and S wave

onset and short durations (Ritsema et al., 2012; Bai et al., 2019; Liu
et al., 2021).

Figure 4B shows the spectrogram for station CTAO (Charters
Towers, Australia) at an epicentral distance of 36°. The frequency
response of the EPOSENSOR instrument is from DC to 200 Hz,
which allows us to study motions at low frequencies (http://
earthquake.usgs.gov). The infrasound pulse at ~13,000 s has
frequencies lower than 0.05 Hz. These low-frequency signals
traveled a long distance and had an N-wave shape with weak
attenuation. These observations suggest that the infrasound pulse
is a Lamb wave, which is a fundamental mode of infrasound,
propagating along the troposphere (Amores et al., 2022; Matoza
and Roman, 2022; Yamada et al., 2022; Wang et al., 2023).

Ocean-bottom-pressure records from DART sensors on the
seafloor of the northern Pacific Ocean (Figure 3) reveal a third
wave type. The DART data from the National Oceanic and
Atmospheric Administration (NOAA) Tsunami Program (https://
www.tsunami.noaa.gov/tsunami-detection) are records of ocean-
bottom pressure sampled every 15 s. We bandpass filter the time
series with corner periods of 1000 and 10,000 s. The section in
Figure 5 shows a clear onset of the infrasound with an apparent
velocity of ~0.31 km/s, like the infrasound signal in Figure 4. The
infrasound wave is followed by a higher-frequency tsunami wave
with an apparent velocity of 0.2 km/s.

The DART records indicate that the infrasound wave has an
initial small positive onset followed by a clear negative amplitude
signal. The pressure amplitude of the Lamb wave is approximately
5 hPa at the closest station 51,425 with a distance of 1000 km from
HTHH (Figure 5). This observation is consistent with the values of
10 hPa observed at the infrasound station IS-I at a distance of
500 km, and 9 hPa at the atmospheric pressure station MSVF in
Fuji at a distance of 757 km (Matoza et al., 2022; Yamada et al.,
2022). The infrasound waves are recorded 4–5 h earlier than the
tsunami waves at stations with distances of approximately
10,000 km. The early arrivals recorded by stations 55,023 and
51,407 at distances around 4,000 km might be caused by the local
clock issue. However, the abnormally large amplitudes that appeared

FIGURE 2
Sentinel2A/B satellite images obtained (A) on 2 January 2022, before the volcanic eruption and (B) on 17 January 2022, after the volcanic eruption.
The white curve area is plotted based on the outline of the island area above the ocean surface on 2 January 2022.
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several hours before the tsunami signals at stations 32,404 and
32,403 around 10,000 km are unclear.

3 Numerical modeling of sulfur dioxide

To investigate the gas emission amount for the HTHH eruption,
we utilize a numerical model for the dynamic modeling under the
subduction zone conditions (Ji et al., 2017; Plank and Manning,
2019). An approximation and the equations of conservation of mass,
momentum, and energy are used as:

 · ρs z, Ts( )v{ } � 0 (2)
−zP
zxi

+ zτ ij
zxj

− δi3ρsgα0 T − Ts( ) � 0 (3)

ρcp
zT

zt
+ v · T( ) � k2T + η v( )2 + ρgαTvz + ρHr (4)

where P is the pressure deviation from the hydrostatic pressure, α0 is
the reference thermal expansivity, τij (i; j = 1, 2, 3) is the stress
tensor, ρ is reference density, T is temperature, k is thermal
conductivity, Hr is radioactive heat generation rate in the mantle,
cp is specific heat at constant pressure, k is thermal diffusivity, η is
viscosity, v is subduction velocity, and δij is Kronecker delta
(Yoshioka and Murakami, 2007; Ji et al., 2016). The numerical
model includes parameters of slab geometry, plate age, and
subduction velocity of the Tonga-Kermedec arc area (Hacker
et al., 2003; Müller et al., 2008; Omori et al., 2009; DeMets et al.,
2010; Hayes et al., 2018). We calculate three-dimensional
temperature fields and temperature gradients (Yoshioka and
Murakami, 2007; Ji et al., 2016). Based on the resulting P‒T
conditions in the ranges of 2.5–3.5 Gpa and 500–1300°C, we
estimate the solid‒liquid-gas phase conditions for the subducting

slab (Alt et al., 2013; Ji et al., 2017). Combining the parameters of the
total desulfurization area of the plate, magmatic uplink loss, and
porosity of the overriding Indo-Australian Plate, we estimate the
sulfur emission rate and the accumulated SO2 amount during the
magma activity (Alt et al., 2013; Ji et al., 2016) (Figure 6).

We found that the average desulfurization rate under the Tonga-
Kermedec arc is greater than 0.01 wt%, while the maximum value
directly below the HTHH volcano reaches approximately 0.1 wt%. The
largest desulfurization rate occurred at the petrological metamorphic
boundaries of ultramafic rocks inside the subducted plate. The total
emission amounts of SO2 are controlled by the amount of sulfur
contained in the subducted plate as well as the pressure and temperature
conditions of the subduction zones (Devine et al., 1984; Guo et al.,
2003). The desulfurization of the basalt layer of the subducted mid-
ocean ridge in the Pacific Plate is approximately 0.23 Tg (230,000 tons),
which can produce the eruption amount of SO2 by 0.46 Tg for the local
volcanic area (Carn et al., 2022). This observation is consistent with the
0.40–0.42 Tg of the SO2 eruption observed by the TROPOMI
instrument on the Sentinel-5P satellite in the first 3 days (https://
volcano.si.edu). Numerical modeling of SO2 is essential especially for
the volcanoes with blurry satellite images or inefficient nearby filed
observations. Assuming the desulfurization area (100 km2), magma
upward lost (40%–80%), and porosity of the overlying Indo-Australian
Plate (1%–5%), we estimated that the total surface eruption of SO2

during volcanic eruptions at the HTHH area can reach up to 2 Tg.

4 Conclusion and discussion

Rayleigh, infrasound, and tsunami waves are clear in Global
Seismic Network and DART stations following the HHTH
eruption. Volcanic eruptions are prone to generate explosive
sound and infrasound, which impact the water surface (Huang

FIGURE 3
Seismic stations (black triangles) and ocean bottom pressure gauges (yellow triangles) used in this study.
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et al., 2022; Matoza et al., 2022; Yang et al., 2022). The pulse of the
infrasound wave generated by the HTHH volcano is as large as that
of the 1883 Krakatau eruption at comparable distances. But the
duration of the HTHH infrasound wave was ~30% smaller than
that of the Krakatau (Matoza et al., 2022). The destructive tsunami
produced by the submarine 1883 Krakatau eruption is caused by
the pyroclastic flow (Self and Rampino, 1981). The origin time and
location estimated from recorded cross section of seismic
waveforms (Figure 4) and ocean-bottom pressures (Figure 5)
confirmed that the infrasound waves are generated by the
HTHH volcanic eruption. The Lamb waves, as a fundamental
mode of infrasound waves generated by the HTHH eruption is the
major cause for producing the tsunami to arrive 4–5 h earlier than
the regular tsunami at the populated coastlines for countries near

the Pacific and the Atlantic oceans (Ramirez-Herrera et al., 2022;
Wang et al., 2022). This source of the tsunami caused by the
infrasound waves needs to be considered in the tsunami warning
systems in the future.

The time series of the infrasound wave records has been
correlated with the volcanic degassing process based on
observations of many small volcanoes (Bluth et al., 2007; Mori
and Burton, 2009; Dalton et al., 2010). Large volcanic eruptions are
expected to create strong infrasound waves with proportional
amounts of gas and SO2 emissions (Eq. 1). Table 1 shows
infrasound waves and total SO2 releases for individual eruptions.
A single Redoubt volcanic eruption that occurred on 27March 2009,
produced maximum infrasound waves of 1 hPa at a local station of
12 km. There were 4 large eruptions that occurred from March to

FIGURE 4
(A) Recorded cross section of the vertical-component seismic waveforms. The first pulse of Rayleigh wave is noted as E1. Rayleigh waves from two
smaller eruptions are noted as E2 and E3. The infrasoundwave is indicated by IF. We used the bandpass filtering of 0.005–0.02 Hz to bring the infrasound
wave out of the high-frequency signals. (B) Spectrogram recorded by station CATO at an epicentral distance of 36°. E1, E2, E3, and IF are indicated.
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April 2009, and each of them has infrasound waves of 1–2 hPa. The
cumulative SO2 release for the Redoubt eruption in the period from
March to June 2009 is 0.5–0.6 Tg (Rowe et al., 2000; McNutt et al.,
2013). The SO2 emission for a single eruption can be estimated from
the average value of the 4 large eruptions as 0.1–0.15 Tg. The
Manam volcano erupted on 28 January 2005, generated
infrasound waves of 1 Pa at a station of 2000 km with SO2

release of 0.14 Tg (Rowe et al., 2000; Dabrowa et al., 2011). The
Raikoke volcano in Kuril island erupted on 22 June 2019, produced

0.3 Tg SO2 mass with 1 Pa pressure recorded at infrasound stations
approximately 400 km apart (McKee et al., 2021). The Nabro
volcano, Eritrea erupted on 13 June 2011 and showed a high SO2

amount of 1.3 Tg with recorded pressures up to 6 Pa recorded at an
infrasound array of approximately 250 km (Fee et al., 2013; Goitom
et al., 2015). Compared with these previous studies, the HTHH
eruption with infrasound of 5–10 hPa at the distances of
400–1000 km from the eruption seems to have produced a small
amount of SO2 of 0.46 Tg (Table 1).

FIGURE 5
Record section of ocean-bottom pressure recorded by DART sensors with a continuous recording of 24 h after the eruption origin time. Waveforms
are bandpass filtered from 0.0001 to 0.005 Hz. The infrasound wave has an apparent velocity of 0.31 km/s. The waves with an apparent velocity of
0.20 km/s, which arrived up to 5 hours after the infrasound at 10,000 km, is a shallow-water gravity wave.

TABLE 1 Infrasound pressures and SO2 emissions for individual eruptions.

Name Date
(yyyy.mm.dd)

Location Pressure Distance
(km)

SO2

(Tg)
References

HTHH 2022.01.05 Tonga 5–10 hPa 400–1000 0.46 This study

Raikoke 2019.06.22 Russia 1 Pa 400 0.3 McKee et al. (2021)

Nabro 2011.06.13 Eritrea 6 Pa 250 1.3 Fee et al. (2013); Goitom et al. (2015)

Redoubt 2009.03.27 America 1 hPa 12 0.1–0.15 Rowe et al. (2000); McNutt et al. (2013)

Manam 2005.01.28 Papua New Guinea 1 Pa 2000 0.14 Rowe et al. (2000); Dabrowa et al. (2011)

Pinatubo 1991.06.15 Philippines 1 Pa 2770 18–19 Tahira et al. (1999); Matoza et al. (2022)

Krakatau 1883.08.27 Indonesia 2–5 hPa 756 2.8 Mandeville et al. (1996); Matoza et al. (2022)
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Mount Pinatubo volcano of the Philippines erupted in
1991 released approximately 18–19 Tg of SO2. The released SO2

during the HTHH volcanic eruption is at least one order of
magnitude smaller than that of Mount Pinatubo (Matoza et al.,
2022). From the modeling, we found that the volcanic eruption
levels depend not only on the amount of sulfur contained in the
subducted plate but also on factors such as the porosity of the
overlying crust, the size of the magma chamber, the P-T condition
and the components of the subducted plate (Butterfield et al., 2011;
Bataleva et al., 2018). The thermal gradient in themantle beneath the
HTHH is much smaller than that beneath Mount Pinatubo (Robock
et al., 2007; Matoza et al., 2022). The megathrust underneath the
Tonga-Kermedec arc is characterized by a cooler plate interface
because of the older subducted plate than that in the Philippines
(Johnson et al., 2004; Ji et al., 2016). The temperature range elevated
for desulfurization at the Tonga subduction zone is consequently
much lower than that beneath the Philippines. We thus suggest that
there is less potential to create a significant global temperature drop
in the years following the HTHH eruption considering the small
amount of SO2 contributions in Tonga.
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