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Paleo-oxbow lake sediments can provide archives to reconstruct paleo-channel
evolution and flooding history of the river. Multi-proxy approaches including
detailed sediment stratigraphy, sedimentology and geochemistry have been
implemented in a high-resolution sedimentary section of paleo-oxbow lake of
the Yellow River within the Zoige Basin on the NE Tibetan Plateau, to reconstruct
regional environmental changes and extreme overbank flooding history. Our
results suggest that not only traditional sedimentological proxies, but also
chemical elements can be applied in defining sequences with different genetic
types, especially the paleoflood deposits in the paleo-oxbow profile. Two units of
late-Holocence extreme overbank flooding deposits (OFDs) are identified in terms
of the significantly higher proportions of sand, high contents of SiO2, Na2O, Ba,
low contents of Al2O3, Fe2O3, MgO, K2O, Ti, Rb and high values of Zr/Fe, Zr/Rb
ratios. These extraordinary flood events within the Zoige Basin were dated back to
2,960± 240–2,870 ± 270 a and 1840± 200–1700± 160 a, in response to themid-
Holocene climatic optimum to the late Holocene and the Dark Age Cold Period
(DACP). And the strong rainfall caused by the abnormal atmospheric circulation
during the period of climate transition and abrupt change may led to the frequent
occurrence of extreme flood events in the source region of the Yellow River.
These findings are important for understanding the response of regional fluvial
system to high climatic instability and provide a new perspective for us to analyze
the risk of flood disasters on the Tibetan Plateau under the background of climate
change.
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1 Introduction

It is generally accepted that lakes are highly sensitive to
environmental change and its response to the major climate
fluctuations is extremely complex (Woolway and Merchant, 2019;
Zhang et al., 2020). Oxbow lakes, as a special type of abandoned
channels formed by curve cut-off of meandering rivers in the alluvial
plain, play an important role in describing relationships between
environmental change and the fluvial dynamics of the systems
(Pawłowski et al., 2015). Sediment delivery and deposition at low
energy locations result in the accumulation of organic matter, silt,
and clay, and these undisturbed sediment fines preserve the
sedimentation and geochemical record in the oxbow lake
watershed (Bábek et al., 2011; Petr et al., 2013). In recent years,
the multi-proxy approaches including pollen analyses, radiocarbon
dating, detailed sediment stratigraphy, micromorphology and
geochemistry, have been implemented in high-resolution
lacustrine deposits of oxbow lakes to reconstruct
paleohydrological environment and track past climatic change
(Xiao et al., 2022; Antczak-Orlewska et al., 2021; Galicki et al.,
2018; Petr et al., 2013).

The element geochemistry has been used as an indicator of
past climatic and environmental changes across a wide range of
timescales (Wennrich et al., 2014; Arnaud et al., 2016; Francke
et al., 2020). For example, Rb/Sr ratios have been widely applied
to reflect chemical weathering intensity and climate change on
geological timescales (Chen et al., 1999a; Fritz et al., 2018; Yang
et al., 2020). The chemical index of alteration (CIA) were used as a
paleoclimatic indicator to reconstruct weathering process and
pedogenesis as well as the intensity of the East Asian summer
monsoon and westerlies (Goldberg and Humayun, 2010; Jia et al.,
2022). The elemental distribution (such as Al, Fe, K, Mg, Mn, Ca,
and Na) of river and lake sediment have important tracing
significance on studies about the regional features of the
catchment, the transformation of soils, and the
hydrogeological conditions (Brown, 2011; Vogel et al., 2015;
Hasberg et al., 2019).

The northeastern (NE) Tibetan Plateau is affected by the
Prevailing westerlies (PW), East Asian summer monsoon
(EASM) and Indian summer monsoon (ISM), which is a
sensitive area in response to global climate change (An et al.,
2012; Chen et al., 2016; Li et al., 2019). Channel migration of the
Yellow River and its tributaries have left countless meander scars,
abandoned channels, and (paleo-) oxbow lakes across the Zoige
Basin on the NE Tibetan Plateau, after the demise of the Zoige
paleo-lake in the last stage of the late Pleistocene (Huang, 2021).
These (paleo-) oxbow lakes experienced the transition from
distant river sediment input to the nearby lake sediment,
providing the valuable archives to document the entire basin’s
evolution during the late Pleistocene and Holocene. However,
previous researches of the (paleo-) oxbow lakes within the basin
were mainly on the channel stability and ecological effects rather
than its indicative significance of paleo-environmental changes
(Li and Gao, 2019; Zhou et al., 2019; Wang et al., 2020; Guo et al.,
2021).

Oxbow lake deposits may also include a continuous record of
flood events and are appropriate to reconstruct the flooding history
of a river over time intervals of several millennia (Wolfe et al., 2006;

Berner et al., 2012; Munoz et al., 2018; Fuller et al., 2019; Toonen
et al., 2020). Under the influence of the river system, oxbow lake
sedimentation is primarily dominated by local flooding, backwater
flooding, overland river flow, and tributary runoff (Galicki et al.,
2018). High energy discharge during floods can result in an increase
in coarse-grained material and is accompanied with significant
changes in chemical-mineralogical contents in oxbow lake
sediments (Wolfe et al., 2006; Berner et al., 2012). Predicted
climate warming is likely to change future flood magnitude and
frequency as the hydrological cycle intensifies in the headwater
region on the Tibetan Plateau (Lutz et al., 2016; Wang et al., 2016;
Gu et al., 2018). Hence, there is a need to better understand
relationships between climatic changes and extreme flood event
variability and requires paleoflood reconstruction to improve our
ability to assess the risk of low-frequency, high-magnitude flood
events (Baker, 1987; Wilhelm et al., 2018). This paper presents our
new paleoflood investigations in the source region of Yellow River.
Based on field observations and sedimentological analysis, a
representative paleo-oxbow lake fill at NYQ-B site (NYQ-B
profile) within the Zoige Basin was studied. Using different
geochemical characteristics in overbank flood deposits and paleo-
oxbow lake deposits, combined with other lithological and
sedimentological proxies, we reconstruct paleoflood activities of
the Yellow River within the Zoige Basin, and demonstrate the
fluvial and geomorphic response to climatic changes on the NE
Tibetan Plateau during the late Holocene.

2 Geographical settings

The Zoige Basin is a Cenozoic fault depression (pull-apart basin)
located on the NE Tibetan Plateau between latitudes 32°17′N and
32°7′N and longitudes 101°30′E and 103°22′E, covering an area of
19,400 km2 (Figure 1; Wang and Xue, 1997). The majority of the
area is 3,400–3,600 m a.s.l, surrounded by the Anyemaqen,
Nianbaoyuze and Qionglai Mountains of elevations >4,000 m
(Figure 1). These surrounding mountains are annually snow-
covered and have paleo-glacier relics. The basin is affected by
PW, EASM and ISM, which is a sensitive area in response to
global climate change (An et al., 2012; Chen et al., 2016; Li and
Gao, 2019). The annual average temperature ranges from 0.6°C to
1.2 °C (the minimum and maximum monthly temperature is −9.0°C
in January and 11.5°C in July, respectively). The mean annual
precipitation ranges from 600 to 700 mm and monthly
precipitation is mainly concentrated between May and October,
accounting for 90% of the annual total (610 mm) (Hu et al., 2018).

The Zoige Basin is characterized by wide river valleys and lakes
are distributed among low hills. The main rivers within the Zoige
Basin include the Yellow River and its tributaries such as the White
River, the Black River, and the Jiaqu River. The Yellow River flows
southeast into the basin about 110 km, turns northwest at the
intersection with the White River and flows out after receiving
the Black River, which forms a huge U-shaped bend known as the
“First Bend of the Yellow River” (Figure 1). Along the way,
variations of stream gradient and bed sand constituent make the
river pattern of the Yellow River changes repeatedly, leaving more
than 150 oxbow lakes within Zoige Basin (Li and Gao, 2019; Huang,
2021).
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3 Materials and methods

3.1 Fieldwork

A detailed geological survey showed that a large number of paleo-
oxbow lakes formed along the huge U-shaped bend of the Yellow River
within the Zoige Basin on the NE Tibetan Plateau. The paleo-oxbow
lake fill at the NYQ-B site (33°37′12″N, 102°18′44″E) in the Yellow
River within the basin was studied (Figure 1C). The NYQ-B profile is
situated in a Ω-shaped paleochannel at the back edge of the first river
terrace (T1) and 5 m above the present normal water level of the Yellow
River. As the paleochannel is deeply cut by the Niangyiqu branch, the
profile is freshly exposed and has clear stratigraphic boundaries
(Figure 2). Detailed filed observation and stratigraphic description
(color, structure and texture) were made in the field (Table 1).

3.2 Geochemical and sedimentological
analysis

Chemical composition was determined in 69 samples taken
every 5 cm, using a Bruker S2 RANGER Energy Dispersive
X-Ray fluorescence spectrometer. 4 g of dried and homogenized
sediments were put into the mold and smoothed, using boric acid
base to edge. Then the sample was put into the press machine (30 t
pressure) and pressed into circular sheets for measurements.
Precision and accuracy of the chemical analysis for major (K, Ca,

Na, Mg, Al, Fe, Si) and trace elements (Co, Zr, Rb, Sr, Ti, Zn, Cu, Pb,
Ba, Cr, Mn, As, P, S) was checked by repeated measurements of the
certified reference material including a Cu disk and a glass BAXS-S2
with the determination error <5%. For a typical analyses process and
the precision of all elements refer to Shehata Ahmed Hussein (2016).
Magnetic susceptibility was measured on a mass of 10 g of sediment
with a Bartington MS-2B magnetic susceptibility meter (0.47/
4.7 kHz). Grain-size distribution was measured by a Backman
Coulter LS13320 laser analyzer with (NaPO3)6 as a dispersing
agent after pre-treatment with 30% H2O2 (to remove organic
matter) and 10% HCl (to remove carbonates), respectively.

3.3 Principal component analysis

The principal component analysis (PCA) is used to represent the
elemental dataset with a few components instead of a large number of
variables, group the elemental variables and detect main influential
factors of element distribution (Ringnér, 2008). In this study, the
function rda in the core package of vegan in R language was used
to extract the feature quantity of the element concentration data to
complete the principal component analysis (Borcard et al., 2018). The
functions of summary and loadings ware used to query the information
of each principal component and check the contribution of each
variable to the principal component. The function biplot (using
scaling 1 and scaling 2, respectively) was applied to plot the samples
and project the elements over the principal component, visualizing

FIGURE 1
Overview of the study area. (A) Map shows the Zoige Basin (the outlined area) on the NE Tibetan Plateau; Abbreviation: PW, Prevailing Westerlies;
ISM, Indian summerMonsoon; EASM, East Asian summerMonsoon. (B)Geomorphology of the Zoige Basin and the location of the paleo-oxbow lake fill at
NYQ-B site in the Yellow River within the Zoige Basin. (C) The satellite image (Google Earth) and our UAV aerial image shows the location of the paleo-
oxbow lake fill at NYQ-B site in the Yellow River within the Zoige Basin.
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correlations between samples and determine whether samples can be
grouped (Borcard et al., 2018). The arrow lengths of elements in
distance biplot (scaling 1) showing their contribution to the
principal components, and the correlation biplot (scaling 2) reveals
distinct element clusters and the elements within the one cluster are
highly correlated (Ter Braak, 1983; Legendre and Gallagher, 2001).

4 Results

4.1 Stratigraphy and chronology

In the NYQ-B profile within the Zoige Basin on the NE
Tibetan Plateau, the sediment sequence was divided into six

units according to the lithology and sedimentary structures
from the base upwards (Figure 3). The unit of riverbed
deposits consisting of fine sand and medium sand with parallel
beddings were clearly visible at the bottom (340–215 cm). And
two units of the paleo-oxbow lake deposits (OLD-A and OLD-B)
were found in the depth range of 215–200 cm and 170–80 cm,
which were composed of brown black clayey silt, with a hard
texture and rich in organic matter. Two units of overbank flood
deposits (OFD1, OFD2) with parallel and wavy beddings were
also identified at 200–170 cm and 80–35 cm, respectively. The
OFD2 unit was split into three sublayers, OFD2-1, OFD2-2 and
OFD2-3, indicating that several episodes of overbank flooding
occurred during the late Holocene (Huang et al., 2011a; 2011b;
2010; Xiao et al., 2022). The layer of typical subalpine meadow

FIGURE 2
(A) Photo showing the paleo-oxbow lake fill at NYQ-B site within the Zoige Basin on the NE Tibetan Plateau. (B–E) Close-up shots showing
difference between modern soil, overbank flooding deposits (OFD), paleo-oxbow lake deposits (OLD) and riverbed deposits (RD) at the NYQ-B site.
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TABLE 1 Pedosedimentary descriptions of the paleo-oxbow lake fill at NYQ-B site within the Zoige Basin on the NE Tibetan Plateau.

Depth (cm) Pedostratigraphic
subdivisions

Pedosedimentary descriptions

35–0 Modern soil (MS) Gray, clayey silt, granular-block structure, loose and porous, some earthworm burrows and excrement, well-
developed plant roots.

50–35 Overbank flood deposits (OFD2-3) Yellowish orange, silty fine sand, some rust spots, very loose.

68–50 Overbank flood deposits (OFD2-2) Grayish-white, silty fine sand, some rust spots, very loose.

80–68 Overbank flood deposits (OFD2-1) Yellowish orange, silty fine sand, some rust spots, unconformable contact with the underlying oxbow lacustrine
deposits.

80–170 Paleo-oxbow lake deposits (OLD-B) Brown, interbedding of clayey silt and fine sandy silt, some rust spots, relatively firm.

200–170 Overbank flood deposits (OFD1) Yellowish orange, medium sandy fine sand, some rust spots, very loose, some parallel or waving beddings.

215–200 Paleo-oxbow lake deposits (OLD-A) Brown black, clayey silt, rich in organic matter, relatively firm.

340–215 Riverbed deposits (RD) Dull yellowish orange, fine sandy medium sand, some rust spots, with inclined beddings.

FIGURE 3
Sedimentary framework of the paleo-oxbow lake fill at NYQ-B site within the Zoige Basin on the NE Tibetan Plateau, including lithology, dating
results, grain size parameters, magnetic susceptibility and frequency dependent magnetic susceptibility. The results of AMS 14C and OSL dating in Figure 3
refer to Xiao et al., 2022.
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soil were found at surface (35–0 cm), which comprised grey
clayey silt with abundant earthworm burrows and plant roots.
In particular, the chronology of the NYQ-B profile was dated by
using the AMS 14C and OSL dating techniques (Xiao et al., 2022)
(Figure 3). However, the AMS 14C ages are inverted and obviously
older than OSL ages as a result of the re-working of old carbon
during the paleo-oxbow lake depositional process (Zhou et al.,
2016; Kołaczek et al., 2017). And then, these AMS 14C ages were
dropped. In summary, the dating results showed that two episode
of extraordinary overbank flooding recorded by the OFDs
occurred at 2,960 ± 240 to 2,870 ± 270 a and 1840 ± 200 to
1700 ± 160 a, respectively (Xiao et al., 2022).

4.2 Grain-size distribution and magnetic
susceptibility

The grain-size distribution in the NYQ-B profile within the
Zoige Basin is shown in Figure 3. The clay (<2 μm), fine silt
(2–16 μm), coarse silt (16–63 μm), and sand (>63 μm) ratio vary
considerably in the six units of the profile NYQ-B. The
significant low values of the mean grain size show in the
paleo-oxbow lake deposits (OLD-A and OLD-B), while high
values in the overbank flood deposits (OFD1 and OFD2) and
riverbed deposits.

Unit I (from the bottom to 215 cm) is composed of riverbed
deposits, therefore, the sediment is the coarsest and dominated by
sand (90.2%), with a little bit of silt (7.6%) and clay (2.2%). The
sediment of Unit II (215–200 cm, OLD-A) is the finest and the sand
component sharply reduces to 8.2%, while the silt component
reaches its highest levels of the profile (76.8%) and clay content
is 15.0% Unit III (200–170 cm, OFD1) is dominated by sand content
again (79.2%), while silt content decreases to 16.0% and clay content
falls further to 4.8% In Unit IV (170–80 cm, OLD-B), Mean silt
content increases to 63.7% on average and sand reduces to 24.8%
(Figure 3). It is noteworthy that sand content has been reduced
to <1% at some depths. There is also substantial variation here in
mean particle size, from 8.5 to 41.6 μm, with a mean value of
20.8 μm. Unit V (80–35 cm, OFD2) is divided into three sections,
OFD2-1, OFD2-2 and OFD2-3 according to the mean particle size.
Mean particle size of OFD2-2 (72.2 μm) is much coarser than the
OFD2-1 and OFD2-3 (51.2 and 50.5 μm, respectively), and the sand
content of OFD2-2 further increased to 74.3% than 60.4% and 65.0%
in the OFD2-1 and OFD2-2. Unit VI (35–0 cm) is dominated by silt
again (68.0%) with clay (13.8%) and sand (18.2%). Mean grain size
also decrease to 9.9–18.3 μm.

In water-laid deposits, the frequency magnetic susceptibility
reflects predominantly the supply of exogenic very fine-grained
material, which means clay minerals deposited from suspension
(Petr et al., 2013). Grain-size and Magnetic susceptibility data have
been reported in previous papers (Xiao et al., 2022), but the
frequency dependent magnetic susceptibility (χfd) is calculated in
this study (Figure 3), to indicate the concentration of ferromagnetic
minerals in the sediments and distinguish between the flooding units
and the paleo-oxbow lake deposits combined with grain size
distribution. The units with high frequency dependent
susceptibility (χfd) have a finer average grain size. For example,
the average χfd of surface layer (modern soil) is 6.61%, and the

highest reach to 14.8%; the average χfd value of the OLD-A is 5.01%
with the maximum value of 10.2% and the layer of the OLD-B has
the maximum value of 11.7%. It means that magnetic minerals in
sediments are composed of a relatively high proportion of super fine
particles (superparamagnetic/single-domain threshold) which only
contribute to the low-frequency susceptibility (Zhou et al., 1990; Liu
et al., 2005). In contrast, the χfd of OFD1, OFD2 layers are lower than
those of the pale-oxbow lake deposits, with the mean values of
0.70%, 3.82%; the highest value of OFD1, OFD2 layers are 1.3%,
8.9% and the lowest value is close to 0. And the χfd value of riverbed
deposits fluctuates greatly and the average value is 5.11%. We infer
that extreme hydrodynamic force during flood events brought more
coarse terrigenous material into the paleo-oxbow lake fill at NYQ-B
site, leading to a decrease in the contribution of superparamagnetic
particles to magnetic susceptibility and a very low frequency
magnetic susceptibility (Wu, 1993).

4.3 Element geochemistry

The variation of representative major element oxides and trace
elements and their ratios can be roughly divided into 6 units from
bottom to top (Figures 4, 5).

Unit I (340–215 cm, RD): The element content in this unit
shows little fluctuation (Figures 4, 5). The average content of SiO2 is
the maximum of the whole section; while the mean values of Al2O3,
Fe2O3, CaO, K2O, MgO, Ti, P, S, Zr, Rb, Sr, Zn, Cu are the minimum
of the whole section (Table 2; Figures 4, 5). The average contents of
Ba, Cr are as the maximum values in all sedimentary units. The
average Zr/Rb, Cu/Zn ratios are the minimum of the whole section
and the average Zr/Fe ratio is as a comparatively small value
(Table 2; Figure 5).

Unit II (215–200 cm, OLD-A): The element content in this unit
appears change suddenly compared with those in Unit I. The
average content of SiO2 is a comparatively small value of the
whole section (Table 2; Figure 4). The mean values of Al2O3,
K2O, MgO, Ti, Mn, Zr, Rb, Zn, Cu increase to the maximum of
the whole section, the contents of Ba, Cr, Na2O significantly decrease
and CaO, Sr change little. The average Zr/Fe, Zr/Rb and Cu/Zn
ratios are higher than those of the Unit I (Table 2; Figures 4, 5).

Unit III (200–170 cm, OFD1): The distribution of element
content in this unit is obviously different from that in the
previous unit. The SiO2, Na2O, Ba, Cr contents increase sharply
to relatively large values in the whole section. The mean values of
Al2O3, Fe2O3, K2O, MgO, Ti, Mn, P, S, Zr, Zn, Cu and Rb drop
significantly. The content of CaO increases and the content of Sr
decreases slightly. The average Zr/Rb, Cu/Zn ratios decrease and the
Zr/Fe ratio keeps as 0.007 (Table 2; Figures 4, 5).

Unit IV (170–80 cm, OLD-B): The element contents in this unit
are similar to those in Unit II but fluctuate markedly (Figures 4, 5).
The average content of SiO2 drops dramatically to the minimum of
the whole section and the Na2O, Ba, Cr contents also decrease
sharply. The mean values of Al2O3, Fe2O3, K2O, MgO, Ti, Mn, P, S,
Zr, Rb, Zn, Cu increase significantly. The average contents of CaO
and Sr increase sharply to the highest value (Table 2; Figures 4, 5).
The Zr/Fe ratio decreases to the minimum with the value of 0.005.
The average Cu/Zn ratio increases to the maximum value of 0.36 in
the whole section (Table 2; Figures 4, 5).
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FIGURE 4
Grain size distribution and major element SiO2, Na2O, CaO, Al2O3, Fe2O3, K2O, and MgO concentrations of the paleo-oxbow lake fill at NYQ-B site
within the Zoige Basin on the NE Tibetan Plateau.

FIGURE 5
Grain size distribution and trace element Ti, Rb, Mn, Zn, Cu, Pb, Co, Ba, P, S, Sr concentrations and element ratios of Zr/Fe, Zr/Rb, and Cu/Zn of the
paleo-oxbow lake fill at NYQ-B site within the Zoige Basin on the NE Tibetan Plateau.
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Unit V (80–35cm, OFD2): This unit can be divided into three
sections according to the element content distribution (Figures 4, 5). As a
whole, the SiO2, Na2O, Ba, Cr contents increase and the contents of
Al2O3, Fe2O3, CaO, K2O, MgO, Ti, Mn, P, S, Zr, Zn, Cu, Rb and Sr
decrease significantly in this unit. Notable, the high content elements
such as SiO2, Na2O, Ba, Cr are more abundant in OFD2-2 than OFD2-1
and OFD2-3 and the low-value elements in OFD2-2 are even scarcer
(Table 2; Figures 4, 5). The average Zr/Fe, Zr/Rb ratios increase
significantly and reach the maximum (0.011, 2.40) in OFD2-2. The
average Cn/Zn ratio decrease and reach the minimum of the whole
section in OFD2-2 with the values of 0.29 (Table 2; Figures 4, 5).

Unit VI (35–0 cm): The SiO2, Ba, Cr contents drop sharply and
the Al2O3, Fe2O3, K2O, MgO, Ti, Mn, Zr, Rb, Zn, Cu contents in this
unit appear high values again compared with those in Unit V
(Figures 4, 5). The contents of Na2O, CaO, Sr drop sharply to
minimum in the surface layer while the contents of P, S increase

dramatically to the maximum of the whole section. The Zr/Fe ratio
decreases to the minimum and the average Cu/Zn ratio increases
(Table 2; Figures 4, 5).

4.4 Results of principal component analysis

The element geochemistry is vertically consistent with
stratigraphic change in the profile NYQ-B revealing distinct
distribution patterns (Figures 4, 5). Principal component analysis
(PCA) is used to extract the important information from a
multivariate data table and to express this information as a set of
few new variables called principal components (PC). The PCA of the
element concentration data from the NYQ-B profile revealed that
84.06% of the sample variance is associated with the first two
principal components (PC1 and PC2) and the first principal

TABLE 2 Average content of major elements oxides, trace elements and element ratios of the paleo-oxbow lake fill at NYQ-B site within the Zoige Basin on the NE
Tibetan Plateau.

Elements Modern soil Riverbed deposits Oxbow lacustrine
deposits

Overbank flood deposits

OLD-A OLD-B OFD1 OFD2-1 OFD2-2 OFD2-3

SiO2 (%) 59.93 77.50 62.84 55.61 69.01 64.24 70.78 66.84

Al2O3 (%) 13.77 9.27 14.14 12.15 10.49 11.41 10.58 11.54

Fe2O3 (%) 5.30 2.33 4.30 4.73 2.70 3.21 2.35 3.06

CaO (%) 3.22 2.08 3.03 8.81 4.63 5.27 3.73 4.19

K2O (%) 2.45 1.85 2.53 2.17 1.95 1.98 1.90 2.02

Na2O (%) 1.35 1.80 1.63 1.56 1.87 1.80 1.96 1.89

MgO (%) 1.63 0.84 1.64 1.63 1.14 1.33 1.14 1.33

Ti (ppm) 3698 1505 4151 3328 2222 2802 2297 2666

Ba (ppm) 491.63 691.24 613.00 507.67 674.67 647.00 718.75 659.33

Mn (ppm) 508.50 298.76 609.00 589.83 323.83 359.33 255.75 298.33

P (ppm) 905.38 364.96 670.00 610.61 486.00 569.33 453.25 556.67

S (ppm) 477.13 55.44 283.33 227.78 112.67 134.67 91.25 128.00

Cr (ppm) 115.63 146.04 93.33 89.89 119.50 94.33 121.50 103.33

Zr (ppm) 197.31 97.24 223.67 177.94 138.17 179.33 177.75 168.33

Rb (ppm) 112.94 69.00 114.33 96.50 77.50 74.67 73.75 78.00

Sr (ppm) 142.94 145.40 161.67 224.94 156.67 156.67 139.50 147.67

Zn (ppm) 83.50 36.20 87.00 71.94 44.33 47.67 41.75 47.33

Cu (ppm) 28.31 8.48 29.00 26.00 12.83 15.67 12.25 15.00

Pb (ppm) 27.00 12.68 23.00 22.22 14.17 14.33 13.00 12.67

As (ppm) 22.50 4.44 11.67 22.17 6.67 7.33 4.75 7.00

Co (ppm) 17.19 8.80 15.00 15.44 10.00 11.33 9.00 10.67

Zr/Fe 0.005 0.006 0.007 0.005 0.007 0.008 0.011 0.008

Zr/Rb 1.75 1.42 1.96 1.86 1.79 2.40 2.40 2.15

Cu/Zn 0.34 0.23 0.33 0.36 0.29 0.33 0.29 0.31
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component (PC1) account for 75.4% of the total variance (Figure 6).
Therefore the PC 1 predominantly contribute toward the variability
in the elemental dataset. The samples are plotted and elements are
projected over the distance biplot (scaling 1) and the correlation
biplot (scaling 2) (Figure 6). The correlation biplot reveals that
elements distributed in sedimentary strata can be divided into three
distinct element clusters (Figure 6B). A cluster comprising Ba, Cr,
Na and SiO2 is characterized by high positive scores of the PC1,
slightly positive scores of the PC2 (Figure 6B), whose concentrations
tend to increase in the most prominent sandy layers (Figures 4, 5).
And another cluster with high negative PC1 scores, slightly positive
or negative PC2 scores (Figure 6B), comprises Al2O3, Fe2O3, MgO,
K2O, Cu, Zn, Pb, Zr, Rb, Mn, P, S and other trace elements, showing
decreasing concentrations in the sandy layers (Figures 4, 5). So we
suggest that the PC 1 can be associated with the grain-size, which
means the element distribution of the paleo-oxbow lake fill at NYQ-
B site is controlled mainly by grain-size variation. A cluster
comprising Sr, CaO is characterized by high negative PC1 scores
and high negative PC2 scores (Figure 6B). In addition, the arrow
lengths of the P, S, Sr and CaO in distance biplot are much longer
than the radius of the circle of equilibrium contribution (Figure 6A),
indicating that their contribution to the PC1 and PC2 are greater
than the average contribution of other variables. PC2 (8.66% of
sample variance) is presumably related to the effect of the element
source. The highly negative scores of Sr and CaO are assumed to
indicate source from authigenic carbonate (Chen et al., 1999b).

5 Discussion

5.1 Identification of oxbow lake evolution
and extreme overbank flooding

Oxbow lakes form from the cut-off and sealing of previous
meanders due to bank erosion and flooding within the Zoige Basin
on the NE Tibetan Plateau (Li and Gao, 2019; Huang, 2021), and

provide archives to reconstruct the paleo-channel evolution and the
flooding history of the Yellow River during the Holocene. The
elemental distribution in each sedimentary unit of the NYQ-B
profile show obviously different characteristics (Figures 4, 5) and
our PCA results prove that distribution pattern is controlled mainly
by grain-size variation (Figure 6). Wolfe et al. (2006) report on a
close correlation between flood events and high energy discharge
marked by an increased influx of coarse grained detrital material
into the river coupled with a relative decrease in the clay fraction.
Significant correlations between turbidity and some trace elements
were interpreted by Berner et al. (2012) due to the sorption of metals
onto fine-grain size particles particles. So we suggest that chemical
elements can be applied in defining the paleoflood deposits in the
paleo-oxbow profile and have important tracing significance on
studies about the regional channel evolution (Zhang et al., 2012).
Meanwhile, the Zr/Rb and the Zr/Fe ratios provides a robust
geochemical proxy for flood deposits across floodplain in this
study (Fuller et al., 2018; Munoz et al., 2018). The element Zr is
found principally in the resistant mineral zircon, tending to become
concentrated in fine sand to coarse silt, while Rb and Fe is found in a
range of minerals including clay minerals and concentrates in fine
silt and clay, which means an increasing Zr/Rb and Zr/Fe ratio can
be associated with an increase in grain size (Jones et al., 2012).
Besides, the Cu/Zn ratio is used as a reference to judge the oxidation-
reduction status of the sedimentary environment of the
paleochannel (Fan et al., 2022). On the basis of the lithological,
grain size, and compelling geochemical evidence presented, we
propose that the development of the paleo-river channel NYQ-B
including 6 phases: a fluvial environment, two oxbow lake
environment and a steppe environment, interrupted by two
episodes of overbank flooding.

Phase I: The dull yellowish orange medium sands can be
identified at the bottom of the profile NYQ-B (Unit I-Riverbed
deposits). The Unit I (215–340 cm) is dominated by coarse sand
with some rust spots and inclined beddings (Figure 3) and
characterized by the high contents of SiO2 contained in sand-

FIGURE 6
Principal component analysis of element concentration data of the paleo-oxbow lake fill at NYQ-B site within the Zoige Basin on the NE Tibetan
Plateau. Elemental projections over the distance biplot using scaling 1 (A) and over the correlation biplot using scaling 2 (B) onto the first two principal
components (PC1 and PC2).
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sized quartz grains in local river systems (Figure 4), which can
represent the riverbed deposits of the ancient Yellow River. It can
be indicated that the ancient Yellow River flowed through the site
before 3,240 ± 260 a (Xiao et al., 2022). This riverbed deposits of
the ancient Yellow River below 330 cm is blue-gray and has a low
value of Cu/Zn ratio, which indicates that it is a weakly reducing
environment (Mei, 1988). It is speculated that the gleying process
occurred because the lower part of the section was submerged by
water for a long time due to the high groundwater level, which
transformed the ferric iron into ferrous compound (Lu et al.,
2012).

Phase II: The Unit II (215–200 cm, OLD-A) has a sharp
contact with the Unit I and is composed of brown black clayey
silt, with a hard texture and rich in organic matter. Such vertical
changes in the sedimentary texture and structure indicate that the
previous river channel was cut off and the abandoned river
channel was filled up by suspended-load sediments on
floodplains in an environment of slowly flowing to stagnant
water (Toonen et al., 2012). It suggests that the fluvial
sedimentary environment was replaced by the oxbow lake
sedimentary environment. This is also proven by the results of
the concentration of lithophilic elements (Al, Fe, K and Mg) and
elements concentrate in fine silt and clay (Ti, Rb), which are
highly correlated by according to our PCA results and indicate the
abundant delivery of fine-grained detrital material into the paleo-
oxbow lake (Sedláček et al., 2019; Antczak-Orlewska et al., 2021).
We considered that the ancient Yellow River completed the
nature cutoff (neck cutoff) at 3,240 ± 260 a, and this river
channel was gradually abandoned and formed the paleo-oxbow
lake (Xiao et al., 2022).

Phase III: The Unit III (200–170 cm, OFD1) has a sharp
boundary with Unit II, which comprises yellowish orange sand
with some rust spots and parallel or waving beddings. This
stratigraphical structures is typical of overbank flood deposits.
According to the grain size analysis, significantly higher
proportions of sand occurred in Unit III. Sandy layers and low
χfd values give evidence of the accumulation phase during flood
events and represent typical overbank flood deposits (Figure 3). The
high contents of SiO2 reveals that the OFD1 unit is also dominated
by the coarse sand-sized quartz grains (Galicki et al., 2018). It can be
concluded that although the paleochannel (paleo-oxbow lake type)
of the Yellow River has formed at 3,240 ± 260 a, extreme overbank
flooding at 2,960 ± 0.24–2,870 ± 270 a accessed into the paleo-oxbow
lake and resulted in high sedimentation rates (Wolfe et al., 2006;
Xiao et al., 2022).

Phase IV: the grain size of the Unit IV (170–80 cm, OLD-B)
became fine rapidly and the color changed from yellowish orange to
brown, indicating the sedimentary environment is transformed to
the oxbow lake environment again. Compared to the previous paleo-
oxbow environment (Phase II), this layer is characterized by the
obvious interbedding of the clay silt and fine sandy silt, a
comparatively large fluctuation of element contents and the
highly concentrated soluble elements (Ca, Sr). The high values of
Sr and CaO in the lake sediments were caused by authigenic
carbonate precipitation, suggesting a shrinking and progressively
more saline lake as the climate gradually became drier (Chen et al.,
2010). A generally drier climate and weaker vegetation coverage in
the basin after 3000 BP was also indicated by the pollen record from

the eastern margin of the Tibetan Plateau (Zhou et al., 2010). This
implies that the intensity of the summer monsoon was weakening
during this period (Wang et al., 2005; Hu et al., 2008).

Phase V: The Unit V (80–35 cm, OFD2) can be divided into
three sublayers: the OFD2-1 and OFD2-3 comprises yellowish
orange silty fine sand, while the OFD2-2 has a lighter color and
a coarser grain size composed of grayish-white silty fine sand, and it
could be resulted from three episodes of extreme overbank flooding
with different magnitudes at 1840 ± 200–1700 ± 160 a. The
OFD2 unit is also detected by the Zr/Fe, Zr/Rb ratios, which
reach to the maximum value of the whole profile, due to the
large amount of heavy mineral transported into the lake
environment by high energy discharge during floods (Fuller
et al., 2018; Munoz et al., 2018).

Phase VI: The Unit V merges gradually into Unit VI (35–0 cm,
Modern soil) after 1,310 ± 50 a, a layer of typical subalpine meadow
soil, which comprises grey clayey silt with abundant earthworm
burrows and plant roots. The fine-grained sediment and the
enrichment of Al, Fe, K, Mg, Ti, Rb indicate that pedogenesis
processes occurred at the NYQ-B site (Jia et al., 2022). The high
concentration of P and S in surface layer are presumed to indicate
the influence of anthropogenic pollution (Akhtar et al., 2003).

5.2 The link between climate change and
extreme overbank flooding

The general characteristics of climatic and environmental
changes during Holocene can be reflected by the evolution
phases of the paleo-oxbow lake fill at NYQ-B site within the
Zoige Basin on the NE Tibetan Plateau. Especially, the climatic
background and inducing factors of extreme overbank flooding
recorded by flood units are inferred in this study. Previous
studies have proposed that extraordinary floods often result from
an abrupt change of climate and climatic deterioration (Guo et al.,
2000; Huang et al., 2007). The OFDs in the NYQ-B profile are easily
differentiated from oxbow lake deposits in terms of the significantly
higher proportions of sand, enriched content of SiO2 (even above
80%) and the increase in silicate-bound elements (Na, Ba and Cr). It
is confirmed that two phases of extreme overbank flooding prevailed
within the Zoige Basin between 2,960 ± 240–2,870 ± 270 a and
1840 ± 200–1700 ± 160 a, respectively. And we infer these high
intensity of floods on the NE Tibetan Plateau result from increase in
extreme rainstorms during the late Holocene climatic deterioration
and are considered as a response of the regional fluvial system to
high climatic variability and instability.

The first extreme flooding episode (2,960 ± 240–2,870 ± 270 a)
recorded by OFD1 in the NYQ-B profile is coincide with the climatic
deterioration during mid-Holocene climatic optimum to the late
Holocene (Peng et al., 2005; Huang et al., 2009). Because the
Megathermal fell into decline and global climate entered a drastic
fluctuation period around 3,000 a BP, the climate became highly
variable and instabilized in the transition from the dominance of the
maritime monsoon to continental monsoon (Xiao et al., 2004; Wang
et al., 2005; Hu et al., 2008). Studies on the relationships between
modern floods and the monsoonal climate have indicated that
extraordinary flood events often resulted from infrequent
rainstorms in connection with unusual atmospheric circulation
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patterns (Knox, 2000; Huang et al., 2007; Guo et al., 2016; Huang,
2021). Therefore, we infer that an abrupt climatic deterioration with
extreme climate variability around 3,000 a BP at the end of the mid-
Holocene Climate Optimum caused a series of disasters in different
areas in China’s monsoonal regions, including extraordinary floods
due to increased precipitation in the source region of Yellow River
(Kale et al., 2000; Grossman, 2001; Bohorquez et al., 2013; Lillios
et al., 2016). Previous researches of the middle Yellow River also
provide evidence that some extreme flooding events occurred at the
Weihe River, Jinghe River and Beiluo River between 3,200 a BP to
2,800 a BP (Huang et al., 2012; Wan et al., 2015; Li et al., 2019).
Historical documents show that the collapses of the Shang Dynasty
(1,600–1046 BCE) were attributed to disastrous events including
extreme floods, droughts, famines and desiccation of the Yellow
River and its tributaries during this period (Huang et al., 2009).

Moreover, severe droughts resulting from shortage of rainfall
and extraordinary floods resulting from rainstorms were two parts
of the extreme climate variability during climatic events (Huang
et al., 2007; Huang et al., 2010; Huang et al., 2013; Guo et al., 2015;
Guo et al., 2016; Li et al., 2019; Li et al., 2021). Although great floods
occurred as a result of extreme rainstorms in the Zoige Basin,
deposits from Qinghai Lake and its surrounding aeolian deposits
have documented decreasing temperature and increasing aridity
after ca. 3,100 a BP (Shen et al., 2005; Li et al., 2017). Meanwhile, the
colder and drier regime around 3,000 a BP is also identified in Nile
Delta and severe centennial-scale droughts may have affected
civilizations in northern Africa, southwestern Asia and mid-
continental North America Middle (Bernhardt et al., 2012). It
was suggested that the precipitation variability might be resulted
from the complex feedback process between various high- and low-
latitude competing driving forces, implying a large-scale climatic
teleconnection across the Northern Hemisphere (Li et al., 2017).

The second episode of extreme flooding events recorded by
OFD2 in the NYQ-B profile occurred at 1840 ± 200–1700 ± 160 a
correlated with cooling and desiccation periods during the Dark Age
Cold Period (DACP) (1800–1,100 a; Patterson et al., 2010). This
flood episode on the NE Tibetan Plateau shows good agreement in
terms of the low values of δ18O from ice-cores of the GRIP which
indicates that the climate cooled significantly during this period
(Dansgaard et al., 1993). Some high resolution climatic proxies and
precise dating from stalagmites provide information on weakening
of monsoon activities at that time (Wang et al., 2005; Hu et al., 2008).
The increased flood activities during the Dark Age Cold Period are
also correspond to the reconstructed paleoflood events in the middle
Yangtze River (Guo et al., 2016) and reported by other documentary
and sedimentary archives from the Austrian Pre-Alps (Swierczynski
et al., 2012) and the western Europe (Pears et al., 2020). This flood
phase generally corresponds to the period of the Eastern Han
Dynasty (CE 25–220) in Chinese history and the floods,
droughts, large-scale famine and frequent change of dynasties are
recorded in ancient Chinese documents (Zheng et al., 1999).

Overall, two episodes of increased flood activities on the NE
Tibetan Plateau occurred at global deterioration periods with
highly climate instability. Great floods occurred as a result of
extreme rainstorms caused by special atmospheric circulation
patterns that determine the location of storm tracks and air mass
boundaries, resulting in excessive runoff and flooding (Knox,
2000). In particular, glacier advanced and the glacial meltwater

supply decreased on the NE Tibetan Plateau due to the colder and
drier climate from 3,100 to 2,600 a and 1800–1,300 a (Lehmkuhl,
1997; Mischke and Zhang, 2010), which means the contribution
of ice and snow melting to the two episodes of overbank flooding
may be relatively weak. However, when climate departed from its
normal condition during late Holocene, the weak summer
monsoon and strong Western Pacific Subtropical High
(WPSH) occur in the Yellow River catchment, and the warm-
humid air masses brought by EASM and ISM meets the northern
cold airflow brought by northwestern continental monsoon (Ma
and Xu, 1982). Therefore, we consider that large-magnitude
floods on the NE Tibetan Plateau is caused by long-duration
rainstorms due to the quasistationary front hovers above the
upper Yellow River catchment (Guo et al., 2016). Similar
historical and modern flooding events within the Zoige Basin
due to the extreme precipitation have been reported by previous
studies (Wang, 2012). Therefore, we believe that the strong
rainfall caused by abnormal atmospheric circulation during the
period of climate transition/abrupt change may be the main
triggering factor of these two episodes of extreme overbank
flooding (Xiao et al., 2022).

6 Conclusion

The sedimentary section of the paleo-oxbow lake fill at NYQ-B
site was discovered after the observation of aerial photographs and
maps within the Zoige Basin on the NE Tibetan Plateau. The multi-
proxy approach especially geochemical proxy to the interpretation
of the NYQ-B paleo-oxbow sedimentary infill enables us to
reconstruct the evolution of river channel, local sedimentation
processes and extreme flooding history linked to global climate
changes. The following conclusions are drawn:

1. The sediment of the paleo-oxbow lake fill at NYQ-B site
contained the paleoenvironmental record during middle to
late Holocene. The paleo-oxbow lake fill was occupied by the
ancient Yellow River during 4,170 ± 490–3,240 ± 260 a. After the
neck cutoff of the Yellow River and abandonment of the channel,
the shallow oxbow lake appeared at 3,240 ± 260 a, interrupted by
two episodes of extraordinary overbank flooding, changed to a
steppe environment at 1,310 ± 50 a and continue to the
present day.

2. Geochemical characteristics can be used as the robust proxy to
identify the flood deposits accurately in the Holocene stratum of
the fluvial plain on the NE Tibetan Plateau. The elemental
distribution in each sedimentary unit of the profile NYQ-B
show obviously different characteristics with a certain
relationship with grain-size variation. Layers of overbank flood
deposits are characterized by the high contents of SiO2, Na2O, Ba,
low contents of Al2O3, Fe2O3, MgO, K2O, Ti, Rb and high values
of Zr/Fe, Zr/Rb ratios.

3. Two episodes of extraordinary overbank flooding in the upper
Yellow River occurred during 2,960 ± 240–2,870 ± 270 a and
1840 ± 200–1700 ± 160 a, which are in good agreement with
the transition periods from the mid-Holocene climatic
optimum to the late Holocene and the Dark Age Cold
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Period (DACP). Abnormal atmospheric circulation and strong
rainfall during the period of climate transition and abrupt
change triggered extreme flooding on the NE Tibetan Plateau,
which is helpful in understanding the regional response of
hydroclimatic system to climatic variations in source region of
the largest rivers of Asia.
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