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Staggered-grid finite-difference (FD) method is widely used to solve the wave
equation for the numerical seismic modeling, and it is a key step of the advanced
seismic imaging and inversion problem. However, the conventional FD method
is prone to instability and dispersion error due to the insufficient approximation
accuracy. In this work, we propose an efficient temporal high-order finite-
difference (FD) scheme with the cross-rhombus stencil. Compared with the
standard cross-rhombus method, the new method has less computational
cost due to we simplify the FD scheme. Moreover, the dispersion relation of
the new method is easy to obtain the dispersion-relation-preserving (DRP) FD
coefficients, which can significantly alleviate the spatial and temporal dispersion
errors. Dispersion and stability analyses indicate that the new scheme has
better performance in seismic modeling than the conventional method, and
numerical experiments also indicate that the new scheme can effectively
mitigate dispersion error and improve the numerical accuracy.

KEYWORDS

finite difference, staggered grid, simplified dispersion-relation-preserving scheme,
cross-rhombus stencil, high-order approximation

1 Introduction

Staggered-grid finite-difference methods have been extensively applied in the seismic
wave simulations due to their straightforward implementation and high computing
efficiency (Kindelan et al., 1990; Moczo et al., 2000; Etgen and O¡¯Brien, 2007; Moczo et al.,
2011;Moczo et al., 2014; Etemadsaeed et al., 2016; Liu et al., 2019; Zhang et al., 2022). High-
order approximation for temporal derivatives in the staggered-grid FD scheme contributes
to suppressing the temporal dispersion errors, and enhancing the stability with a large
time step. However, the explicit high-order temporal derivative approximation in the FD
scheme is always unstable (Chen, 2007; 2011). Generally, we use a second-order temporal
approximation and an arbitrary even-order spatial approximation to solve the scalar wave
equation.

To improve the temporal accuracy, Dablain (1986) proposed a new FD scheme based
on the Lax-Wendroff approach, which can reach fourth-order accuracy in the temporal
derivative approximation but has a limitation in the case of the large velocity contrast.
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Chen (2007, 2011) further developed the fourth- and sixth-order
schemes and analyzed the stability condition in the high-order
cases. Alternatively, Liu and Sen (2009) proposed the time-space
domain FD coefficients by incorporating the dispersion relation of
the temporal and spatial terms. The time-space domain method
can reach arbitrary even-order accuracy along with some specific
propagation angles. However, it is still second-order accuracy along
with other angles (Liu and Sen, 2009). To further improve the
accuracy, Liu and Sen (2013) proposed a novel rhombus stencil.
This new stencil with the time-space domain FD coefficients
can reach arbitrary-order accuracy in both temporal and spatial
approximations. However, the standard rhombus stencil is not a
computationally friendly method for large-scale modeling, and it
will increase the computational cost exponentially for the high-order
cases. Afterwards, Tan and Huang (2014a),Tan and Huang (2014b)
proposed an effective FD stencil with the sixth-order accuracy in the
time approximation. Tan’s stencil is similar to the rhombus stencil,
but it involves fewer grid nodes outside the cross axis compared
to the standard rhombus stencil, thus reducing the computational
cost significantly. Wang E. et al. (2016) generally defined this stencil
as the cross-rhombus stencil with arbitrary even-order temporal
accuracy. The cross-rhombus stencil contains a large cross stencil
and a small rhombus stencil. Among them, the small rhombus
stencil increases the temporal accuracy and ensures computational
efficiency, while the large cross stencil has a high-order spatial
accuracy. Then, Ren et al. (2017) developed the cross-rhombus
stencil in the staggered-grid FD scheme, and presented twomethods

for solving the FD coefficients. Wang et al. (2019) further developed
the cross-rhombus stencil in the 3D case with the general cuboid
grid.

To mitigate the dispersion error, the dispersion relation of
the FD scheme should require many wavenumbers, because the
spatial dispersion error usually comes from the high-wavenumber
component. However, the conventional Taylor series expansion
(TE) method for solving FD coefficient satisfies the dispersion
relation near the zero wavenumbers, so it is prone to dispersion.
The optimization method is a feasible way to obtain the FD
coefficients (Liu, 2013; Zhang and Yao, 2013; Tan andHuang, 2014b;
Chen et al., 2020) for mitigating dispersion, where the dispersion-
relation-preserving method (Wang and Teixeira, 2003; Ye and
Chu, 2005; Liang et al., 2015; Etemadsaeed et al., 2016; Chen et al.,
2020) has been widely concerned because of its simplicity and
easy implementation. The DRP-based method expands dispersion
relation into an over-determined system associated with a series of
wavenumbers and propagation angles, and then solves this over-
determined system numerically to obtain the FD coefficients in the
least square sense. The DRP-based FD coefficients satisfy a series
of wavenumbers from low to high in the sense of the least square,
thus the DRP-based method can effectively mitigate the temporal
and spatial dispersion error.

The DRP-based FD coefficients have been successfully applied
to the temporal high-order scheme (cross-rhombus stencil) in the
regular grid Chen et al. (2020), in which the DRP-based coefficients
can significantly mitigate dispersion error, while the cross-rhombus

FIGURE 1
Illustrating the cross-rhombus stencil in the staggered grid.
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TABLE 1 Abbreviation table of different FDmethods used for dispersion analyses.

Abbreviations FD coefficients FD stencils

TE-C-S TE-based space domain coefficients Cross stencil

TE-C-TS TE-based time-space domain coefficients Cross stencil

TE-CR-TS TE-based time-space domain coefficients Cross-rhombus stencil (Standard)

DRP-CR-TS DRP-based time-space domain coefficients Cross-rhombus stencil (Proposed)

FIGURE 2
Dispersion curves of the four methods with a moderate time step τ = 0.0015 s (A) TE-C-S method. (B) TE-C-TS method. (C) TE-CR-TS method. (D)
DRP-CR-TS method.

stencil can effectively improve the temporal approximation
accuracy. However, for the staggered-grid FD scheme, the DRP-
based coefficients cannot be directly obtained because the dispersion
relation is difficult to be extended into an over-determined system.
Liang et al. (2018) has presented a special FD scheme with a high
computational efficiency, in which the second-order FD operator

is used to approximate some partial derivatives rather than the
global high-order FD operator. And such replacement simplifies the
dispersion relation into a form of the linear equation. Motivated
by (Liang et al., 2018; Zhou et al., 2022), we propose a general
simplified FD scheme for the temporal high-order modeling with
a cross-rhombus stencil. The new scheme contains a cross stencil
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FIGURE 3
Stability factors of the four methods with different r and M, where N = 3 and L =M for the cross-rhombus stencil. The green curve represents s(r) = r. (A)
TE-C-S method. (B) TE-C-TS method. (C) TE-CR-TS method. (D) DRP-CR-TS method.

with the analytic FD coefficients and a cross-rhombus stencil with
the DRP-based coefficients for different partial derivatives. The
cross stencil can simplify the dispersion relation, which makes it
easy to construct the over-determined system. The cross-rhombus
stencil can make the FD scheme maintain a high-order temporal
approximation. The dispersion relation of our new FD scheme
can be expanded to an over-determined system with a series of
wavenumbers and angles. Solving this over-determined system by
the numerical methods (Wang et al., 2014; Wang et al., 2016 Y.;
Chen et al., 2020; Wu et al., 2020; Li et al., 2022), we obtain the
DRP-based FD coefficients. Therefore, the new FD scheme has
three advantages: 1. The DRP-based FD coefficients can effectively
mitigate the dispersion error; 2. It still has a temporal higher-order
approximation accuracy; 3. The computational cost of the proposed
method is significantly reduced compared with the standard cross-
rhombus scheme.

2 Methods

2.1 Review of the standard cross-rhombus
scheme

The 2D first-order acoustic wave equations with the constant
density are

∂p
∂t
+K∇ ⋅ v = 0, ∂v

∂t
+ 1
ρ
∇p = 0, (1)

where K = ρυ2 is the bulk modulus, ρ(x,z) is the density and v(x,z)
is the velocity. p(x,z, t) is the pressure, and v = [υx,υz]

T is the
particle velocity vector. The staggered-grid FD scheme with the
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FIGURE 4
Maximum stability factors of the four methods satisfy r ≤ s for different
M, where N = 3 and L =M for the cross-rhombus stencil.

cross-rhombus stencil for above equations is

pli,j = p
l−1
i,j −Kτ(D

CR
x υl−1/2x i−1/2,j +D

CR
z υl−1/2z i,j−1/2) ,

υl+1/2x i+1/2,j = υ
l−1/2
x i+1/2,j −

1
ρ
τHCR

x pli,j,

υl+1/2z i,j+1/2 = υ
l−1/2
z i,j+1/2 −

1
ρ
τHCR

z pli,j.

(2)

Here, pli,j = p(x+ ih,z+ jh, t+ lτ), h is the grid spacing and τ is the
time step. The FD operators HCR

x and DCR
x are

∂p
∂x
≈HCR

x p0,0 =
1
h
[

M

∑
m=1

am,0 (pm,0 − p−m+1,0) +
N−1

∑
m=1

×
N−m

∑
n=1

am,n (pm,n − p−m+1,n + pm,−n − p−m+1,−n)]. (3)

and

∂vx
∂x
≈ DCR

x v−1/2,0 =
1
h
[

M

∑
m=1

bm,0 (vx,m−1/2,0 − vx,−m+1,0)

+
N−1

∑
m=1

N−m

∑
n=1

bm,n (vx,m−1/2,n − vx,−m+1/2,n

+ vx,m−1/2,−n − vx,−m+1,−n)]. (4)

The superscript CR represents the cross-rhombus stencil composed
of a standard cross stencil and a rhombus stencil (as shown
in Figure 1). am,n and bm,n represent the FD coefficients of the
operators HCR

x and DCR
x , respectively. M and N are the spatial and

temporal operator length parameters, respectively. Generally, when
temporal operator length N > 3, the accuracy increases far less than
the increase of the calculation cost. Thus, we recommend that
N = 3 is enough. M and N represents the (2M)th-order accuracy in
space and (2N)th-order accuracy in time respectively. And the FD
operators along the z-axis (HCR

z andDCR
z ) can be defined in the same

way.

Assuming plane wave propagating in the grid, we let

plm,n = p
0
0,0e

i(kxmh+kznh−ωlτ),

υl+1/2x m+1/2,n = υ
1/2
x 1/2,0e

i(kxmh+kznh−ωlτ),

υl+1/2z m,n+1/2 = υ
1/2
z 0,1/2e

i(kxmh+kznh−ωlτ),

(5)

where kx = k cos(θ) and kz = k sin(θ) are the wavenumbers in x- and
z-axes, respectively. θ is a propagation angle of the plane wave, ω is
the angular frequency and i = √−1. Substituting Eq. 5 into Eq. 2, we
obtain

[
M

∑
m=1

am,0 sin((m− 0.5)kxh) + 2
N

∑
m=1

×
N−m

∑
n=1

am,n sin((m− 0.5)kxh)cos(nkzh)]

*[
M

∑
m=1

bm,0 sin((m− 0.5)kxh) + 2
N

∑
m=1

×
N−m

∑
n=1

bm,n sin((m− 0.5)kxh)cos(nkzh)]

+[
M

∑
m=1

am,0 sin((m− 0.5)kzh) + 2
N

∑
m=1

×
N−m

∑
n=1

am,n sin((m− 0.5)kzh)cos(nkxh)]

*[
M

∑
m=1

bm,0 sin((m− 0.5)kzh) + 2
N

∑
m=1

×
N−m

∑
n=1

bm,n sin((m− 0.5)kzh)cos(nkxh)]

=
1− cos (ωτ)

2r2
. (6)

Here, r = vτ/h is the Courant number. Generally, the operators
HCR and DCR adopt the same FD coefficients, i.e.

am.n = bm,n. (7)

Then, Equation 6 can be rewritten as

[
M

∑
m=1

am,0 sin((m− 0.5)kxh) + 2
N

∑
m=1

×
N−m

∑
n=1

am,n sin((m− 0.5)kxh)cos(nkzh)]
2

+[
M

∑
m=1

am,0 sin((m− 0.5)kzh) + 2
N

∑
m=1

×
N−m

∑
n=1

am,n sin((m− 0.5)kzh)cos(nkxh)]
2

=
1− cos (ωτ)

2r2
. (8)

Eq. 8 represents the time-space domain dispersion relation of
the staggered-grid FD schemewith the cross-rhombus stencil. Using
the Taylor series to expand the trigonometric functions with respect
to the propagation angle θ, we can obtain the time-space domainTE-
based FD coefficients (Ren et al., 2017). The cross-rhombus stencil
with the TE-based FD coefficients can achieve arbitrary even-order
temporal accuracy, thus mitigating the temporal dispersion error
significantly.
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FIGURE 5
Snapshots of the four methods with the time step τ = 0.001s, where M = 8, N = 3, L =M, υ = 1500m/s and h = 6m. The main frequency of the Ricker
wavelet is 40Hz. (A) TE-C-S method. (B) TE-C-TS method. (C) TE-CR-TS method. (D) DRP-CR-TS method.

2.2 A new simplified staggered-grid FD
scheme with the cross-rhombus stencil

The TE-based FD coefficients satisfy the dispersion relation
within a limited wavenumber bandwidth, resulting in the high-
wavenumber components of seismic wavefield are prone to the
spatial dispersion. However, the dispersion relation of the standard
staggered-grid scheme is a quadratic equation, which is difficult to
expand into the over-determined system for solving DRP-based FD
coefficients. In this part, we develop a new simplified staggered-grid
FD scheme. The new scheme can not only easily obtain the over-
determined system for the DRP-based coefficients, but also greatly
reduce the computational cost.

The FD operators DCR and HCR use same coefficients
(am,n = bm,n), which causes the dispersion relation to be a second-
order non-linear equation. To obtain a simple dispersion relation,

we propose a new simplified FD scheme as

pli,j = p
l−1
i,j −Kτ(D

C
x υ

l−1/2
x i−1/2,j +D

C
z υ

l−1/2
z i,j−1/2) ,

υl−1/2x i+1/2,j = υ
l−3/2
x i+1/2,j −

1
ρ
τHCR

x pl−1i,j ,

υl−1/2z i,j+1/2 = υ
l−3/2
z i,j+1/2 −

1
ρ
τHCR

z pl−1i,j .

(9)

Here, the superscript C represents the cross stencil. For example, the
FD operator DC

x can be defined as

DC
x v−1/2,0 =

1
h

L

∑
l=1

bl,0 (vl−1/2,0 − v−l+1/2,0) . (10)

We use the cross-stencil-based operators DC to replace part of the
operator DCR in the new scheme. Thus, the new scheme contains
a cross-rhombus stencil and a cross stencil for different partial
derivatives.
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FIGURE 6
Seismic records of the four methods at Receiver 1 and Receiver 2. The reference traces represented by the green curves are obtained by the high-order
FD scheme under the fine grid. (A) Seismic records at Receiver 1. (B) Seismic records at Receiver 2.

TABLE 2 Relative errors of the four methods at Receiver 1 and Receiver 2.

Methods Relative Errors (Pa)

Receiver 1 Receiver 2

TE-C-S 0.3931 0.4323

TE-C-TS 0.2436 0.2092

TE-CR-TS 0.0366 0.2054

DRP-CR-TS 0.0113 0.0458

For convenience, DC adopts the analytic time-space domain FD
coefficients

bl,0 =
(−1)l+1

2l− 1
∏

1≤n≤L, n≠l

× |
(2n− 1)2 − r2

(2n− 1)2 − (2l− 1)2
| (l = 1,2,…,L) . (11)

Here, L represents the length of the analytic FD operator. And
the analytical cross stencil simplifies the original second-order
dispersion relation to a linear form. The new dispersion relation
can be easily extended to an over-determined linear system
for solving the wide-bandwidth FD coefficients. Moreover, the
analytical cross stencil has less computational cost compared with
the standard cross-rhombus scheme, especially in the high-order
cases.

2.3 Determining FD coefficients of the new
stencil by the DRP-based method

In this part, we present the method for solving the DRP-based
FD coefficients of the new scheme. We assume that the plane wave
propagating in the grid, and then substitute Eq. 5 into Eq. 9, yield
the new dispersion relation

[
M

∑
m=1

am,0 sin((m− 0.5)kxh) + 2
N

∑
m=1

N−m

∑
n=1

am,n sin

×((m− 0.5)kxh)cos(nkzh)]
L

∑
l=1

bl,0 sin((l− 0.5)kxh)

+ [
M

∑
m=1

am,0 sin((m− 0.5)kzh) + 2
N

∑
m=1

N−m

∑
n=1

am,n sin

× ((m− 0.5)kzh)cos(nkxh)]
L

∑
l=1

bl,0 sin((l− 0.5)kzh)

=
1− cos (ωτ)

2r2
. (12)

Clearly, the new dispersion relation can be easily extended to the
linear system satisfying a series of wavenumbers and propagation
angles. It is worth noting that if the FD operatorH uses cross stencil,
for example: HC and DCR are applied to Equation 9, the dispersion
relation does not change. And the cross stencil is applied to the FD
operator H or D, the corresponding FD schemes are equivalent.

Following our previouswork (Chen et al., 2020), we define a new
function ψm,β,θ to represent the weights of FD coefficients am,0 in
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Eq. 12. Then ψm,β,θ can be denoted as

ψm,β,θ = sin ((m− 0.5)β cos (θ))
L

∑
l=1

bl,0 sin ((l− 0.5)β cos (θ))

+ sin ((m− 0.5)β sin (θ))
L

∑
l=1

bl,0

× sin ((l− 0.5)β sin (θ)) . (13)

Here, β = kh and θ represents the propagation angle. Similarly, we
define another function χm,n,β,θ to represent the weights of am,n. The
function χm,n,β,θ is defined as

χm,n,β,θ = 2sin ((m− 0.5)β cos (θ))cos (nβsin (θ))
L

∑
l=1

bl,0

× sin ((l− 0.5)β cos (θ)) + 2 sin ((m− 0.5)β sin (θ))

× cos (nβcos (θ))
L

∑
l=1

bl,0 sin ((l− 0.5)β sin (θ)) . (14)

Since am,n = an,m, we define a new function

φm,n,β,θ =
{
{
{

χm,n,β,θ (m = n)

χm,n,β,θ + χn,m,β,θ (m ≠ n) .
(15)

Therefore, the dispersion relation (Eq. 12) of the new FD scheme can
be rewritten as

M

∑
m=1

am,0ψm,β,θ +
N

∑
m=1

N−m

∑
n=m

am,nφm,n,β,θ =
1− cos (ωτ)

2r2
. (16)

Then we extend ψm,β,θ to a matrix involving a series of β and a fixed
angle θ, and the matrix is

A (θ) =

[[[[[[[[[[[[[[[[

[

ψ1,β1,θ
ψ2,β1,θ

⋯ ψM,β1,θ

ψ1,β2,θ
ψ2,β2,θ

⋯ ψM,β2,θ

⋮ ⋮ ⋮ ⋮

ψ1,βξ,θ
ψ2,βξ,θ

⋯ ψM,βξ,θ

]]]]]]]]]]]]]]]]

]

. (17)

Where βi = βmax/ξ*i, βmax = 2πfmax/v with respect to the maximum
frequency of the seismic wavefield Chen et al. (2022) and π is the
circular constant.

Similarly, we extend the function φn,β,θ to the matrix.

B (θ) =

[[[[[[[[[[[[[

[

φ1,1,β1,θ
⋯ φ1,N−1,β1,θ

φ2,2,β1,θ
⋯ φ2,N−2,β1,θ

⋯ φN/2,N/2,β1,θ

φ1,1,β2,θ
⋯ φ1,N−1,β2,θ

φ2,2,β2,θ
⋯ φ2,N−2,β2,θ

⋯ φN/2,N/2,β2,θ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

φ1,1,βξ,θ
⋯ φ1,N−1,βξ,θ

φ2,2,βξ,θ
⋯ φ2,N−2,βξ,θ

⋯ φN/2,N/2,βξ,θ

]]]]]]]]]]]]]

]

.

(18)

Note that if N is an odd number, the matrix B(θ) is.

B (θ) =

[[[[[[[[[[[[

[

φ1,1,β1,θ
⋯ φ1,N−1,β1,θ

φ2,2,β1,θ
⋯ φ2,N−2,β1,θ

⋯ φ(N−1)/2,(N−1)/2,β1,θ φ(N−1)/2,(N+1)/2,β1,θ

φ1,1,β2,θ
⋯ φ1,N−1,β2,θ

φ2,2,β2,θ
⋯ φ2,N−2,β2,θ

⋯ φ(N−1)/2,(N−1)/2,β2,θ φ(N−1)/2,(N+1)/2,β2,θ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

φ1,1,βξ,θ
⋯ φ1,N−1,βξ,θ

φ2,2,βξ,θ
⋯ φ2,N−2,βξ,θ

⋯ φ(N−1)/2,(N−1)/2,βξ,θ φ(N−1)/2,(N+1)/2,βξ,θ

]]]]]]]]]]]]

]

.

(19)

The right-hand side of Eq. 16 also be expanded to the matrix

D (θ) =

[[[[[[[[[[[[[[[[

[

r−2 [−2+ 2 cos(β1r)]

r−2 [−2+ 2 cos(β2r)]

⋮

r−2 [−2+ 2 cos(βξr)]

]]]]]]]]]]]]]]]]

]

. (20)

Then the dispersion relation satisfying ξ wavenumbers and ζ angles
can be expressed as

[[[[[[[[[[[[[[[[

[

A (θ1) B (θ1)

A (θ2) B (θ2)

⋮ ⋮

A(θζ) B(θζ)

]]]]]]]]]]]]]]]]

]

[[[[[[[[[[[[[[[[

[

a0,0

a1,0

⋮

aN−1,1

]]]]]]]]]]]]]]]]

]

=

[[[[[[[[[[[[[[[[

[

D (θ1)

D (θ2)

⋮

D(θζ)

]]]]]]]]]]]]]]]]

]

. (21)

This over-determined system has ζ× ξ rows and 1+M+N2/4
columns with even number N and 1+M+ (N− 1)2/4 columns with
odd number N. We can easily obtain the DRP-based FD coefficients
by solving this over-determined system. We also introduce the
simplified FD scheme in the 3D case, the details are shown in the
Supplementary Material S1.

3 Numerical dispersion and stability
analyses

3.1 Numerical dispersion analysis

In this part, we analyse the dispersion characteristics of our new
scheme. The phase velocity of the new FD scheme can be expressed
as

vFD =
1
kτ

arccos(1− 2qr2) , (22)

where q is

q =
M

∑
m=1

am,0ψm,β,θ +
N

∑
m=1

N−m

∑
n=m

am,nϕm,n,β,θ. (23)

Thus, the dispersion parameter δ of the new FD scheme is defined as

δ =
vFD
v
= 1
rkh

arccos(1− 2qr2) . (24)
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FIGURE 7
Snapshots of the four methods for different M, where τ = 0.0015s, υ = 1500m/s, h = 6m, and N = 3, L =M. The main frequency of the Ricker wavelet is
40Hz. The four quadrants represent the snapshots of the same FD method for different M = 6,8,10,12, respectively. (A) TE-C-S method. (B) TE-C-TS
method. (C) TE-CR-TS method. (D) DRP-CR-TS method.

If δ is not equal to 1, the FD scheme suffers from the numerical
dispersion, i.e., has the spatial dispersion error (δ < 1) or temporal
dispersion error (δ > 1). We analyze and compare the dispersion
parameter δ of the new FD scheme with the other three methods,
and the abbreviations of these methods are listed in Table 1. The
dispersion curves of δ varying with the kh are shown in Figure 2.

It can be seen that the cross-stencil-based FD schemes (TE-C-
S and TE-C-TS methods) have obviously temporal dispersion
error (δ > 1). The corresponding temporal dispersion of the cross-
rhombus stencil (TE-CR-TS and DRP-CR-TSmethods) is alleviated
(Figures 2C, D) due to the temporal high-order approximation. It
is worth noting that the proposed method (DRP-CR-TS method)
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FIGURE 8
Snapshots of the simplified scheme for different L and N, where M = 8, τ = 0.0015s, υ = 1500m/s and h = 6m. The main frequency of the Ricker wavelet is
40Hz. (A) DRP-CR-TS method with different L, here N = 3. (B) DRP-CR-TS method with different N, here we set L =M.

FIGURE 9
BP model with 560 × 1000 grid nodes and grid spacing h = 7.5 m, the variation of velocities from 1500m/s to 4500m/s.
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FIGURE 10
Snapshots of the four methods, here we set M = 8, N = 3, L =M and τ = 0.007s (A) TE-C-S method. (B) TE-C-TS method. (C) TE-CR-TS method. (D)
DRP-CR-TS method.

satisfies the widest range of the wavenumber (kh), which can
mitigate the spatial dispersion error considerably.

3.2 Stability analysis

According to the dispersion relation of the new FD scheme, we
obtain

cos (ωτ) = 1− 2qr2. (25)

It is clear that

−1 ≤ cos (ωτ) ≤ 1. (26)

Then, we obtain

q ≥ 0 (27)

and

r ≤ √1/q. (28)

We consider the Nyquist wavenumber, that is

kxh = kzh = π. (29)

Substituting Eq. 29 into (28), we obtain the stability condition

r ≤ [2(
M

∑
m=1
(−1)m+1am,0 + 2

N−1

∑
m=1

×
N−m

∑
n=1
(−1)m+n+1am,n)

L

∑
l=1
(−1)l+1bl,0]

− 1
2

. (30)

We denote the right-hand side of inequation (30) as the stability
factor

s = [2(
M

∑
m=1
(−1)m+1am,0 + 2

N−1

∑
m=1

×
N−m

∑
n=1
(−1)m+n+1am,n)

L

∑
l=1
(−1)l+1bl,0]

− 1
2

, (31)

where the stability factor s is related to the FD coefficients am,n
and bl,0, and these FD coefficients are determined by the Courant
number r. In the following, we analyze the stability factors s varying
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FIGURE 11
Seismic records of the four methods. (A) TE-C-S method. (B) TE-C-TS method. (C) TE-CR-TS method. (D) DRP-CR-TS method.

with the Courant number r, the stability curves of our new scheme
and other three methods are shown in Figure 3. It can be seen that
the stability factors of the proposedmethod are slightly less than that
of the TE-CR-TSmethod. Although theDRP-CR-TSmethod adopts
an analytical cross stencil, its stability does not sharp decrease, and it
is much larger than that of the conventional methods (TE-C-S and
TE-C-TS). Figure 4 shows the maximum value of stability factors
satisfying r ≤ s for different ordersM.The stability curve ofDRP-CR-
TSmethod is volatile due to the use of numericalmethod to solve the
over-determined system, and it is sensitive to orderM, but this does
not affect the overall stability. It can be seen that the stability curve of
the proposedmethod has the same level with theTE-CR-TSmethod.
Stability analyses in Figures 3, 4 reveals that the proposed scheme

has the same level stability as the standard temporal high-order
scheme (TE-CR-TS method), and far better than the conventional
scheme.

4 Numerical experiments

4.1 Homogeneous model

In this section, we use a 2-D homogeneous velocity model
to examine our new scheme. The 2D homogeneous model has
512× 512 grid nodes with the grid spacing h = 6m and velocity
υ = 1500 m/s. A Ricker-wavelet source with a main frequency of
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FIGURE 12
Seismic records of the four methods at (1920 m, 0 m).

40Hz is located at the spatial point (1536m,1536m). Two receivers
at the spatial points (768m,768m) and (768m,1536m) are used to
record the waveforms.

Figure 5 shows the snapshots with a time step τ = 0.001s. The
TE-C-S and TE-C-TS methods have serious temporal and spatial
dispersion errors (Figure 5A). The temporal dispersion error (red
arrow) of the TE-CR-TS method is smaller than that of the TE-
C-TS method. However, the TE-CR-TS method still has obvious
spatial dispersion error (white arrow), because the TE-based FD
coefficients preserve the dispersion relation in a limited range.
Figure 5D shows that the corresponding spatial dispersion error
is reduced considerably in the proposed method (DRP-CR-TS).
Figure 6 shows the seismic records of the fourmethods at Receiver 1
and Receiver 2.The reference traces represented by the green curves
are obtained by the high-order FD scheme under the fine grid. The
Receiver 1 (Figure 6A) shows that the temporal dispersion errors of
the TE-CR-TS andDRP-CR-TSmethods are smaller than that of the
TE-C-S and TE-C-TS methods, and the Receiver 2 shows that the
spatial dispersion error are serious in the TE-based methods (TE-
C-S, TE-C-TS, and TE-CR-TS). But the proposed method (DRP-
CR-TS) still has a small level of the dispersion error. Table 2 lists
the relative errors of the four methods compared to the reference
trace at Receiver 1 and Receiver 2. The relative errors of the cross-
rhombus stencil are smaller than that of the conventional cross
stencil, especially the DRP-CR-TS method reduces the relative error
significantly.

We also analyze the snapshots for different orders M, the
snapshots are shown in Figure 7. In this case, simply increasing
M can not effectively reduce the dispersion error in the TE-C-
S method. The temporal dispersion errors of the TE-C-TS and

TE-CR-TS methods are gradually reduced, but when M = 12,
there are still obvious spatial dispersion error (white arrow). The
corresponding spatial dispersion error is mitigated in the proposed
method (DRP-CR-TS) even at low order (M = 6).Then, we study the
snapshots of the proposed method for different N and L, the results
are shown in Figure 8.The dispersion error of the proposedmethod
is small for different L and N, thus we can select an appropriate
low-order L or N to improve the computational efficiency.

4.2 Inhomogeneous model

4.2.1 2D BP model
We use a widely referred 2D BP velocity model (Figure 9) to

test the four methods in the inhomogeneous model. The 2D BP
model has 560× 1000 grid nodeswith the variation of velocities from
1500 m/s to 4500 m/s. In this case, we set time step τ = 0.0007 s,
M = 8, N = 3, L =M, grid spacing h = 7.5m and main frequency
fm = 30Hz for numerical simulation. A total of 1,000 receivers are
located on the surface of the model.

Figure 10 shows the snapshots of the four methods. The
TE-C-S method has obvious temporal dispersion error (red
arrow), and the corresponding error in the TE-C-TS and TE-
CR-TS methods is reduced (Figures 10B, C). However, the spatial
dispersion error (white arrow) is still serious. Figure 10D shows the
spatial dispersion error of the proposed method (DRP-CR-TS) is
significantly reduced in the low- and high-velocity layers. Figure 11
shows the seismic records of the four methods, and Figure 12 shows
the corresponding seismic records at (1920m,0m). It can be seen
that the TE-based methods have serious spatial dispersion error
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TABLE 3 CPU execution times and the relative errors of the four methods on the BPmodel.

Cases Methods M N L Execution times s) Relative errors (pa)

1 TE-C-S 8 \ \ 649.0250 0.8941

2 TE-C-TS 8 \ \ 649.3852 0.4469

3 TE-CR-TS 8 3 \ 983.2374 0.3001

4 DRP-CR-TS 8 3 8 791.3253 0.1096

5 DRP-CR-TS 8 3 6 729.4710 0.1098

6 DRP-CR-TS 8 3 3 670.7974 0.1102

from the first arrivals, but the corresponding error is mitigated in
the proposed method (DRP-CR-TS). The reflected wave from the
high-velocity layers contain both the spatial and temporal dispersion
errors, and the corresponding error in the proposed method (DRP-
CR-TS) is smaller than that of the other three methods.

5 Discussion

In this section, we discuss the computational cost and accuracy
simultaneously. Taking the above BPmodel as an example, we design
a series of FD parameters for seismic modeling. The numerical
experiments are executed on the same computer (Intel Core I7-700
with 3.6 GHz and 8 GBmemory).Table 3 shows the CPU execution
times and the relative errors at spatial point (1920 m, 0 m) of the
four methods. It is clear that the TE-C-S and TE-C-TS methods
have fewer execution times in the numerical experiments (Cases 1
and 2 in Table 3), but their relative errors are larger than that of the
TE-CR-TS and DRP-CR-TSmethods.The relative error of the DRP-
CR-TS method is significantly reduced, and their execution time is
less than that of the TE-CR-TSmethod. It is worth noting that when
we reduce the length of the analytic FD operator in the DRP-CR-TS
method (Cases 5 and 6), the execution time is reduced considerably,
and the relative error is almost unaffected. Besides, the DRP-CR-
TS method can select a relatively larger time step to reduce the
computational cost due to the temporal high-order approximation.

6 Conclusion

We propose a new staggered-grid DRP-based FD scheme with
a cross-rhombus stencil for solving the scalar wave equation. The
new scheme has a simplified dispersion relation, which is convenient
for solving the dispersion-relation-preserving FD coefficients.
Besides, the simplified scheme uses the cross stencil instead of the
cross-rhombus stencil in some FD operators, thus reducing the
computational cost considerably. Dispersion analyses reveals that
the proposed FD scheme can effectively mitigate the dispersion
error, and it still has a temporal higher-order approximation
accuracy. The proposed scheme also has better stability compared
with the conventional scheme.Numerical experiments show that the
proposed scheme has smaller temporal and spatial dispersion errors
while ensuring the computational efficiency, and it is an economical
way for the large-scale seismic modeling.
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