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Diamondoids are alkanes with cage-like structure. Their diamond-like structure
makes them have high stability and anti-biodegradability, and can be preserved
and enriched in complex and long geological processes. Therefore, the
continuous development of quantitative detection methods for diamondoids in
crude oil has deepened the research of these compounds and made them more
widely used in crude oil cracking evaluation, maturity evaluation, biodegradation
evaluation and other aspects.
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1 Introduction

Since the 21st century, exploration work in China has changed significantly. Specifically,
exploration targets have gradually shifted from structural hydrocarbon reservoirs to subtle
strata and from shallow to deep strata. In addition, exploration objects have been
transformed from oil to natural gas. Such changes have triggered a series of new
problems in the field of oil and gas exploration, and posed great challenges to the
research on oil and gas geochemistry, but also rendered a good opportunity for the
development of oil and gas geochemistry.

Increasing attention has been paid to deep oil and gas reservoirs as a new exploration
target. Oil and gas geochemical experts have extensively investigated natural gas, light
hydrocarbons, and biomarkers, accumulated rich experience, and achieved fruitful
theoretical and practical results. However, deep oil and gas reservoirs are often prone to
the loss of biomarkers, or equilibrium has been reached. In themeanwhile, light hydrocarbon
components are highly susceptible to secondary alteration and mixed sources, which adds to
the uncertainty in their practical application. Therefore, it is urgent to develop more stably
structured geochemical parameters adaptive to the high degree of evolution.

Among geological organic matter, diamondoids are small molecular alkanes with a cage-
like diamond structure (Wingert, 1992; Dahl et al., 1999). Based on the number of three-
dimensional (3D) cyclic structures, diamondoids are divided into adamantane, diamantane,
triamantane, tetramantane, pentamantane (Figure 1), etc. Diamondoids, which generally refer
to adamantane and its alkyl substitutes with strong biodegradation resistance and high thermal
stability, widely exist in coal and hydrocarbon source rocks (Imuta and Ouchi, 1973; Aczel
et al., 1979; Schulz et al., 2001; Wei et al., 2006b), crude oil (Bender et al., 1986; Williams et al.,
1986; Wingert, 1992; Chen et al., 1996; Grice et al., 2000; Dahl et al., 2003; Azevedo et al., 2008;
Ma et al., 2009), petroleum products (Wang et al., 2006), and condensate gas (Lin and Wilk,
1995; Stout and Douglas, 2004; Sassen and Post, 2008). Diamondoids have attracted much
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attention since they can be preserved and enriched in long and
complicated geological processes, with relevant geological
information carried and rendered. As revealed by previous studies,
diamondoids are applicable to evaluating the thermal maturity of
crude oil (Zhao et al., 1995; Chen et al., 1996; Zheng et al., 1998; Li
et al., 2000; Zhang et al., 2005; Ma et al., 2017; Jiang et al., 2019, 2021,
2022; Akinlua et al., 2020; Goodwin et al., 2020; Huang et al., 2022b),
judging the migration direction and charging period of oil and gas
(Duan et al., 2007; Huang et al., 2022a, 2022b), assessing the cracking
degree of crude oil (Dahl et al., 1999; Chai et al., 2022; Peng et al.,
2022), identifying lithofacies (Schulz et al., 2001; Chai et al., 2020),
evaluating the secondary alteration of oil reservoirs (Jiang et al., 2020),
researching oil-source correlation (Forkner et al., 2021), assessing
residual of migration fractionation (Zhu et al., 2021), exploring the
thermochemical sulfate reduction reaction (Wei et al., 2011), and
identifying in the sources of oil (Stout and Douglas, 2004; Wang et al.,
2006; Spaak et al., 2020), especially at the over-mature stage in case of
relative equilibrium reached among other biomarkers, or their failure
resulting from low content.

Among geological organic matter, easily detectable high-content
adamantane and diamantane compounds have been the focus in the
present research and discussion regarding oil and gas geochemistry.
Therefore, this paper focuses on adamantanes and diamantanes. The
following diamondoids are also used to refer to the total of
adamantanes and diamantanes.

2 Quantitative detection method of
diamondoids

In 1933, the most simply structured adamantane was detected in
petroleum for the first time (Landa andMachacek, 1933). Since then,
increasingly abundant diamondoids have been detected in natural
gas (Fu and Yu, 1998; Fu and Li, 2001), crude oil and condensate gas
(Wingert, 1992; Chen et al., 1996; Grice et al., 2000; Dahl et al., 2003;
Stout and Douglas, 2004), petroleum products (Wang et al., 2006),
and coal and hydrocarbon source rocks (Schulz et al., 2001; Wei
et al., 2006b). Moreover, some diamondoids with higher molecular
weights (containing three or more diamond lattice structures) have
been successfully separated and identified from petroleum (Dahl
et al., 2003; Atwah et al., 2021; Gadzhiev et al., 2021).

Though being detected in nearly all crude oils and most
petroleum products (Wang et al., 2006), only low-concentration
(several ppm or sub-ppm) diamondoids are generally contained in
normal oils (Fort and Schleyer, 1964; Wingert, 1992; Dahl et al.,
1999; Wei Z. B. et al., 2007), and they exist in the highly complex
matrix of petroleum hydrocarbons. Therefore, high-selectivity and
high-sensitivity detection methods are required for quantitatively
detecting and analyzing trace components in normal crude oils and
describing their minor variation characteristics.

At present, three methods have been mainly adopted to
quantitatively detect and analyze diamondoids in crude oil and
hydrocarbon source rock samples: the separation of group
components from crude oil samples or hydrocarbon source rock
extracts in combination with gas chromatography-mass
spectrometry (GC-MS) (Figure 2A), the solvent dilution of crude
oil samples or hydrocarbon source rock extracts in combination
with GC-triple quadrupole tandem MS (GC-MS-MS) (Figure 2B),
and the separation of group components from crude oil samples or
hydrocarbon source rock extracts in combination with
comprehensive 2D GC-time of flight-MS (GC×GC-TOFMS)
(Figure 2C).

2.1 A quantitative method integrating group
component separation with GC-MS

The first method, a combination of chromatographic column-
aided extract separation from actual crude oil samples and
hydrocarbon source rock samples with GC-MS, is a qualitative
and quantitative analysis method for diamondoids, which has
been developed earliest and widely applied (Wingert, 1992; Chen
et al., 1996; Grice et al., 2000; Li et al., 2000; Schulz et al., 2001; Zhang
et al., 2005).

Crude oil or hydrocarbon source rock samples are usually
accompanied by the interference of complex matrix components.
Despite high selectivity of GC-MS, the signal of target analytical
compounds will still be obscured by the interference of complex
matrix components in the analysis results of samples, especially in
case of the low concentration of target analytical compounds. Before
the actual crude oil samples and hydrocarbon source rock extracts
are analyzed via GC-MS, therefore, the interference of the complex

FIGURE 1
Main types of diamondods and their structure (from left to right is adamantane, diamantane, triamantane, tetramantane, pentamantane).
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matrix is usually eliminated by separating their group components
through chromatographic column separation technology, while the
target analytical compounds are concentrated and enriched using
solvent volatilization (Wingert, 1992; Chen et al., 1996; Grice et al.,
2000; Li et al., 2000; Schulz et al., 2001; Zhang et al., 2005). During
instrumental analysis, the selective ion monitoring (SIM) mode in
GC-MS can enhance the detection signal of diamondoids and
improve the sensitivity of target compound analysis. Therein,

ions with m/z of 136, 135, 149, 163, 177, and 191 are commonly
applied to detect diamantane compounds, those with m/z of 188,
187, 201, 215, and 229 to diamantane compounds, and those withm/
z of 240 and 239 to triamantane compounds.

During the separation of group components, condensate gas and
gasoline can be directly injected under natural conditions, aiming to
avoid the possible volatilization loss of diamondoids. The
spectrogram results reveal that in the nonpolar chromatographic

FIGURE 2
Spectrogram of diamondoids in (A) LN14 oil by GC-MS (Liang et al., 2012a), (B) LN14 oil by GC-MS-MS (Liang et al., 2012a), (C) KL205 oil by GC×GC-
TOFMS (Wang et al., 2019). (1: adamantane, 2: 1-methyladamantane, 3: 1,3-dimethyladamantane, 4: 1,3,5-trimethyladamantane, 5: 1,3,5,7-
tetramethyladamantane, 6: 2-methyladamantane, 7: 1,4-dimethyladamantane(cis), 8: 1,4-dimethyladamantane(trans), 9: 1,3,6-trimethyladamantane, 10:
1,2-dimethyladamantane, 11: 1,3,4-trimethyladamantane(cis), 12: 1,3,4-trimethyladamantane(trans), 13: 1,2,5,7-tetramethyladamantane, 14: 1-
ethyladamantane, 15: 2,6- + 2,4-dimethyladamantane, 16: 1-ethyl-3-methyladamantane, 17: 1,2,3-trimethyladamantane, 18: 1-ethyl-3,5-
dimethyladamantane, 19: 2-ethyladamantane, 20: 1,3,5,6-tetramethyladamantane, 21: 1,2,3,5-tetramethyladamantane, 22: 1-ethyl-3,5,7-
trimethyladamantane, 23: diamantane, 24: 4-methyldiamantane, 25: 4,9-dimethyldiamantane, 26: 1-methyldiamantane, 27: 1,4- + 2,4-
dimethyldiamantane, 28: 4,8-dimethyldiamantane, 29: 1,4,9-Trimethyldiamantane, 30: 3-methyldiamantane, 31: 3,4-dimethyldiamantane, 32: 3,4,9-
trimethyldiamantane, I.S.-1: n-dodecane-d26, I.S.-2: n-hexadecane-d34).

Frontiers in Earth Science frontiersin.org03

Fang et al. 10.3389/feart.2023.1141209

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1141209


column, adamantane peaks earlier than n-C11 (Stout and Douglas,
2004). However, the injection system and chromatographic column
of GC-MS will be polluted by complex matrix components and non-
paraffinic components with high molecular weights in crude oil
samples and hydrocarbon source rock extracts, leading to the
reduction of column efficiency. Therefore, this detection and
analysis means for diamondoids, i.e., direct injection, does not
apply to crude oil and hydrocarbon source rock samples.

2.2 A quantitative method combining
solvent dilution with GC-MS-MS

During chromatographic column separation and sample
concentration, moreover, evaporation may result in the loss of
diamondoids, or cause the deviation of quantitative results, thus
affecting the analytical research based on the concentration of
diamondoids. Hence, developing the quantitative detection and
analysis method integrating the nondestructive pretreatment method
with the high-selectivity and high-sensitivity detection method is
essential for describing and exploring low-concentration
diamondoids in crude oil and hydrocarbon source rock samples.

GC-MS-MS, a highly sensitive and selective instrumental
analysis method, eliminates the interference of matrix ions
mainly through the selected-reaction monitoring (SRM) mode,
without needing any complicated sample pretreatment or
purification and separation technology before injection (Frenich
et al., 2005; Hernandez et al., 2005). Under the SRM mode of GC-
MS-MS, the parent ion of the set target compound is selected when
passing through the first quadrupole and then collides with argon
molecules in the second quadrupole. Afterward, the resulting
fragment ions pass through the third quadrupole, followed by the
selection, detection, and analysis of daughter ions corresponding to
the target compound in the fragment ions. Thanks to this selection
and detection process of GC-MS-MS, the limit of quantification
(LOQ) and limit of detection (LOD) of the instrument are reduced,
leading to the analysis and detection results of target compounds as
low as several ppb (Hernandez et al., 2005; Qu et al., 2010).

For diamondoid detection and analysis, methyl diamantane
(MD) compounds in crude oil were quantitatively detected and
analyzed at the earliest by monitoring the m/z202+-187+ conversion
process (Dahl et al., 1999).

Afterward, Liang et al. (2012b) optimized GC-MS-MS
parameters like parent and daughter ions, collision energy, and
scanning time using standard diamondoid samples, and then
established a complete GC-MS-MS quantitative analysis method
for diamondoids. Under the optimal operating parameters of the
instrument, good linear relationships were manifested in the
standard curves of 10 standard diamondoid samples, and the
correlation coefficient (R2) characterizing linear correlations was
always higher than 0.9980. In this process, all target diamondoids
presented good repeatability, with a relative standard deviation of
1.3%–5.1% (n = 5). The LODs and LOQs of all target diamondoids
in oil samples obtained by this method were 0.02–0.11 and
0.08–0.37 μg/g, respectively. The above data manifested the good
applicability of this method to quantitative detection and analysis of
diamondoids, especially for samples with a low concentration of
diamondoids.

Under the SRM mode and optimal operating parameters, GC-
MS-MS displays the maximum sensitivity and selectivity for the
quantitative analysis of diamondoids in crude oil samples. Besides,
this technology can eliminate the interference of co-eluted
compounds in crude oil samples and hydrocarbon source rock
extracts by monitoring the transformation process of paired
parent ions and daughter ions, with high selectivity. In the
meanwhile, its high sensitivity can compensate for the low
concentration of diamondoids in samples due to the absence of
concentration and enrichment pretreatment. Therefore, GC-MS-
MS can serve as an effective means for the reliable quantitative
analysis of diamondoids in actual samples, only needing simple
sample dilution.

2.3 A quantitative method combining group
component separation with comprehensive
2D GC×GC-TOFMS

As a new technology developing on the basis of the traditional
2D technology in the 1990s, comprehensive 2D GC×GC
characterized by good sensitivity, high resolution, large peak
capacity (the product of the peak capacities of two
chromatographic columns), fast analysis speed, qualitative
analysis with rules to follow, family separation, and tile effect
(Frysinger and Gaines, 1999; Lu et al., 2005; Ruan et al., 2002)
can be used to separate complex mixtures. Specifically, this
technology connects two relatively independent chromatographic
columns differing in the separation mechanism and stationary phase
(e.g., nonpolar column and chiral column or polar column) in series
to form a 2D GC column system by using a modulator with the
functions of trapping, focusing, and transmission.

TOFMS, a common MS technique, realizes separation and
determination based on different time taken by moving ions with
different mass-to-charge ratios and the same kinetic energy in a
steady electric field to reach the receiver. This technique is
characterized by a wide detectable mass range, fast response
speed, and high sensitivity (Zhao and Shen, 2006). If combined
with GC×GC, TOFMS is applicable to qualitative and quantitative
analysis of compounds in complex systems (Lu et al., 2004b).

GC×GC and GC×GC-TOFMS have been applied to such fields as
tobacco, food, wine making, petroleum geology, refined oil products,
and environmental monitoring (Schoenmakers et al., 2000; Frysinger
andGaines, 2001; Hua et al., 2002; Frysinger et al., 2003; Lu et al., 2004a;
Lu et al., 2007; Ventura et al., 2008). On this basis, Wang et al. (2010)
established an analytical detection method for diamondoids in actual
crude oil samples by optimizing parameters like column system
selection, temperature program, modulation period, hot-air blowing
time, and the flow rate of the carrier gas.

However, the pretreatment method can not only remove the
interference of other compounds on diamondoids, but also improve
the concentration of diamondoids. Therefore, scholars are also
constantly improving the pretreatment process of this method to
reduce the loss of adamantanes in the pretreatment process (Wang
et al., 2019). In addition, scholars have been developing quantitative
analysis of diamondoids with higher carbon number (such as
triamantane, tetramantane) and more complex structure (such as
ethanodiamondoids) (Wang et al., 2019; Ma et al., 2022).
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3 Main sources of diamondoids

Diamondoids have been extensively valued, investigated, and
applied in oil and gas geochemistry because of the nature and
characteristics vested in their own stable structures. Nevertheless,
the source, origin, and evolutionary characteristics of diamondoids
in geological bodies remain unclear yet. Diamondoids are
considered to be abiotic since they have not been detected in
modern organisms and sediments (Wei et al., 2006c; Wei et al.,
2007 Z. B.). It is guessed that diamondoids are produced in the early
diagenetic stage of organic matter because they have been detected in
immature and low-mature peats and sedimentary rocks (Schulz
et al., 2001;Wei et al., 2006c,Wei et al., 2007 Z. B.). Dahl et al. (1999)
thought that once formed, diamondoids will be neither destroyed
nor produced again. With the deepening research, however, scholars
have proved by laboratory simulations that diamondoids can be
generated and cracked in the process of high-temperature thermal
evolution, with highly extensive sources of parent materials (Giruts
et al., 2006; Giruts and Gordadze, 2007; Fang et al., 2012), and their
cracking products include their own isomers and liquid
hydrocarbons such as aromatics (Wei et al., 2006b). In the
meanwhile, it has been verified by the above research that the
formation mechanism of diamondoids is not only restricted to
the early proposed catalytic rearrangement of polycyclic
naphthenes (Dahl et al., 2010) but also includes high-temperature
cracking.

As revealed by predecessors’ results, diamondoids with lower
molecular weights are formed mainly through twomechanisms: The
first is Lewis acid-catalyzed rearrangement of polycyclic
hydrocarbons (Schneide et al., 1966; Wingert, 1992; Lin and
Wilk, 1995). The second is high-temperature cracking of higher-
molecular-weight components (Giruts et al., 2006; Giruts and
Gordadze, 2007; Gordadze and Giruts, 2008). As verified by
laboratory thermal cracking simulation experiments, diamondoids
with lower molecular weights can be formed in immature
sedimentary rocks and peats (Wei et al., 2006c; Wei et al.,
2007 Z.), kerogen (Gordadze, 2002), crude oil (Fang et al., 2012),
as well as their different family components (Fang et al., 2013),
including saturated hydrocarbon components (Giruts et al., 2006)
and polar components (nonhydrocarbons and asphaltenes) (Giruts
and Gordadze, 2007), and other compounds, such as C16, C19, C22,
C34, and C36 (Gordadze and Giruts, 2008) and β-aryl ketone
(Berwick et al.). Moreover, all possible isomers of adamantane
and diamantane compounds can be detected in the cracking
products of the above components. Furthermore, it has been
experimentally found that adamantane compounds with lower
molecular weights, such as adamantane and diamantane
compounds, will crack at high temperatures (Wei et al., 2006b;
Fang et al., 2012).

Some thermal cracking experiments manifest that the formation
of diamondoids in modern sedimentary rocks is catalyzed or
inhibited by minerals under water-bearing conditions, and those
in ketone can be catalyzed or inhibited by such minerals as
montmorillonite, aluminosilicate, kaolinite, and illite (Wei et al.,
2006a, c, 2007b). Some pyrolysis experiments, moreover, show that
diamondoids can be produced in the thermal cracking of crude oil
samples and their high-molecular-weight components, saturated
hydrocarbon components, aromatic hydrocarbon components,

and polar components even in the absence of catalysts (Giruts
et al., 2006; Giruts and Gordadze, 2007; Fang et al., 2012; Fang
et al., 2013).

Through the gold tube thermal simulation experiments of
saturated hydrocarbon, aromatic hydrocarbon, asphaltene and
nonhydrocarbon in crude oil, it is proved that diamondoids
mainly derive from the thermal cracking of saturated
hydrocarbon components (Figure 3), as proved by gold tube
thermal simulation experiments on saturated hydrocarbons,
aromatic hydrocarbons, asphaltenes, and nonhydrocarbons (Fang
et al., 2013). Light hydrocarbon components make certain
contributions to the formation of diamondoids, as demonstrated
by gold tube thermal simulation experiments on the original crude
oil and the crude oil after the volatilization of light hydrocarbon
components (Fang et al., 2016). In addition, existing studies have
shown that diamondoids can be produced during the thermal
cracking of kerogen with different types of sedimentary organic
matter, but their content and composition characteristics are
different (Jiang et al., 2018). In the meanwhile, it has been found
through simulation experiments that the content of diamondoids in
geological bodies is influenced by volatilization and dissipation
(Fang et al., 2016) and biodegradation of crude oil in the early
formation stage.

In addition, it has been proved through the gold tube thermal
simulation experiment on soluble organic matter components in
marine shale and kerogen after extraction that diamondoids in
organic matter are mainly attributed to the thermal cracking of
soluble organic matter components (Figure 4), and the same to coal
measures (Fang et al., 2015; Zhai et al., 2022). Furthermore, a
thermal cracking experiment was continued on the same kerogen
sample after the soluble organic matter was extracted and removed
under easy reflectance of vitrinite (EasyRo) of 0.8%, 1.0%, and 1.3%.
On this basis, the staged cumulative generation results of
diamondoids in kerogen and its resulting asphalt in three stages
(EasyRo0.8%–1.0%, 1.0%–1.3%, and 1.3%) were discussed. The
results showed that diamondoids were mainly produced in the
secondary cracking of asphalt, and the upper limit of the
contribution of kerogen thermal cracking to diamondoids was
EasyRo1.3% (Li et al., 2015).

4 Application of diamondoids in the
geochemical field

Diamondoids in crude oil are applied in the geochemical field
mainly through their concentration and parameters.

4.1 Evaluation of crude oil cracking degree

The concentration of diamondoids in crude oil and source rock
extracts has been investigated in oil and gas geochemistry. For
instance, the relative abundance of diamondoids in light oil and
condensate gas can serve as an important “fingerprint” tool to
identify the sources of oil spill events (Stout and Douglas, 2004).

According to the theory of Dahl et al. (1999), moreover, once
formed, diamondoids will be neither destroyed nor produced again.
It is believed, therefore, that the increase in the concentration of
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diamondoids in oil results from the thermal degradation of most
other non-diamondoids in oil (Dahl et al., 1999). Given this, Dahl
et al. (1999) proposed that the cracking degree of crude oil can be
evaluated by an effective index, the concentration of 3-+4-MD
(Figure 5) (Dahl et al., 1999), which has been applied in some
studies (Wei Z. B. et al., 2007; Springer et al., 2010). Here, we need to
pay attention to the selection of baseline concentration for different
regions (Springer et al., 2010).

However, Wei et al. (2006b) explored the thermal maturity-
dependent changes in the concentration of diamondoids in a set of
coal and sedimentary rock samples with a maturity range of
Ro=0.20%–6.40%. The quantitative results of diamondoids in
coal and source rock extracts manifested that the concentration
of diamondoids began to decrease after Ro>4.0% (Wei et al., 2006b).
It was also found that some diamondoids can also be thermally
cracked to aromatic hydrocarbons under high temperatures (Oya
et al., 1981; Schoell and Carlson, 1999; Wei et al., 2006b). As the
research deepens, scholars have found that the diamondoids
continuously enriched in the cracking process of crude oil may

be ascribed to two aspects: the cracking of relatively unstable
hydrocarbons in crude oil (Dahl et al., 1999), and the sustained
production of diamondoids (Wei et al., 2006c; Fang et al., 2012).
Dahl et al. (1999) evaluated the cracking degree of crude oil based on
the cracking of relatively unstable hydrocarbons in crude oil, in
which the total amount of diamondoids is assumed to be constant.
Therefore, this parameter is still applicable at the stage of constant
content (EasyRo<2.0%) (Fang et al., 2013), while it needs to be
carefully judged at the stage of changing content.

4.2 Maturity evaluation

Among diamondoids, the homologous compounds differing in
thermal stability are formed due to the different substitutions on
each substituent. For homologous diamondoids formed by the same
alkyl substitution, for example, the compounds substituted at
“bridge” carbon positions (positions 1, 3, 5, and 7 of adamantane
in Figure 1) display higher thermal stability than those substituted at

FIGURE 3
The calculated yield curves and source contributions of adamantanes and diamantanes generated from the Tarim oil. (A) Adamantanes; (B)
diamantanes (Fang et al., 2013).
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the corresponding “quaternary” carbon positions (positions 2, 4, 6,
and 8 of adamantane in Figure 1). In other words, for adamantane
compounds with the same methyl substitution, 1- methyl
adamantane (MA) formed by methyl substitution at the “bridge”
carbon position shows higher thermal stability than 2-MA (Wingert,
1992) (Figure 1). For diamantane compounds with the same methyl
substitution, 4-MD formed by methyl substitution at the “bridge”
carbon position presents better thermal stability than the other two
homologous isomers (1-MD and 3-MD) (Wingert, 1992; Chen et al.,
1996).

Based on the aforesaid thermal stability relationships, Chen et al.
(1996) also established the ratio parameters of diamondoids,
namely, MA index [MAI=1-MA/(1-MA + 2-MA)] and MD index
[MDI=4-MD/(1-MD + 3-MD + 4-MD)]. In the meanwhile, they
pointed out that these ratios increased with the increase in the
thermal maturity of crude oil and hydrocarbon source rocks. Then,

such indexes were used to evaluate the maturity of condensate oil
samples with a high evolutionary degree in Tarim Basin, and the
corresponding Ro was 1.6%–1.7%. The Ro of condensate oil in Ying-
Qiong Basin was obtained in a similar fashion as 1.6%–2.0%.

Following this rule, many adamantane maturity parameters
have been established in the existing studies and applied in
practice. For instance, MAI and MDI have been adopted to
evaluate crude oil and hydrocarbon source rocks (Chen et al.,
1996; Schulz et al., 2001; Wei et al., 2006b, Wei et al., 2007 Z.).
In addition, dimethyl adamantane index-1 (DMAI-1), DMAI-2,
ethyl adamantane index (EAI), trimethyl adamantane index-1
(TMAI-1), TMAI-2, dimethyl diamantane index-1 (DMDI-1),
and DMDI-2 have been applied in simulation experiments and
actual geological samples (Schulz et al., 2001; Zhang et al., 2005; Wei
Z. et al., 2007). According to the simulation results of crude oil
cracking, the relative changes in TMAI-1 and DMA/MD (DMA
stands for DMA compounds, including the sum of adamantane
compounds formed by dimethyl substitution at different positions.
MD denotes MD compounds, including the sum of diamantane
compounds formed by methyl substitution at different positions),
and DMAI-1 and DMA/MD are also applicable parameters for
crude oil maturity (Figure 6) (Fang et al., 2013).

Taking advantages of diamondoids in maturity evaluation,
Duan et al. (2007) investigated the distribution characteristics of
diamantane parameters of crude oil in Tahe Oilfield, Tarim Basin,
analyzed and discussed the charging period and migration direction
of oil and gas in this oilfield, and explored the migration direction of
crude oil. Bao et al. (2015) analyzed the distribution characteristics
of alkyl adamantane and alkyl diamantane compounds in
condensate oil in Zhujiadun, Yancheng Depression, Subei Basin,
and that in upper Cretaceous mature hydrocarbon source rocks in
Taizhou Formation, as well as their parameters. On this basis, the
source of condensate oil was explored, and the comparison with the
measured Ro showed that adamantane compounds are practical, to
some extent, in the maturity evaluation of crude oil and
hydrocarbon source rocks.

Problems exist despite the extensive practical application of
adamantane parameters in maturity evaluation. As suggested by
the existing studies, MAI and MDI are only applicable in a narrow
range of Ro. Li et al. (2000) analyzed the adamantane parameters
obtained from the extracts of the hydrocarbon source rocks in lower
Ordovician Majiagou Formation in the central gas field of Ordos
Basin, China, and thought that MDI changes within 44%–65%,
without obvious changes in the area of Ro>2.0%, so it is only
applicable in a Ro range of 0.9%–2.0%. However, Schulz et al.
(2001) and Wei Z. B. et al. (2007) conducted thermal cracking
experiments on actual samples under water-bearing conditions, and
held that MAI and MDI are only applicable to the maturity
evaluation of samples with Ro>1.3%.

On the other hand, Li et al. (2000) also pointed out no obvious
correlation betweenMDI and sample depth or Ro, which contradicts
with the previous conclusion drawn by Chen et al. (1996). As
discovered through laboratory simulation of MDI-Ro correlation
thermal maturation of hydrocarbon source rocks in different
horizons of Ying-Qiong Basin, samples from different horizons
are correlated with maturity differently, which also highlights the
reliability problem and limitations of adamantane parameters in
practical application (Li et al., 2000; Wei Z. et al., 2007).

FIGURE 4
Estimated yields (mg/g) of different types diamondoids during
source rock maturation. As(K) and As(E) stand for the adamantane
contributions from the kerogen pyrolysate and extract pyrolysate,
respectively. Ds(K) and Ds(E) stand for the diamantine
contributions from the kerogen pyrolysate and extract pyrolysate,
respectively (Fang et al., 2015).

FIGURE 5
Diagram from the concentrations of methyldiamantanes(3-+4-
methyldiamantane) and stigmastane (Dahl et al., 1999).
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4.3 Identification of genetic types

At present, the research on the genetic types of organic matter in
diamondoids is still insufficient. Schulz et al. (2001) proposed for the
first time that dimethyl diamantane compounds (4,9-dimethyl
diamantane, 4,8-dimethyl diamantine, and 3,4-dimethyl diamantane)
show different distribution characteristics in different types of
hydrocarbon source rocks (Figure 7). To be specific, marine siliceous
clastic rocks of type II kerogen are rich in 4,9-dimethyl diamantane and
carbonate rocks are rich in 4,8-dimethyl diamantine, while type III
carbon mudstone and coal contain abundant 3,4-dimethyl diamantane.
Accordingly, it was pointed out that different types of organic matter
can be distinguished using a triangle diagram characterizing the relative
content of dimethyl diamantane compounds.

With this triangle diagram, which was considered an effective
identification method, Chen et al. (2008) identified the genetic types
of organic matter of condensate oil in Jiyang Depression, and
concluded that the condensate oil in Jiyang Depression originates
from the mixture of coal bed and lake facies.

The existing studies have shown that the difference in some
maturity parameters may result from different sources or causes of
organic matter during hydrocarbon generation (Li et al., 2015; Jiang
et al., 2018). For instance, DMAI-1 andDMAI-2may be different due to
the primary cracking of kerogen at different stages and the secondary
cracking of its resulting asphalt (Li et al., 2015). Among the gold tube
thermal cracking products of type I and type II kerogen, two bivariant
parameters (DMA/MD and TMAI-1, and DMA/MD and DMAI-1) of
diamondoids also display different evolutionary characteristics. Even
the loss of volatile components of crude oil in the low-mature stage will
generate an influence on the maturity parameters of adamantane in the
later stage (Fang et al., 2016).

Some scholars have suggested that the application of
diamondoids can be extended by deeply exploring their
evolutionary characteristics during the thermal evolution of
different types of hydrocarbon source rocks (Ma, 2016). As
aforementioned, the influence of organic matter types on the
composition characteristics of diamondoids has been analytically
investigated through gold tube cracking simulation experiments on

FIGURE 6
The plots of concentration ratios vs. isomerization ratios of diamondoids for the Tarim oil cracking. (A)DMA/MD vs. DMAI-1; (B)DMA/MD vs. TMAI-1
(Fang et al., 2013).
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different types of kerogens (Jiang et al., 2018). However, the
difference in composition characteristics is attributed to the
combined effects of the primary cracking of kerogen and the
secondary cracking of asphalt, which goes against the situation
under actual geological conditions. Efforts have been made to
distinguish the two effects, but what has been obtained is the
staged cumulative generation result of diamondoids in kerogen
and its resulting asphalt in three stages: EasyRo0.8%–1.0%, 1.0%–
1.3%, and >1.3% (Li et al., 2015).

4.4 Evaluation of biodegradation degree

Biodegradation, a significant transformation process of crude oil
in underground oil and gas-bearing basins (Connan, 1984; Peters
and Moldwan, 1993; Head et al., 2003), will influence the physical
and chemical molecular characteristics of crude oil (Winters and
Williams, 1969; Hunt, 1979; Connan, 1984; Peters and Moldowan,
1993) and further affect oil exploitation and refining costs.
Moreover, biodegradation can generate important economic
impacts on oil (Connan, 1984; Wilhelms et al., 2001; Larter et al.,
2006) and strategic impacts on oil exploration (Larter et al., 2012).

A few studies regarding the biodegradation process and degree of
crude oil by diamondoids have been reported. Generally, hydrocarbons
present consistent overall variation trends and different individual rates
in the process of biodegradation (Larter et al., 2006). Accordingly, the
evaluation indexes of biodegradation degree have been established in
past studies based on the differences in relative abundance and
sequentially sensitive structures among different series of compounds
(Volkman et al., 1984; Peters andMoldowan, 1993). Following the same
principle, Grice et al. (2000) quantitatively detected diamondoids in
actual crude oil samples with different degrees of biodegradation, and
the results manifested that MA/A (MA stands for MA compounds,

including the sum of MA at each substitution position, and A denotes
adamantane) will change regularly with the variation of the
biodegradation degree, which can serve as an evaluation index of the
biodegradation degree and can also be used to identify the mixture of
severely biodegradable oil and non-biodegradable oil. Besides, MA/A
will not be significantly influenced by the difference in maturity. Wei Z.
B. et al. (2007) already applied this parameter in related studies.

Wang et al. (2006), Yang et al. (2013), Grice et al. (2000), Wei Z. B.
et al. (2007), and Chai et al. (2022) quantitatively detected diamondoids
in crude oil biodegradation products during indoor and outdoor
simulations and those in actual crude oil biodegradation products.
Results revealed that diamondoids will be affected by biodegradation in
actual oil reservoirs, with their content presenting an overall declining
trend (Grice et al., 2000; Wang et al., 2006; Wei Z. B. et al., 2007; Yang
et al., 2013; Chai et al., 2022). Therein, the decreasing trend of the
content of adamantane resembles that of total diamondoids, which is
decided by the dominant position of adamantane compounds in
diamondoids. The content of diamantane compounds, however,
shows a less obvious decreasing trend than that of adamantane
compounds, reflecting the better anti-biodegradation ability of
diamantane compounds than adamantane compounds. In the
meanwhile, triamantane compounds are subjected to minor content
changes (Wang et al., 2006; Wei Z. B. et al., 2007). Even if the
biodegradation degree reaches the eighth grade defined by Peters
and Moldowan (1993), crude oil will still contain diamondoids with
a certain concentration (Wei Z. B. et al., 2007), which also effectively
guarantees the application of diamondoids in biodegradable oils,
especially in highly biodegradable oils.

The application of other parameters in biodegradable oils has
also been studied by scholars. Dahl et al. (1999) proposed an
effective index, namely, the concentration of 3-+4-MD, to
evaluate the cracking degree of crude oil and mixed oil. This
method is considered immune to biodegradation (Wei Z. B.

FIGURE 7
Triangular plot of the relative distribution of 4,9-dimethyldiamantane (4,9-DMD), 4,8-dimethyldiamantane (4,8-DMD) and 3,4-dimethyldiamantane
(3,4-DMD) (Schulz et al., 2001).
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et al., 2007). Grice et al. (2000) calculated theMAI andMDI in actual
crude oil samples biodegraded to different degrees, and found that
the MAI is consistent well, reflecting their similar maturity.
However, the MDI varies a lot, which may be associated with the
mineral content in source rocks (Grice et al., 2000). In addition, Xu
(2007) tested the stability of MAI and MDI in biodegradation, both
of which indicated a good anti-biodegradation ability. And the
research results of Chai et al. (2022) indicate that no significant
biodegradation impact on MAI, EAI, MDI, DMDI-1 and DMDI-2.

5 Summary

This paper summarizes the research of adamantanes in crude
oil. (1) There are three main methods for quantitative analysis of
diamondoids in crude oil, pretreatment combined with GC-MS,
crude oil dilution combined with GC-MS-MS, and pretreatment
combined with GC×GC-TOFMS. (2) The main sources of
diamondoids in crude oil are the thermal cracking of saturated
hydrocarbon components or the soluble organic matter components
in source rocks. (3) Diamondoids can be applied to evaluate the
crude oil cracking degree, maturity degree, biodegradation degree,
and identificate the genetic types. However, attention should also be
paid to the scope of application and assumptions.
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