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The complex dynamics of fluid and particles flowing through pore space demands
some relaxation time for particles to catch up with fluid velocity, which manifest
themselves as non-equilibrium (NE) effects. Previous studies have shown that NE
effects in particle transport can have significant consequences when relaxation
time is comparable to the characteristic time associated with the fluid flow field.
However, the existing models are lacking to account for this complicated relation
between particles and fluid. In this paper, we adapt the general form of the
harmonic oscillation equation to describe NE effects in the particulate flow
system. The NE effect is evaluated by solving coupled mass balance equations
with computational fluid dynamic (CFD) techniques using COMSOLMultiphysics

®
.

A simplified straight-tube model, periodic converging–diverging tube model, and
SEM image of a real pore network are applied in NE analyses. The results indicate
that the time variation of the NE effect complies with the theory of stability. Two
key parameters of the oscillator equation are amplitude (A) and damping ratio (ζ),
where the former represents the magnitude of NE and the latter is an indication of
flow path geometry. The velocity equations for particle transport in different flow
path geometries are derived from the proposed NE equation, offering a quick
estimation of particle velocity in the particulate flow. By conducting simulation on
the SEM image of a real pore structure, the equivalent radii of the pores where
particles move through were obtained. The outcome of this work can shed light
on explaining the complex NE effects in porous media. The generalized equation
tomodel NE can help temporarily decouple particle transport equations from fluid
equations, facilitating much advanced particulate flow modeling problems in the
large-scale problems.
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1 Introduction

Particle transport behavior is the issue that petroleum engineers
attempted to solve for many years because particulate flow systems
exist in a wide range of petroleum-related processes, for example, the
injection of seawater during water flooding, invasion of filtrate
during drilling, and micro-enhanced oil recovery (Yuan et al.,
2016). The formation damage caused by fine-particle retention
and detachment highly affects the productivity and injectivity of
wells (Bedrikovetsky et al., 2011). A large amount of fine production
may also result in equipment erosion, flowline plugging, and other
potential hazards (Marquez et al., 2014). In the asphaltene
deposition problem, asphaltene particles can change to
accumulate or adsorb onto the pore surfaces, which leads to pore
plugging in the reservoir and finally affects the flow rate within the
wellbore (Davudov et al., 2018). During the proppant placement
process, the performance of proppant packs in hydraulic fracture
plays a significant role in fracture conductivity and production
behavior (Fan et al., 2018). It is believed that the uniform
distribution of proppants provides the highest fracture
conductivity. However, it is very challenging to sustain uniform
distribution because of proppant settlement and embedment (Yu
and Sepehrnoori, 2013). Therefore, it is extremely important for
petroleum engineers to understand particle transport behavior in
order to apply it in the aforementioned petroleum processes.

Engineers have derived many mathematical models and
conducted several experiments to investigate the particle
transport mechanisms in particulate systems. In the previous
research studies of particle transport in particulate flow through
porous media, it has been discovered that the particle velocity does
not necessarily have the same velocity as its carrier fluid when
moving through pore networks. It had been observed that the
velocity of particles near the pore surface is less than the velocity
of their carrier fluid (Yuan and Shapiro, 2010). In a vertical domain,
particles tend to accelerate in a short period before reaching the
terminal velocity (Awad et al., 2021). Moreover, the particle settling
velocity is found to be dropped in an oscillatory flow (Amaratunga
et al., 2021). Researchers conducted a nanoparticle flooding
experiment and observed that nanoparticles may temporarily
stick in the core (Hu et al., 2016). The reason is that when
nanofluids flow from pores to throats, the flowing channel area
becomes narrow, causing an increase in the nanofluid velocity. The
fluid velocity will become faster than nanoparticles. It causes
nanoparticles to accumulate at the entrance of the pore throat
(Sun et al., 2017). When addressing the issue of the large-scale
proppant transportation in fractures, petroleum engineers rely on
two methods: (1) the velocity model saying that viscosity produces
the influence of the proppant load on the fluid and (2) the mixed
phase model in which the proppant and fluid are considered as
different phases with different velocities (Roy et al., 2015). The first
model is not sophisticated because it is only applicable for high
viscosity fluids, and it cannot describe the correct particle behavior
in low viscosity fluids. The second model (mixed phase model)
tracks particles and fluids separately; therefore, it cannot capture the
complex behavior between them.

In this study, the complex dynamic between the particle and
fluid in porous media and how it influences particle transport
behavior will be investigated. The particle velocity equation will

be derived from the proposed NE equation, offering a new approach
to decouple the particle equation from the fluid equation without
solving the complicated multiphase model. The processes are
organized as follows: Section 2 introduces the method to solve
coupled mass balance equations with CFD techniques. Moreover,
the NE equation is proposed. Sections 3 and 4 present the modeling
of NE in different flow path geometries. The particle velocity
equations are decoupled from fluid equations by incorporating
the proposed NE equation. In Section 5, the application of the
NE equation in actual porous media is addressed. Finally, the
conclusion is drawn.

2 Methods

2.1 Solving particulate flow using the CFD
technique

There are two computational fluid dynamic (CFD) approaches
that treat particles and fluids separately when dealing with the
transport problem in hydraulic fracture or porous media. The first
one is called the Lagrangian approach, also referred to as the
particle tracking method or the discrete phase model (DPM)
(Kong et al., 2016; Song and Park, 2019; Wang et al., 2019).
This method treats the fluid as a continuum phase by solving
the Navier–Stokes (N–S) equation and then tracks each particle as
a discrete phase by coupling them with the flow field. The
limitation of this method is that the volume of the disperse
phase cannot be employed because the DPM assumes particle
loading is low compared with the whole domain, and the
particle–particle interaction is not being considered. However, if
the DPM is coupled with discrete element method (DEM), the
particle–particle and particle–wall interactions can be captured.
DEM is a method of applying Newton’s law to particles to obtain
their motions. The second method is the Euler–Euler approach,
which treats each phase as an interpenetrating continuous phase. It
solves a set of momentum and mass balance equations for both
solid and liquid phases. The solid phase is considered as the
continuum fluid phase of the particle. The Euler–Euler model is

FIGURE 1
Basic schematic of straight tube generated using COMSOL.
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the most complex and computationally intensive among the
multiphase models.

In this study, the particulate flow was solved using the particle
tracking method using COMSOL Multiphysics®. Particles or droplets
were considered as rigid particles. The interaction between the particle
and fluid was obtained by coupling Newton’s law with the flow field.

The governing equation for particle transport in the fluid flow is

ρ
zu

zt
+ ρ u · ∇( )u � ∇ · −pI + μ ∇u + ∇u( )T( )[ ] + F,

ρ∇ · u( ) � 0,
(1)

where ρ is the fluid density, u is the fluid velocity, μ is fluid viscosity
and F is the additional force acting on the fluid. In this model, it is
assumed that all particles are naturally buoyant; therefore, the
gravity and buoyancy forces can be ignored, and the drag force
(FD) is the dominant factor in determining the particle trajectories.
The governing equation for particle motion is

d mpv( )
dt

� FD, (2)

where v is the particle velocity andmP is the mass of the particle. The
general form of drag force is

FD � 1
τp
mp u − v( ), (3)

where τP is the relaxation time. Based on the Stokes drag law, the
particle relaxation time is defined as

τp � ρpdp
2

18μ
, (4)

In this study, the NE effect is defined as a function of particle
velocity (vp) and local fluid velocity (vf), which can be written as

NE � 1 − vp
vf
, (5)

2.2 Adapting the harmonic oscillator
equation to describe NE

In the mechanical vibration system, the harmonic oscillator
equation with damping is driven by solving Newton’s second law
equation, which is

d2x

dt2
+ 2ζω0

dx

dt
+ ω0

2x � 0, (6)

where A is called the oscillation amplitude and ζ is called the
damping ratio. The system behavior depends on the value of the
damping ratio (ζ).

• Overdamped (ζ >1): The system returns to steady state
without oscillating

• Critically damped (ζ =1): The system returns to the steady
state as quickly as possible without oscillating

• Underdamped (ζ <1): The system oscillates with the amplitude
gradually decreasing to zero

The underdamped condition is what we used for the NE effect
modeling. The general solution for ζ < 1 can be written as

x t( ) � Ae−ζω0t sin
�����
1 − ζ2

√
ω0t + φ( ). (7)

This study is driven by the given hypothesis: the linear theory of
stability can explain non-equilibrium evolution in particulate
systems through the general form of the harmonic oscillation
equation. The NE parameter is proposed to be

NE � Ae−ζω0t sin
�����
1 − ζ2

√
ω0t + φ( ). (8)

Combining Eq. 5 with Eq. 8, the adapted form of the harmonic
oscillator equation yields to be

TABLE 1 Simulation inputs for the straight-tube model.

Parameter Value Unit

Fluid density 750 kg/m3

Fluid viscosity 1 cp

Initial velocity 0.004 m/s

Particle diameter 5 μm

Particle density 2000 kg/m3

FIGURE 2
(A) Velocity profiles in the cross section and (B) particle trajectories in the straight-tube model. Color scale represents the magnitude of fluid and
particle velocities.
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NE � 1 − vp
vf

� Ae−ζω0t sin
�����
1 − ζ2

√
ω0t + φ( ). (9)

3 Straight-tube model

3.1 Model setup

The basic geometry schematic of the straight-tube model is
shown in Figure 1. A straight tube with a uniform radius of 100 μm
and a total length of 250 μm was modeled. In order to reduce the
computational cost, the geometry was cut to a quarter of the original
tube along the symmetry line.

The fluid was given a velocity of 0.004 m/s at the inlet boundary.
The outlet boundary was set at p=0, referring to the inlet boundary.
Fifty particles were injected from different positions at the inlet
boundary to the outlet boundary. The details of the simulation
model are listed in Table 1.

3.2 Fluid velocity profile and particle
trajectory

The velocity profile and particle trajectory are illustrated in
Figure 2. The flow velocity distribution across the tube follows the
character of Poiseuille flow. With the only effect of the drag force,
particles move along the flow streamline.

Using the Hagen–Poiseuille Law, the fluid velocity at any given
radius (r) inside the tube can be expressed as

vf r( ) � v max 1 − r

R
( )2[ ], (10)

where v max is the maximum fluid velocity inside the tube, and R is
the radius of the tube. In this case, v max is around 0.006 m/s, and R is
equal to 100 μm (0.0001m). Plugging them into Eq. 10, the velocity
distribution inside the tube is

vf r( ) � 0.006 1 − r

1 × 10−4
( )2[ ]. (11)

3.3 Non-equilibrium parameter
determination

The NE parameter (1 − vp
vf
) was evaluated using COMSOL.

Simulation results were matched with the harmonic oscillator
equation using MATLAB® to obtain the magnitude (A) and
damping ratio (ζ) values. The P50 value on cumulative
distribution functions (CDF) of A and ζ were recorded separately
to represent the most likely value.

The NE parameter as a function of time for one of 50 particles
is plotted in Figure 3A. At an early stage (when particle is just
injected into the tube), there is velocity difference between the
particle and fluid. In that time period, particle velocity is always
less than fluid velocity. After a certain time period, the particle and
fluid reach the same velocity, which can be described as an
equilibrium state. The adapted harmonic oscillation equation
(Eq. 9) was implemented to match simulation results using
MATLAB. The curve-fitting result for a single particle is shown
in Figure 3B.

The same curve-fitting process was performed for all
50 particles. The histograms and cumulative distribution
functions for two key factors of NE, A and ζ, are presented in
Figure 4. The P50 values of A and ζ at their cumulative distribution
functions are 0.025 and 0.977, respectively.

3.4 Decouple particle equation from fluid
equation

The P50 values of ω0 and φ on their cumulative distribution
functions were determined to be 305 and 100, respectively. Plugging
the P50 values of all coefficients into Eq. 9, the following equation is
obtained:

1 − vp
vf

� 0.025e−298t sin 66t + 100( ), (12)

Combining Eq. 11 with Eq. 12, the particle velocity for any
given radius (r) and time (t) for the case of μ � 1 cp is determined
to be

FIGURE 3
(A) NE parameter as a function of time solved using COMSOL, and (B) curve fitting for the NE effect of a single particle using MATLAB.
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vp r, t( ) � 0.006 1 − r

1 × 10−4
( )2[ ] 1 − 0.025e−298t sin 66t + 100( )[ ].

(13)

4 Converging–diverging tube model

4.1 Model setup and simulation results

In a real situation, the complex roughness geometries of
fractures or porous media are often characterized by triangular,

rectangular, trapezoidal, bell, sinusoidal, and random shapes
(Dejam et al., 2018). In this work, for simplicity, a periodical
converging–diverging-shaped tube is used to characterize
porous media. The basic schematic of the
converging–diverging-shaped tube model is demonstrated in
Figure 5A. Two diverging-shaped tubes and one converging-
shaped tube are connected with each other. Each tube has a
maximum radius of 100 μm and a minimum radius of 50 μm, as
well as a tube length of 250 μm. Fifty particles were injected at
the same velocity with the initial fluid velocity from the inlet
boundary to the outlet boundary. The details of the simulation
are same as those of the straight-tube model except that the

FIGURE 4
Histograms and CDFs of A and ζ values for the straight-tube model obtained from curve fitting.

FIGURE 5
(A) Basic schematic of the converging–diverging tube generated using COMSOL. (B) Fluid velocity distribution and (C) particle trajectories inside the
converging–diverging tube. Color scale represents the magnitude of fluid and particle velocities.
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initial velocity is set to be 0.008 m/s. The fluid velocity profile
and particle trajectory are illustrated in Figures 5B, C. Similar
with the tube with uniform radius, the velocity distribution in
the converging–diverging tube follows the character of Poiseuille
flow. Fluid velocity magnitude is higher in the small-radius
region compared to that in the big-radius region. The fluid
velocity inside the tube was evaluated using COMSOL. For
the cross sections with the radius of 100 μm and 50 μm, the
maximum velocities are approximately 0.0045 m/s and 0.014 m/
s, respectively.

4.2 Fluid velocity profile

The velocity profile v(r, z) in a tube whose cross-section area is
gradually changing with the distance along the flow direction
remains parabolic (Bahrami et al., 2008). The schematic velocity
profile is shown in Figure 6.

Therefore, the axial velocity needs to be described as

u r, z( ) � 2um z( ) 1 − r

a z( )( )2[ ], (14)

where um(z) is the average velocity at the axial location z and a(z) is
the tube radius at the location z. By applying the conservation of
mass, we obtain

um z( ) � a0
a z( )[ ]2

um,0, (15)

where a0 is the tube radius at the initial point. Combining Eq. 14 and
15, the axial velocity equation is

u r, z( ) � 2um,0
a0
a z( )[ ]2

1 − r

a z( )( )2[ ]. (16)

For a convergent-shaped tube,

a z( ) � R min + L − z

L
R max − R min( ), (17)

where Rmin, Rmax, and L are the minimum tube radius, maximum
tube radius, and tube length, respectively. Similarly, for a divergent-
shaped tube,

a z( ) � R min + z

L
R max − R min( ). (18)

By combining Eq. 16 with Eq. 17, we get the generalized velocity
equation in a converging tube, which is

u r, z( ) � 2um,0
a0

R min + L−z
L R max − R min( )[ ]2

1 − r

R min + L−z
L R max − R min( )( )2[ ].

(19)

By combining Eq. 16 with Eq. 18, we get the generalized velocity
equation in a diverging tube, which is

u r, z( ) � 2um,0
a0

R min + z
L R max − R min( )[ ]2

1 − r

R min + z
L R max − R min( )( )2[ ].

(20)

Plugging Rmin � 5 × 10−5 m, Rmax � 1 × 10−4 m,
L � 2.5 × 10−4 m, and 2um,0 =0.0045 m/s into Eq. 19, the fluid
equation for any given radius (r) and axial length (z) inside the
convergent is

vf r, z( ) � 4.5 × 10−3
1 × 10−4

1 × 10−4 − z
5

[ ]2

1 − r

1 × 10−4 − z
5

( )2[ ]. (21)

Plugging 2um,0 =0.014 m/s into Eq. 20, the fluid velocity
equation for any given radius (r) and axial length (z) inside the
divergent tube is

vf r, z( ) � 0.014
5 × 10−5

5 × 10−5 + z
5

[ ]2

1 − r

5 × 10−5 + z
5

( )2[ ]. (22)

FIGURE 6
Schematic of varying the cross-section tube.
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4.3 Non-equilibrium parameter
determination

Following the same steps as the straight-tube model, the NE
parameters were evaluated using COMSOL. Simulation results were
matched with the harmonic oscillator equation to obtain the magnitude
(A) and damping ratio (ζ) values. The P50 values on cumulative
distribution functions (CDF) of A and ζ were recorded separately.

The NE parameter as a function of time is shown in Figure 7A
According to the figure, the particle experiences three main stages
depending on the flow path geometry. The flow geometry for the
first stage is a divergent-shaped flow path. The NE parameter is less
than zero, which means that particle velocity exceeds fluid velocity
when the tube radius is getting bigger. At an early time, there is a
big difference between the particle velocity and fluid velocity. At
late time, particle velocity gets close to fluid velocity, indicating
they are close to the equilibrium state. After the first stage, the flow
path geometry switches to a convergent shape. The NE parameter
is larger than zero. It implies that particle velocity is always less
than fluid velocity. In contrary to system behavior in the divergent
flow path, the particle and fluid velocity will never getting close to
each other, which indicates that the non-equilibrium will always
happen. The reason for the NE parameter drops at late time is
because the flow path geometry transits from converting to a
diverging pattern.

The harmonic oscillation equation was implemented to
match simulation results for different stages separately. The
initial time for all three stages was normalized to zero for
curve fitting. The curve fitting result for a single particle in
stage 2 is shown in Figure 7B. The A and ζ values were
determined to be 2.4 × 10−5 and -0.978. In frictional vibration,
negative damping causes system instability (Chen, 2014). In this
situation, it indicates that the NE parameter increases as a
function of time. Since particle flowed in the converging tube,
it can be concluded that the negative ζ value implies particle to
move in convergent flow path geometry. Stage 1 and stage 3 had
same particle-fluid behavior, and the fitting curve is shown in
Figure 7C. The A and ζ values were determined to be 0.026 and
0.94. In this case, ζ equals to a positive number. It means that the
NE parameter decreases over time. Since particle flowed in the
diverging flow path, it can be concluded that the positive ζ value is
an indication of particle moving in divergent flow pattern.

After matching all 50 particles’ data, the histograms and
cumulative distribution function for A and ζ in divergent and
convergent flow patterns were obtained separately. The
P50 values of A and ζ for the convergent flow pattern are
determined to be 1.9 × 10−5 and -0.894, respectively. As for
divergent flow path geometry, P50 values for A and ζ are
0.015 and 0.926, respectively. The result complies with the
single particle case where ζ is negative when the flow pattern

FIGURE 7
(A) NE parameters as a function of time in the converging–diverging tube solved using COMSOL, and the curve fitting of NE for single particle
injection for (B) stage 2, and (C) stages 1 and 3 using MATLAB.
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is convergent, whereas ζ is positive when the flow pattern is
divergent shape. Moreover, the result indicates that the A value
for the convergent flow pattern is smaller than that of the
divergent flow pattern.

4.4 Decouple particle equation from the
fluid equation

The particle transport equation is obtained by combining the
fluid equation with the NE equation. All coefficients in the harmonic
oscillation equation that are used to describe NE were obtained from
P50 values on their cumulative distribution functions. The
P50 values of A, ζ, ω0, and φ for convergent flow path geometry
are 1.9×10–5, -0.894, 421, and 100, respectively.

Plugging P50 values of those coefficients into Eq. 9, the NE
equation for the convergent flow pattern is

1 − vp
vf

� 1.9 × 10−5e376t sin 189t + 100( ). (23)

By combining Eq. 21 with Eq. 23, we get the particle velocity
equation for any given radius (r), axial location (z), and time (t) in
the convergent tube, which is

vp r, z, t( ) � 4.5 × 10−3
1 × 10−4

1 × 10−4 − z
5

[ ]2

1 − r

1 × 10−4 − z
5

( )2[ ]
1 − 1.9 × 10−5e376t sin 189t + 100( )[ ]t ∈ 0, 0.025[ ],
z ∈ 0, 2.5 × 10−4[ ]. (24)

Coefficients (A, ζ, ω0, and φ) for divergent flow path geometry
are 0.015, 0.926, 237, and 100.

Plugging P50 values of those coefficients into Eq. 9, the NE
equation for the divergent flow pattern is obtained as

1 − vp
vf

� 0.015e−220t sin 90t + 100( ), (25)

By combining Eq. 22 with Eq. 25, the particle velocity equation
for any given radius (r), axial location (z), and time (t) in the
convergent tube is determined to be

vp r, z, t( ) � 0.014
5 × 10−5

5 × 10−5 + z
5

[ ]2

1 − r

5 × 10−5 + z
5

( )2[ ]
1 − 0.015e−220t sin 90t + 100( )[ ]t ∈ 0, 0.025[ ],
z ∈ 0, 2.5 × 10−4[ ]. (26)

In order to validate the accuracy of the particle velocity equation
that decoupled from the fluid equation, the predicted particle
velocities with different initial locations for convergent and
divergent flow path geometries from the analytical particle
velocity equation are compared with the simulation results solved
using COMSOL Multiphysics®. The results are shown in Figure 8. It
is shown in the figure that there are decent matches between the
analytical result and simulation result, which proves the accuracy of
the model.

5 Non-equilibrium effects in the actual
pore network

5.1 Model setup and simulation results

The model geometry that we used is a SEM image of a real pore
network from the COMSOL application library. The binary image
and imported geometry are shown in Figure 9A. The size of the
image is 640 μm by 320 μm. The black region represents the pore
space. The white region represents the rock grain. The single particle
was injected from the inlet (right side) to outlet (left side) boundary
in the same velocity as the fluid velocity. The particle and fluid
properties are set to be the same as those of the straight-tube model.
The fluid velocity distribution and single particle trajectory inside
the pore structure are demonstrated in Figures 9B, C.

5.2 Pore size distribution from SEM images

The pore size distribution is determined using the MATLAB
code designed by Rabbani et al. (2014). It is based on the
watershed segmentation algorithm, which can detect and

FIGURE 8
Comparison of particle velocities solved by the analytical model and simulation model for (A) convergent and (B) divergent flow path geometries.
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separate pores by cutting the image on the watershed ridge line.
Assuming that each segment is a circle, the pore radius can be
determined. The cut structure and pore size distribution are
shown in Figure 10.

5.3 Non-equilibrium parameter
determination

The NE effect for the single particle was evaluated using
COMSOL. The NE as a function of time for a single particle
injection is plotted in Figure 11A. Due to the complexity of the
pore structure, the trends of NE variation over time are not

identical. As discussed earlier, NE larger than zero indicates that
particles move through the converging flow pattern, whereas NE
less than zero implies that particles move in the diverging flow
pattern. In addition, different-shaped pores are supposed to have
different oscillation behaviors, which manifest as distinct curve
shapes in the figure. Therefore, based on the flow pattern criteria
and the shape of the NE curve, the NE curve can be divided into
several stages. For example, from t=0 to t=0.01s, the NE is above
zero, which is an indication of converging flow path geometry.
Meanwhile, there are two distinct curve shapes, which means that
the particle moves in two different pores.

After detecting the flow path and the curve shape, 20 stages were
identified. Again, the adapted harmonic oscillation equation was

FIGURE 9
(A) SEM images of the pore structure in a binary format. (B) Fluid velocity field and (C) particle trajectory in the pore network solved using COMSOL.
Color scales represent the magnitude of fluid and particle velocities.

FIGURE 10
(A) Separation of pores based on the watershed segmentation algorithm, and (B) the pore size distribution of the SEM pore structure.
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implemented to match the data for each stage. The initial time for
each stage was normalized to zero for curve fitting. The oscillator
amplitudes and damping ratios were obtained and are demonstrated
in Table 2. The results present that in the converging flow pattern, ζ
values are less than zero, which is consistent with the result obtained
in the previous model. It means that the particle velocity is always
less than the fluid velocity, and they can never achieve equilibrium
with each other. In the diverging flow pattern, the result shows that ζ
values are greater than zero, which is also consistent with the
previous observation. As discussed earlier, particle velocity is
greater than fluid velocity in the diverging flow path. Using all
coefficients (A, ζ, ω0, and φ) obtained from the curve fitting, the
matched NE curve for all stages can be obtained, and they are shown
in Figure 11B. The fitted curves have good matches with the original
NE curve, which are evaluated in simulation.

5.4 Equivalent tube radius determination for
the pore structure

In order to have a better characterization of particle transport
behavior in porous media, the motions of multiple particles in

different size of pores need to be investigated. Simulations were
performed for different numbers of particle injections. The
simulation details are kept same as those of the straight-tube
model.

The simulation was performed on 5–20 particle injections
(Jin, 2018). There are some pore spaces that particles can never
reach with only the effect of drag force. Moreover, it was
observed that some particles share same paths inside the pore
structure. The more particles are injected, the more repeated
flow paths are observed. Therefore, some tube radii will be
calculated more than once finally yielding an over-estimation
of equivalent pore number. Therefore, in this case, five particles’
trajectories have covered almost all possible flow paths that
particles can reach. It provides a better characterization of the
pore network, and the corresponding tube radius distribution is
considered the actual pore spaces that particles move through in
this pore network.

In order to determine the radius distribution of pores that
particles move through, the MATLAB code was designed to
identify different stages in which particles move through different
sizes of pores, and then the proposed NE equation was applied to
match the results for all stages to obtain the A values.

The rationale for defining an equivalent radius is that since each
stage has its corresponding A value in multiple particles’ injection

FIGURE 11
(A) NE as a function of time for a single particle injection in the
pore structure. (B) Fitted NE curves for 20 stages. Each color
represents one stage. Blue circles are the original data.

TABLE 2 A and ζ values for 20 stages obtained from curve fitting. Flow patterns
for each stage are indicated.

Stage A ζ Flow pattern

1 0.05851 0.996 Divergent

2 0.00048 −0.779 Convergent

3 0.00586 0.124 Divergent

4 0.00014 −0.967 Convergent

5 0.24265 0.996 Divergent

6 0.00225 0.122 Divergent

7 0.00052 −0.975 Convergent

8 0.01425 0.922 Divergent

9 0.00123 −0.286 Convergent

10 0.00015 −0.941 Convergent

11 0.00100 −0.616 Convergent

12 0.01388 0.223 Divergent

13 0.00214 −0.287 Convergent

14 0.03774 0.944 Divergent

15 0.00070 −0.013 Convergent

16 0.00143 0.221 Divergent

17 0.00017 −0.953 Convergent

18 0.00408 0.024 Divergent

19 0.00107 −0.975 Convergent

20 0.12454 0.955 Divergent
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simulation, it is hypothesized that there is an equivalent tube radius
that can give the same A value for each stage. In order to determine
the equivalent pore radii for all stages, another
converging–diverging model simulation, which has been
discussed in section 4, was performed. According to the pore size
distribution of the pore structure, the minimum and maximum pore
radii are 4.81 μmand 43 μm, respectively. The converging–diverging
models were set up with a fixed minimum tube radius of 5 μm, and
the variable maximum tube radius ranged from 10 μm to 45 μm. The
length of each tube was set at 50 μm.

The proposed NE equation was applied again to match the
simulation results for the convergent and divergent flow pattern
separately to obtain A values in different flow patterns. The
relationships between the maximum radius and A value for
convergent and divergent flow patterns are shown in Figure 12.
The results indicate that there are approximately linear relationships
between the tube radius and A value for different flow patterns.

Using the trend line equations, the maximum radius for each A
value can be determined. The average value of maximum and
minimum tube radii was approximated to be the equivalent tube
radius of the corresponding stage. For the convergent flow pattern,
the equivalent tube radius (re) is estimated to be

re � R max + R min

2
� 79375.5A − 16. (27)

For the divergent flow pattern, the equivalent tube radius (re) is
estimated to be

re � R max + R min

2
� 3116.7A − 2.3. (28)

The estimated equivalent pore radius distribution for paths
where five particles move through is shown in Figure 13.

6 Conclusion

In this study, the NE effect in the particulate flow system was
investigated by developing particle transport models in the straight
tube, periodic converging–diverging-shaped tube, and actual pore
structure. This study was hypothesizing whether the linear theory of
stability can explain NE evolution in particulate systems through the
general form of the harmonic oscillation equation. Particle velocity
equations for convergent and divergent flow patterns are decoupled

FIGURE 12
Corresponding A values for different maximum radii in the convergent flow pattern and divergent flow pattern.

FIGURE 13
Histograms for the estimated tube radius for the five-particle
injection scheme.
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from fluid equations by incorporating the proposed NE equation. In
this work, only particle–fluid interaction is taken into consideration;
the drag force is the dominant factor, and the carrier fluid is a single-
phase fluid. The main conclusions are drawn as follows:

1) The time variation of the NE effect complies with the theory of
stability. The harmonic oscillation equation can be used to
characterize the NE effect in the particulate flow system.

2) Two key parameters of the oscillator equation are amplitude (A)
and damping ratio (ζ). The former represents the magnitude of
NE and the latter is an indication of flow path geometry.

3) In divergent flow path geometry, the ζ value is between 0 and 1.
The NE effect decreases as a function of time. The ζ value is
between 0 and -1 in convergent flow path geometry where the NE
effect increases as a function of time implying that the particle
velocity always remains less than the fluid velocity; hence, the
system will never achieve an equilibrium state.

4) The derived particle equation offers a quick estimation of particle
velocity for a given time and the location of porous media.

5) The flow simulations of the SEM image present consistent results
with diverging and converging flow results. By conducting
different numbers of particle injection schemes, it is found
that five-particle injection offers a better estimation of actual
pores that particles move through. The corresponding equivalent
tube radii of complex pore geometries are obtained.
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