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The Yadong-Gulu rift (YGR) South Tibet is a Cenozoic active rift, which is endowed
with abundant geothermal resources. The Gulu geothermal field (GGF) is located
in the Northern section of the rift, where a large number of high-temperature hot
springs develop, but its geothermal system is mysterious. In this study, the three-
dimensional (3D) electrical structure of GGF is revealed by broad magnetotelluric
(MT) and audio magnetotelluric (AMT). MT reveals that middle and upper crust
conductors are developed in the subsurface of GGF. The conductors may
originate from the partial melting that drives the geothermal system. AMT
reveals that the electrical structure of GGF is conductive alternation cap
overlying more resistive reservoir, which is consistent with the classical
electrical structure of geothermal systems in worldwide active tectonic zones.
According to the geothermal system model, cold fluids may converge from the
periphery of GGF to the middle, wherein fault F1 (the Western branch of Jiulazi-
Sanxung fault) may be the main channel for cold fluids to migrate downward. The
fluids are heated by partial melting in themiddle and upper crust, andmaymigrate
upward along fault F2 (the middle branch of Jiulazi-Sanxung fault) and develop
into heat reservoirs.
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1 Introduction

The YGR in the Southern Tibet is a Cenozoic active rift, which is characterized by active
normal faults, frequent earthquakes, widespread thermal springs and high terrestrial heat
flow, being endowed with abundant geothermal energy (Armijo et al., 1986; Hu et al., 2000;
Yin and Harrison, 2000; Wu et al., 2011; Chevalier et al., 2020; Bian et al., 2022), Figure 1.
High-temperature geothermal energy is renewable and can be used for power generation
(Barbier, 2002; Rybach, 2010). The only two commercial geothermal power stations in China
are located in the middle of YGR, that is Yangbajing geothermal field and Yangyi geothermal
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field, whose installed capacity is 25.15 MW and 16 MW, respectively
(Dorji, 2003; Wang and Guo, 2010). A large number of high-
temperature hot springs are developed on the surface of GGF,
which is located in the north of YGR (Liu et al., 2014),
Figure 1A. The unclear geothermal system of GGF limits the
development of commercial power generation.

Geothermal systems are generally composed of shallow
structures and deep heat sources, the former is key to understand
geothermal systems (Cumming, 2009; Liao, 2017). Water
geochemistry indicates that atmospheric precipitation is the main
source of groundwater, including a small amount of magmatic water
(Liu et al., 2014; Su et al., 2020; Wang et al., 2020; Yu et al., 2022).
Tensional faults constitute fluid circulation channels and thermal
reservoirs (Zhang et al., 2014; Wang S et al., 2017). The Quaternary
hydrothermal sinter seals off the geothermal reservoirs, and the
widely distributed hot springs imply good geothermal potential
(Gao et al., 2022). The north-south active normal fault obviously
controls the hydrothermal activity (Li and hou, 2005; Wu et al.,
2006; Guo et al., 2007). Previous studies on the formation
mechanism of geothermal system are mainly based on surface
investigation (Zhao et al., 2002; Liu et al., 2009; Feng et al., 2012;
Hu et al., 2022), laying a foundation for understanding of GGF
geothermal systems. However, the lack of deep structure seriously
restricts the understanding of GGF geothermal system.

Electrical resistivity in the subsurface is sensitive to characterize
geothermal context, such as the shallow geothermal structure and
deep heat source (Newman et al., 2008; Muñoz, 2013; Spycher et al.,
2014). Fluid-bearing faults (or fractures) and heat sources are the
main components of geothermal systems, which often show high
conductivity and are easy to be imaged by MT (Abiye and Haile,
2008; Piña-Varas, et al., 2014; Peacock et al., 2016; Paolo et al., 2020).
In this study, MT and AMT imagining have been carried out, and
3D inversion has been implemented to obtain the electrical structure

of the middle and upper crust of GGF. Combining with previous
researches, the origin of heat source is discussed on the electrical
structure of MT. This study reveals the distribution of shallow
geothermal systems by AMT. On this basis, the geothermal
systems in tectonically active zones around the world are
compared and analyzed, and the geothermal system model of
GGF is constructed, which provides an important basis for
understanding the geothermal system model of YGR in the South
Tibet.

2 Materials and methods

To clarify the origin of deep heat source in the GGF, we deployed
3D MT. The space of MT sites is about 0.6 km, and the collecting
time is about 24 h with five components of electromagnetic field (Ex,
Ey, Hx, Hy, Hz). In addition, in order to understand the fault and
fluid distribution, 3D AMT was carried out in the hot springs
developed area. The AMT space is about 0.05 km, the collecting
time is 1 h with 5 components of electromagnetic field. BothMT and
AMT data were collected by Phoenix V5-2000. On this basis,
impedance tensors were estimated through the robust technique
(Egbert, 1997).

The 3D inversion of MT and AMT data were carried out on the
ModEM modules (Egbert, 2012; Kelbert et al., 2014). 3D inversion
can effectively minimize the influence of off-profile structure and
reveal a more real subsurface structure (Siripunvaraporn, 2011).
Input data for the 3D inversions are all components of the MT and
AMT impedance tensor for period range from 0.0001–1,000 s. The
error floor for all tensors were 5% of sqrt (|Zxy×Zyx|). The starting
model was set to a uniform half space with background resistivity of
100Ωm, which was divided in a grid of 94 × 130 × 80 cells in the x, y,
and z directions, respectively. In the data coverage part, horizontal

FIGURE 1
Geologic setting and sounding sites (A) Tectonic framework of Yadong-Gulu rift (modified from Shi et al., 2020). A large number of earthquakes are
distributed around YGR, suggesting that YGR has intense activity. Red dots are sutures. Red lines are faults. Blue circles are earthquakes. Yellow diamonds
are geothermal manifestations. Black line is the previous MT section, as shown in Figure 1C. (B) Sounding sites overlap on the geology of Gulu geothermal
filed. Jiulazi-SanXung fault is consist of fault F1, F2 and F3. Nyainqentanglha Range is mainly composed of granite. The middle Jurassic Mali
formation sandstone (J2m) and Quaternary gravel (Q) are the sedimentary strata of GGF. Blue diamonds are MT sites. White dots are AMT sites. (C)
Electrical model of section AB (modified from Wang G et al., 2017). High conductors of mantle origin are distributed in the subsurface of YGR.
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FIGURE 2
RMS of Magnetotelluric 3D inversion and tomographic section. (A) RMS of MT 3D inversion. RMS of most MT sites is less than 3. (B) RMS of AMT 3D
inversion. RMS of a few AMT sites is around 4. (C) Topographic section of P1. The high terrain on both sides of GGF facilitates fluidmigration to the center.

FIGURE 3
Horizontal slices of electrical model at different depths revealed by AMT. (A–E) Horizontal slices at depths of 95 m, 318 m, 512 m, 795 m, 1,211 m,
respectively. The electrical model has the characteristics of high conductivity in the shallow depth (A–C) and high resistivity in the deep depth (D–E).
Thermometer boreholes with depths of 57.1–83.1 m give out temperatures at the bottoms, as shown in Figure 3B.
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cell sizes are set to 0.1 × 0.1 km. Ten padding cells with an increasing
factor of 1.5 were also included. In the vertical direction, first layer is
set to 50 m thickness, followed by 79 layers increasing thicknesses
gradually by a factor of 1.1. After 103 times of iteration, the root-
mean-square (RMS) misfit reached 2.18 (Figure 2), and a reliable
resistivity model was obtained.

3 Results

3.1 Electrical structure of shallow depth
revealed by AMT

The electrical structure in shallow depth is characterized by high
resistivity in the middle and high conductivity in the periphery.
Geothermal systems typically consist of faults and fractures filled
with geothermal fluids that may contain high concentrations of
dissolved salts resulting in the presence of conductive electrolytes in
the rock matrix (Muñoz, 2013). Hence, the resistivity of geothermal
systems composed of fluids and electrolytes is about n × 10Ωm
(high conductivity), and that of granites is about n × 100 Ωm (high
resistivity) (Newman et al., 2008; Peacock et al., 2012; Muñoz, 2013).
These features provide an important basis for the interpretation of
AMT data. Resistivity models at depths less than 0.4 km show that
high conductivity (ρ<10Ωm) is the dominant feature (Figure 3A, B),

which may be related to the Quaternary strata, faults or fluids.
Resistivity models of depths greater than 0.4 km show that there is a
resistor R11 (ρ>1,000Ωm), implying the presence of granite. The
conductors C11, C12 and C13 located around the resistor
R11 extends below 1 km, while the thickness of Quaternary
strata in this area is generally less than 0.2 km (Armijo et al.,
1986). We conclude that the shallow conductors may be related
to the fluid migration.

Section A3 reveals fluid migration in the GGF. Conductor C12 is
distributed beneath fault F1, extending to a depth of less than 1 km,
which is inferred to be the migration direction of cold fluids. The
migration direction is consistent with the topographic distribution
of the surface, as shown in Figure 2C. In addition, a large number of
cold springs distributed near fault F1, indicating that fault F1 may be
the cold fluid channel, as shown in Figure 3A. The resistivity
anomaly that cannot be ignored in Figure 4 is the high resistivity
salient, marked by yellow arrows. The high resistivity salient may be
caused by fault F2. The fault F2 may be a deep fault that controls
granite invasion and also constitutes a heat-conducting channel.
Borehole ZK101 revealed 5 layers of heat reservoirs and dozens of
hydrothermal alteration zones in the hanging wall of fault F2 (Gao
et al., 2022). In addition, there are a large number of hot springs and
sinters on the eastern side of the fault F2 (Figures 3A, B), suggesting
that the fault F2 may be an important heat-conducting channel for
the GGF.

FIGURE 4
Vertical slices of electrical model and interpretation revealed by AMT. (A–C) Section resistivitymodels of A1-A3. High resistivity salient is an important
feature in the electrical model, as shown by yellow arrows. (D–F) Interpretationmodels of A1-A3. Faults F1 and F2may be the cold and hot fluidsmigration
channel, respectively. The resistor R11 may imply presence of granite.
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Different from section A2 and A3, section A1 reveals that
there is a continuous and stable layer of high conductivity in the
shallow depth, suggesting different geothermal context between
the South and North of GGF. The nearly continuous conductivity
layer in Figure 4A may suggest that there is an abundance of

subsurface fluids and even good connectivity between these
fluids. The influx of cold fluid will reduce the temperature of
hot fluid, which is not conducive to the exploration of high-
temperature geothermal system. This may also be the main
reason why there is no surface hydrothermal activity in the

FIGURE 5
Horizontal and vertical slices of resistivity in GGF revealed by the MT. Figure (A–E) are vertical resistivity slices of M1 - M5, respectively. The vertical
models are characterized by high resistivity at depth above ~8 km and high conductivity at depth below 8 km. Figure (F–I) are horizontal resistivity slices
of depths at 1,028 m, 4,910 m, 9,757 m, 15,836 m, respectively. Conductors C1 and C2 dominate the electrical anomaly of horizontal models. AMT sites
indicate the location of GGF.
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north of GGF, as shown in Figure 3B. Combined with surface
geology, boreholes, and resistivity anomalies, we deduce the deep
extension of the faults F1, F2 and F3, Figures 4D–F. After
clarifying the superficial fluid and fault system, it is the key to
understand the deep heat source.

3.2 Electrical structure of middle and upper
crust revealed by MT

The horizontal slice of 3D electrical structure is important for
understanding the transverse distribution of anomalous electrical
bodies. According to the 3D inversion results, the electrical
structures with depths of 1,023 m, 4,910 m, 9,757 m and
15,836 m were plotted, as shown in Figures 5A–D. The
resistor R1 (ρ>1,000 Ωm) and the conductors C1 and C2
(ρ<30 Ωm) are distributed at different depths. Resistor
R1 may represent intact granite and is an important medium
for deep heat conduction to the surface (Newman et al., 2008;
Piña-Varas, et al., 2014). The resistor R11 in Figure 4 is the
shallow part of resistor R1 in Figure 5 on account of the same
electrical anomaly and similar resistivity value. Resistors R11 and
R1 represent the nearly intact granites. In Figure 5A, four
conductors (C1, C2, C3, C4) are distributed around the
resistor R1. They gradually become discrete on the shallow
surface, which may indicate fluid migration, which has been
elaborated on the AMT section. Conductors C3 and C4 are
located above the R1 in Figures 5D, E, implying that there
might be two blind faults bearing fluids in the southern GGF
(Figures 5F, G). Conductors C1 and C2, located in the either side
of GGF, extend deep and are more clearly shown in the sections.

High conductivity domains the main resistivity feature in the
subsurface of GGF. Conductors C1 and C2 (ρ<30Ωm) has been
imagined in these sections, among of which the section M3 is
representative, Figure 5C. Section M3 shows different
conductivity anomaly at the east and west of GGF. The west is
characterized by resistivity, while the East is characterized by
conductivity, which are also reflected in the horizontal slices.
Conductors C1 and C2 extends to depth of 20 km and has no
trap at the bottom, implying that they have a deep origin (Bertrand
et al., 2012).

The middle and upper crust conductors C1 and C2 may
originate from the upper mantle. Wang S et al. (2017) reveals
that there are the conductors with approximately continuous
distribution from the upper mantle to the middle and upper
crust beneath the YGR, Figure 1C. In addition, Jin et al. (2022)
reveals the similar conductivity anomaly characteristics through
sparse 3D magnetotelluric data. Due to large site spacing
(>20 km), previous researches mainly reveal crust-mantle
scale structures of YGR (Lei et al., 2023). On the contrary,
the authors deployed the MT with site space of ~0.6 km in
the GGF, which can reveal the fine electrical structure of the
middle-upper crust. It is concluded that conductors C1 and
C2 has a good spatial coupling relationship with the middle and
lower crust conductors originating from upper mantle revealed
by previous researches (Figure 1C), suggesting that they may
have a high-temperature.

4 Discussion

4.1 Conductors C1 and C2 revealed by MT
implying the heat source originating from
mantle upwelling

Partial melting may contribute to the conductors C1 and
C2 beneath the GGF. For active tectonic zones, the main
mechanisms for generating conductors are partial melting and
aqueous fluids (Yang, 2011). It may be more appropriate to
interpret conductors C1 and C2 by partial melting (Chen et al.,
1996; Unsworth et al., 2005), because partial melting can
continuously provide high terrestrial heat flow values (~100 mW/
m2, significantly higher than the surrounding areas, Hu et al., 2000)
to the GGF. The resistivity revealed by MT can be used to estimate
the fluid fraction (Le Pape et al., 2015). Partial melting zones may
exist below C1 and C2 at depths of ~8 km, with resistivity values of
about 30 Ωm, indicating the presence of 2%–5% partial melting
(Gaillard and Marziano, 2005). High-temperature and high-
pressure experiments show that a small amount of water can
affect partial melting fraction (Yang, 2011). The minor difference
of resistivity between C1 and C2 may be due to the difference of
water content in partial melting (Holtz et al., 2001).

Partial melting may originate from tearing of Indian slab (IS).
The IS subducted beneath the Tibet at different angles (gentle in the
west and steep in the east, Liang and Song, 2006; Li et al., 2008; Zhao
J et al., 2010; Shi et al., 2020). Since the uneven gravitational field of
IS triggering the differential dragging, it gives rise to the tearing of IS
into multiple pieces (Chen et al., 2015; Li and Song, 2018). Mantle
hot materials upwelled into the crust along the IS tearing windows
and are geophysically imaged as low velocity bodies or high
conductivity bodies in the middle and lower crust (Nelson, 1996;
Wei et al., 2001; Unsworth et al., 2005; Jin et al., 2022). In addition,
the tearing of IS caused the East-West extension of the upper crust,
and several North-South trending rifts were formed in the Southern
Tibet, such as the YGR (Wang Y et al., 2022; Lei et al., 2023). Mantle
upwelling brought a large number of hot materials to the middle and
lower crust (Li and Song, 2018), which lead to partial melting of
crust. Partial melting of the middle and lower crust would penetrate
the middle and upper crust along the tensile faults, forming the deep
heat source of GGF. They are imagined as conductors C1 and C2 by
MT (Figures 5H, I), which may be the origin of high terrestrial heat
flow in the YGF. They are also supported by other evidences, such as
seismic wave velocity (Tian et al., 2015; Wu et al., 2019; Shi et al.,
2020), mantle CO2 emission (Kapp and Guynn, 2004; Zhang et al.,
2021). Therefore, it is suggested that partial melting is the heat
source driving high-temperature geothermal system of GGF,
confirming the previous conjecture that heat source exists in the
middle and upper crust (Dorji, 2003; Li and Hou, 2005; Gao et al.,
2022; Wang R et al., 2022).

4.2 Shallow geothermal system revealed by
the AMT

The north-south normal fault is an important channel for fluid
migration. In the GGF, the east-dipping active normal fault is a part
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of the Nyainqentanglha fault, which undertakes the east-west
stretching (~6 mm/yr) and triggered the 1952 Mw7.4 Gulu
earthquake (Tapponnier et al., 1981; Armijo et al., 1986;
Chevalier et al., 2020), laying the foundation for the development
of hot springs (Gao et al., 2022). The ages of fault and sinters overlap
since Miocene, suggesting a strong correlation between fault and
geothermal fluids (Shen, 1992; Zhao Y et al., 2010). The five
geothermal reservoirs and hidden geothermal alteration zones
revealed by borehole ZK101 in the middle of GGF, suggesting
that fault F2 is a geothermal fluid channel (Gao et al., 2022). The
geothermal system elements, such as hot springs at the surface with
high conductivity and geothermal reservoirs at the depth with high
resistivity, are well imagined by AMT, Figures 3, 4, which are
consistent with high-temperature geothermal systems worldwide
(Ussher et al., 2000). Due to the low permeability and high resistivity
of granite (Newman et al., 2008), geothermal reservoirs (n ×
100Ωm) tend to have higher resistivity than geothermal
alteration zones (1–10Ωm) (Wright et al., 1985; Pellerin et al.,
1996; Piña-Varas et al., 2014). Based on such features, we believe that
the yellow arrows in Figure 4 may represent geothermal reservoirs,
and the fault F2 may be the upwardmigration channel of geothermal
fluids.

Hydrothermal alternation zones, as the cap of geothermal
system, seal off the hot fluids. Due to clays and brines, the
hydrothermal alteration zones are often characterized by high
conductivity (Wright et al., 1985; Muñoz, 2014). Horizontal
resistivity slice of depth at 95 m shows that there is a large area
of shallow conductors in GGF, Figure 3A. Not all conductors are the
hydrothermal alternation zones (Muñoz, 2013). Fortunately,
thermometer borehole can directly reveal the existence of
hydrothermal alternation zone. Except for the thermometer
boreholes below 50°C in Figure 3B, all the other boreholes reveal
that there are hydrothermal alteration zones with a thickness of
~20–40 m distributed below 10 m on the surface, constituting the
cap of the GGF geothermal system. In addition, the cold fluid
migration is also worth identifying.

Fault F1 may be the channel for cold fluid migration. Fissures
generated by faulting are important channels for surface fluids to

migrate to the depth (Dorji, 2003). On the horizontal slices, the
conductors (C11-C14) with increasing depth clearly show that
the migration pathways of cold fluids are converging from the
periphery to the middle (Figures 3D,E), which are consistent with
the topographic relief of GGF (Figure 3C). The resistivity models
A2 and A3 indicate that the fluids in the east may not be deeply
circulating, while the conductor C12 in the west may indicate
deep circulation of fluids (Figure 4). In general, high-temperature
geothermal reservoirs can only be formed through deep
circulation of fluids (Cumming and Mackie, 2010; Muñoz,
2014). Hydrogen and oxygen isotopes reveal that atmospheric
precipitation is an important supply source of underground
fluids (Zhang et al., 1995; Liu et al., 2014). Some of them
migrate deeply into the West of Nyainqentanglha range, and
the others overflow to the surface on the east side of fault F1 in the
form of cold spring (Figure 3A). The fluids with deep migrating
have the characteristics of high conductivity, which is imaged as
conductor C12 by AMT, Figures 4C, E. Therefore, it is suggested
that fault F1 may be an important channel for the deep migration
of cold fluids.

4.3 Implications for the geothermal system
in the Gulu geothermal field

Conceptionally, an ideal high-temperature geothermal system
(temperature above 150°C–200°C, Muffler and Cataldi, 1978;
Benderitter and Cormy, 1990) consists of heat source, heat
reservoirs and cap, which are disputed in the tectonic active
zones, such as plate boundaries, volcanic zones and rift zones
(Majorowicz and Grasby, 2010; Muñoz, 2014). Conductive
alteration cap overlying a more resistive reservoir is the classical
electrical structure in the high-temperature geothermal systems,
such as Taupo volcanic zone in New Zealand, Basin and Range
province in California (Heise et al., 2007; Newman et al., 2008). The
partially molten magma chambers are believed to be the heat source
driving the geothermal systems (Wannamaker et al., 2004). Similar
electrical structure and heat source also appear in the GGF. Unlike

FIGURE 6
Cartoon model of geothermal system in Gulu geothermal field. Atmospheric precipitation feeds the underground fluids. The cold and hot fluids
mainlymigrate along the faults F1 and F2, respectively. The hydrothermal alternation zones below ~30–50mof surface revealed by boreholes are the cap
of geothermal system of Gulu geothermal field. Partial melting in middle and upper crust drives the geothermal system.
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them, the electrical structure in the GGF appears to be shallower in
the depth and higher in resistivity value, possibly due to young
geothermal fluids activity. Based on above analyses, the authors
establish the geothermal system model of GGF, Figure 6.

The atmospheric precipitation migrates to the depth along the
normal fault F1. With the depth increases, these cold fluids are
gradually heated by partial melting, and transform into high-
temperature geothermal fluids. Due to the upward geothermal
buoyancy (Dorji, 2003), the geothermal fluids begin to migrate
upward along the normal fault F2, and form hot springs and
geothermal alteration zones on the surface.

5 Conclusion

The Yadong-Gulu rift in southern Tibetan is a tensile active rift,
which gives rise to high-temperature geothermal systems, and the
Gulu geothermal field is located in its northern section. Through
three-dimensional inversion of integrated magnetotelluric and
audio magnetotelluric data, the electrical model of the Gulu
geothermal field is obtained. MT and AMT imagine conductors
(C11, C12 and C13 in shallow depth, C1 and C2 in the deep) and
resistors (R11 and R1) beneath Gulu geothermal field. Combined
with geology, boreholes and previous researches, this paper explains
the conductors and resistors and obtains the following
understandings.

(1) Magnetotelluric reveals that conductors C1 and C2 are
developed beneath the middle and upper crust of the Gulu
geothermal field. The conductors may be the partial melting
originating from the mantle upwelling, which drives the
high-temperature geothermal system in the Gulu
geothermal field.

(2) Audio magnetotelluric reveals the shallow electrical
structure of Gulu geothermal system. The hydrothermal
alternation cap with high conductivity overlies the high-
temperature geothermal reservoirs with high resistivity,
which is consistent with the classical electrical structure
of active rifts geothermal systems worldwide. Faults
F1 and F2 may be the cold and hot fluids migration
channels, respectively.

(3) The geothermal system model of Gulu geothermal field
constraining from the electrical structure is constructed. Cold
fluids migrate from the periphery of Gulu geothermal field to
the middle and supplies to the subsurface. Fault F1 may be the
main downward migration channel of cold fluids. Due to the
partial melting in the middle and upper crust, cold fluids are
heated into hot fluids. Hot fluids may migrate upward along the

fault F2, forming a large number of thermal alteration zones and
hot springs in the Gulu geothermal field.
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