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Porosity is a crucial index in reservoir evaluation. In tight reservoirs, the porosity is
low, resulting in weak seismic responses to changes in porosity. Moreover, the
relationship between porosity and seismic response is complex, making accurate
porosity inversion prediction challenging. This paper proposes a Transformer-
based seismic multi-attribute inversion prediction method for tight reservoir
porosity to address this issue. The proposed method takes multiple seismic
attributes as input data and porosity as output data. The Transformer mapping
transformation network consists of an encoder, amulti-head attention layer, and a
decoder and is optimized for training with a gating mechanism and a variable
selection module. Applying this method to actual data from a tight sandstone gas
exploration area in the Sichuan Basin yielded a porosity prediction coincidence
rate of 95% with the well data.
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1 Introduction

Unconventional oil and gas resources globally are abundant, with tight reservoirs being
the primary focus of exploration, mainly referring to tight gas (Zou et al., 2014). Tight oil and
gas research and development originated in North America (US Energy Information
Administration, 2017; Hu et al., 2018). The porosity of reservoirs is a crucial parameter
that determines oil and gas reserves and the productivity of reservoirs. Generally, the
porosity of tight reservoirs is less than 10%. They are characterized by poor lateral continuity,
strong vertical heterogeneity, complex lithology, and significant variations in physical
properties, making it challenging to predict their porosity. Traditional interpretation
methods for predicting porosity are slow and labor-intensive. This leads to a slow
development of tight oil and gas exploration, emphasizing the critical need for new
technologies and methods. Given the difficulty of predicting the physical properties of
tight reservoirs, the accurate prediction of their porosity is particularly crucial during the
development of new technologies.

Due to the complex nonlinear relationship between each parameter and porosity,
conventional reservoir parameter prediction methods are not ideal. Traditionally,
porosity prediction technology driven by a model obtains elastic properties by inversion
first and then converts them into reservoir parameters such as porosity through a
petrophysical model (Avseth et al., 2010; Johansen et al., 2013). However, this method is
constrained by the shackles of linear equations. Tight sandstone reservoirs have problems
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such as low porosity and low permeability, poor physical properties,
complex pore structure, and high irreducible water saturation,
making it difficult to determine fluid properties and saturation.
Some scholars have used the Bayesian formula’s joint inversion of
elastic and petrophysical properties to estimate reservoir properties
(Bosch et al., 2009; de Figueiredo et al., 2018; Wang P. et al., 2020).
This approach continuously propagates uncertainty from seismic
data to reservoir properties by considering elasticity and reservoir
properties. In recent years, for tight reservoirs, scholars have also
carried out corresponding research on reservoir properties, such as
porosity, with traditional methods (Adelinet et al., 2015; Pang et al.,
2021). However, when combining the elastic properties through
statistical rock physics, the process of joint inversion problems
associated with reservoir properties is often limited by
computational and time costs. Therefore, it is difficult to
accurately identify the fluid type in tight reservoirs, especially to
find oil-bearing reservoirs in the formation.

In recent years, the development of deep learning in
geophysical exploration has been significant. Numerous
experimental studies have confirmed that different data
representations significantly impact the accuracy of task
learning. A suitable data representation method can eliminate
irrelevant factors to the learning objective while preserving
intrinsically related information (Li et al., 2019a). Rapid and
reliable porosity prediction based on seismic data is a critical
issue in reservoir exploration and development. Several
researchers have used deep learning for porosity prediction
with some preliminary application results (Wang J. et al.,
2020; Song et al., 2021). For instance, seismic inversion and
feedforward neural networks have been used for three-
dimensional porosity prediction (Leite, E. P. and Vidal A. C.,
2011). Recurrent Neural Networks (RNNs) and Convolutional
Neural Networks (CNNs) are commonly used deep learning
techniques for geophysical data processing and interpretation.
For example, based on Multilayer Long and Short Term Memory
Network (MLSTM) developed based on traditional Long and
Short Term Memory (LSTM) model for porosity prediction of
logs (Wei Chen et al., 2020). Additionally, some researchers have
directly predicted porosity using CNNs with full waveform
inversion parameters (Feng, 2020) and have used the
Gaussian Mixture Model Deep Neural Network (GMM-DNN)
to invert porosity from seismic elastic parameters (Wang et al.,
2022).

Most studies in seismic and well logging data processing have
incorporated deep learning techniques, particularly the
Transformer architecture, which is the best model for sequence
data processing due to its attention mechanism (Vaswani et al.,
2017). Today it is widely adopted in various fields, such as natural
language processing (NLP), computer vision (CV), and speech
processing. However, its flexible design has led to its adoption in
many other fields. These include image classification (Chen et al.,
2020; Dosovitskiy et al., 2020; Liu et al., 2021), object detection
(Carion et al., 2020; Zheng et al., 2020; Zhu et al., 2020; Liu et al.,
2021), speech-to-text translation (Han et al., 2021), and text-to-
image generation (Ding et al., 2021; Ramesh et al., 2021). Among
their salient benefits, Transformers enable modeling long
dependencies between input sequence elements and support
parallel processing of sequence as compared to recurrent

networks, e.g., Long short-term memory (LSTM). Moreover,
their simple design allows similar processing blocks for multiple
modalities, including images, video, text, and speech, making them
highly scalable for processing large volumes of data. Based on
Transformer’s implementation in different domains, these state-
of-the-art results demonstrate Transformer’s effectiveness. These
advantages lay the foundation for using the Transformer network
for seismic data applications. It is based on the attention
mechanism (Bahdanau et al., 2014). In a sequence prediction
task, it is essential to efficiently allocate resources to enhance
the information of highly correlated sequence data while
reducing the information of weakly correlated sequence data to
improve prediction accuracy and reliability. The attention
mechanism is a resource allocation mechanism that focuses on
important features, dividing the degree of attention to the
information in a feature-weighted manner and highlighting the
impact of more important information. By mapping weights and
learning parameter matrices, the attention mechanism (Zang H
et al., 2020) reduces information loss and enhances the impact of
important information, thus improving prediction accuracy and
reliability. Transformer architecture, which abandons the usual
recursion and convolution, has shown improved quality and
superior parallel computing capabilities for processing large
data (Brown et al., 2020; Lepikhin et al., 2021; Zu et al., 2022)
compared to the Long Short-Term Memory network (LSTM)
(Hocheriter et al., 1997), which overcomes the gradient
vanishing and bursting problems in recurrent neural networks
and can effectively process sequence data. Consequently, deep
learning can solve problems with massive amounts of data. On this
basis, this study proposes a Transformer architecture based on the
attention mechanism. It establishes a new network TP
(Transformer Prediction), which uses multi-attribute seismic
and multi-scale data to predict the porosity of tight reservoirs.
It has been shown that this network framework has better results in
natural language translation, image processing, and data analysis
processing. It is much faster than recurrent neural networks and
convolutional neural networks regarding training speed. Even
though the resolution of the prediction results is reduced
compared with the logging data, the nonlinear inversion
scheme can effectively reflect the complex relationship between
rock properties and seismic data. It may obtain relatively more
comprehensive and high-quality inversion results. As a regression
process, apply deep learning to estimate tight reservoir porosity
based on the output of a seismic inversion scheme. In order to learn
the relationship between different features, a recurrent layer is used
for local processing and a multi-head attention layer for long-term
dependencies, allowing the network architecture to capture
potential features better, ensuring better predictive performance.
Finally, the method was successfully applied to the actual seismic
data of a survey area in the Sichuan Basin and obtained a relatively
good inversion result.

2 Methodology

We design the TP model to construct features efficiently for
predicting porosity in dense reservoirs and, ultimately, the overall
porosity. The main components of the TP are.
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1) Gating mechanism: to skip unused components of the
architecture to accommodate the input transmission of
different seismic data.

2) Static covariates encoders: integration of static features into the
network, conditioning the data by encoding the context vectors.

3) Variable selection module: Selects relevant variables for the
input data.

Figure 1 illustrates the overall structure of the TP, and the
individual components are described in detail in the subsequent
subsections.

2.1 Multi-headed attention mechanism

Seismic data is a type of sequence data, and the attention
mechanism is inspired by the selective attention mechanism of
human vision, which focuses on critical information while
ignoring secondary information. It allows sifting through
complex data to find helpful information for the present. The
core idea of the attention mechanism is to selectively focus on
input information by assigning weights that filter out less important
information from a large amount of data. The multi-headed

attention mechanism is the key component of the Transformer
architecture, entirely based on the attention mechanism. It uses
multiple copies of the single-headed attention mechanism to extract
different information, and the outputs of these heads are
concatenated and passed through a fully connected layer to
produce the final output.

The multi-headed attention mechanism is defined as follows
(Vaswani et al., 2017):

Q,K,V[ ] � PQKV zt( ) (1)

Attention Q,K,V( ) � sof tmax
QKT��
D

√( )V (2)

Where Q denotes the information query set, K is the
corresponding similarity set, and V denotes the value set. The
matrices of Q, K and V are projected by the inputs in the
attention module using the fully connected layer shown in Eq 1.
The scaling factor 1/

��
D

√
is applied to the parametric gradient, the

softmax function such that the sum of QKT/
��
D

√
is equal to 1. The

attention weight is denoted asW � sof tmax(QKT/
��
D

√ ), whereW is
based on the pairwise correlation between the query set Q and the
key setK,D denotes the dimension of the sequence. In addition, the
attention weights allow us to extract relevant features using the value

FIGURE 1
Transformer Prediction Network Architecture. GRN and LSTM are gated residual network and Long Short-Term Memory network, respectively.
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set V. For more details on the Transformer architecture, refer to
Vaswani et al. (2017).

When using the LSTM network alone to input a long sequence
for prediction, the gradient update may decay quickly, hindering the
update of sequence data to some extent and making it challenging to
represent the feature vector effectively. Additionally, subsequent
input data also overwrites the previous input, resulting in the loss of
details. However, by using the multi-head attention module and
performing a linear transformation to generate Q, K, and V
matrices, after expanding the original low-dimensional
information to a higher dimension, taking into account the
differences between seismic data and natural language, and at the
same time having the interaction capability of global information for
the input of long sequence multiple seismic attribute data. It not only
enhances the influence of strong signals of seismic attribute data but
also focuses on weak signal anomalies, avoiding the problem of
losing important feature information and reducing the interference
of unnecessary information in the sequence. The joint LSTM can
effectively learn the rich features and laws in the input data to obtain
the porosity data in dense reservoirs. Therefore, the attention
mechanism is auxiliary in extracting complex data features.

2.2 Variable selection and gating network

According to the Temporal Fusion Transformer architecture
(Lim B et al., 2021), somemodules were modified accordingly for the
large seismic data volume. We added a gating and variable selection
network to the Transformer for seismic data.

In geological studies, lithology typically varies with depth
Logging data provides information about the formation rocks,
while seismic attributes reflect different features of the formation.
The corresponding values for porosity prediction should be a
weighted sum of adjacent characteristic responses that have a
certain correlation with each other. Therefore, when we establish
the relationship between porosity and external input of various
seismic attributes, we should consider the local correlation, the trend
of change with depth, and the relationship of adjacent strata.
However, since the relationships between external seismic
attribute inputs are unknown and uninterpretable for porosity
prediction, it is difficult to determine which variables are
correlated and the degree of nonlinear processing required. In
summary, we need a module for the nonlinear processing of the
inputs in this network, so we added a gated residual network (GRN)
as a building block for our network. The GRN would accept a
primary input a and context vector c, giving it the functionality to
obtain more accurate and comprehensive features.

GRNω a, c( ) � LayerNorm a + GLUω η1( )( ) (3)
η1 � W1,ωη2 + b1,ω (4)

η2 � ELU W2,ωa +W3,ωc + b2,ω( ) (5)
Where ELU denotes the unit activation function (Clevert,

Unterthiner, & Hochreiter, 2016), η1 ∈ Rdmodel , η2 ∈ Rdmodel are
intermediate layers, LayerNorm is a standard layer
normalization by Lei Ba, Kiros and Hinton (2016), ω is the
metric indicating weight sharing, b(·) ∈ Rdmodel are the weights
and biases. The ELU activation function will then function as a

recognition function when W2,ωa +W3,ωc + b2,ω is greater than
zero, and ELU activation will produce a constant output when
W2,ωa +W3,ωc + b2,ω is less than zero. We use a component gating
layer based on Gated Linear Units (GLUs) (Dauphin et al., 2017) to
provide flexibility to suppress certain repetitions of unwanted parts
of a particular seismic attribute dataset.

The variable selection also allows TP to remove any
unnecessary noisy inputs that may negatively affect the
prediction. However, identifying null or invalid values of the
seismic attribute data manually in a large work area can be time-
consuming and laborious. Hence, we introduced a variable
selection module (Gal & Ghahramani, 2016) to automate this
process. A linear transformation of the variables is also applied to
convert each post-input variable into a d-dimensional vector,
which matches the dimensions in the subsequent layers and is
mainly used to achieve jump connections. The weights vary for
different data (determined by the correlation of each attribute
with the porosity). The variable selection network on the seismic
data input is presented below, as shown in Figure 2. Note that the
variable selection network is the same for the other data set
inputs.

We denoteX(j)
i ∈ Rdmodel as the jth variable input value in a time-

domain earthquake sequence, where Ξi � [X(1)T
i , . . . , X(m)T

i ]T is the
flattened vector of which all have been entered. The weights for
variable selection are then generated by feeding both Ξi and
additional context vectors c into GRN and then into the Softmax
layer:

υχt � Sof tmax GRNυχ Ξt, c( )( ) (6)

Where υχt ∈ Rmχ is the vector of variable selection weights and c
is obtained from the static covariate encoder (Section 2.3).

An additional non-linear processing layer is applied during the
input process by passing each sequence element through its
own GNR.

FIGURE 2
Variable selection network.
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~X
j( )

i � GRN ~X j( ) X
j( )

i( ) (7)

where ~X
(j)
i is the feature vector after processing the seismic attribute

j. We note that each sequence has its own GRN ~X(j), and the weights
are shared globally. The processed features are then weighted and
combined according to their variable selection weights as follows:

~Xi � ∑m
j�1
υ

j( )
χt

~X
j( )

i (8)

Where υ(j)χt is the jth element of vector υχt.
In summary, the correlation between seismic attribute data and

porosity is unknown, and adding the GRN module provides the
advantage of complementing the seismic attribute preference.
Additionally, because the input of various seismic attribute data
may contain many invalid values, the variable selection network is
used to further optimize the input data and prevent significant errors
in the prediction results.

2.3 Static covariant encoder

Due to the variation of rock properties with depth and the
correlation between seismic response adjacencies, it is crucial to
consider not only the local correlation between seismic attribute data
but also the trend of seismic data with depth and adjacency
information when establishing the mapping relationship between
different attribute data and porosity. The TP model can integrate
information from the logging porosity data. A separate GNR
encoder is then used to generate a context vector. The context
vectors are connected to different locations in the network
architecture where static variables play an essential role. These
include the selection of data for additional seismic attributes, the
underlying processing of features, the use of logging curves to guide
the identification of the context vector, and the enrichment of
features for data adjacency.

2.4 Decoder

We have considered the use of the LSTM encoder-decoder as a
building block for our prediction architecture, following the success
of this approach in typical sequential coding problems (Wen et al.,
2017; Fan et al., 2019; Wang et al., 2022). Due to the specificity of
seismic data, the critical points in the data we apply are usually
determined based on the surrounding values. Therefore, we propose
to use a sequence-to-sequence layer to process the data naturally.
Send Xi−k: i to the encoder and Xi+k: i+τ max to the decoder. A set of
uniform features is generated as input to the decoder itself, using
ϕ(i, n) ∈ ϕ(i,−k), . . . , ϕ(i, τ max){ }, and n is a position index. In
addition, to allow static metadata to affect local processing, we
use a context vector from a static covariate encoder to initialize the
cell state and hidden state of the first LSTM in the layer, respectively.
We also employ a gated jump connection on this layer at:

~ϕ i, n( ) � LayerNorm Xi+n + GLU~ϕ ϕ i, n( )( )( ) (9)

Where n ∈ [−k, τ max] is a location index, i denotes the ith
sequence data.

Since static covariates often have an enormous impact on
features, we introduce a layer simultaneously to augment the
corresponding features with static metadata. For a given location
index n, the form of:

θ i, n( ) � GRNθ
~ϕ i, n( ), c( ) (10)

Where the whole layer shares the weights of GRNθ , and c is the
context vector from the static covariate encoder. Finally, the
attention layer, the decoder mask (Vaswani et al., 2017; Li et al.,
2019b), is applied to the multi-head attention mask layer to ensure
that each dimension notices its previous features.

3 A case study

3.1 Data preparation

Considering the completeness and universality, many seismic
attributes need to be extracted, resulting in redundant information.
Seismic attribute optimization is to preferably select the attributes
with better correlation with the target reservoir parameters from a
large number of attributes to eliminate the redundant information
and thus improve the prediction accuracy. The preferred effect of
seismic attributes is often reflected in oil and gas prediction results.
In this study, the analysis of the rendezvous plots was first conducted
using the Pearson correlation coefficient (PCC) as the criterion. The
PCC reflects the degree of similarity of each unit change between
two variables, and the closer the result is to 1 indicates the more

TABLE 1 Optional seismic attributes.

Index Attribute Index Attribute

0 Post-stack 15 P-impedance

1 Vp/Vs 16 Energy Half Time

2 Domain Amp 17 High Order Kurtosis

3 Domain Freq 18 Skew

4 First Peak Amp 19 Variance

5 First Peak Freq 20 Centroid Freq

6 Frequency Band 21 Twist

7 Peak Amp Above Average 22 GR

8 Per Frequency 23 Fluid Factor

9 Instant Amp 24 Q Factor

10 Instant Freq 25 RMS

11 Instant Phase 26 LamdaRho

12 Instant Weighted Freq 27 Coherence

13 P (AVO intercept) 28 Curvature

14 G (AVO intercept)
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significant correlation between the variables, which is calculated by
the following equation:

PCC � Cov y, ŷ( )
σyσ ŷ

(11)

Where Cov(y, ŷ) denotes the covariance of the two variables y
and ŷ, used to describe the linear relationship between the two
variables, and σ is the standard deviation.

This study analyzed porosity separately with multiple attributes,
and we used the attribute preference method to perform preliminary
screening of each seismic attribute. The multiple seismic attributes
shown in Table 1 include post-stack seismic attributes and various
derived post-stack attributes in order to avoid the multi-solution
nature of single-parameter inversion to initially screen out the
useless data with enormous influence. Figure 1 shows a
representative rendezvous analysis of several attributes, and other
rendezvous analyses are also performed in the same way we can
select the corresponding seismic attributes. Finally, 12 seismic
attribute bodies such as Q Factor, Fluid Factor, PG,
P-impedance, and variance are selected as input according to
PCC, as shown in Table 2 and Figure 3.

3.2 Evaluation criteria

This study uses three primary metrics to evaluate the
performance of porosity prediction, namely, mean square error
(MSE), Pearson correlation coefficient (PCC), and coefficient of
determination (R2), to quantitatively evaluate the inversion results.

FIGURE 3
Seismic attributes and porosity intersection map.

TABLE 2 Input seismic attribute data.

Index Attribute Index Attribute

6 Frequency Band 23 Fluid Factor

13 P (AVO intercept) 24 Q Factor

14 G (AVO intercept) 25 RMS

16 Energy Half Time 26 LamdaRho

19 Variance 27 Coherence

22 GR 28 Curvature
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Mean squared error. MSE is the sum of squares of the
corresponding point errors between the predicted and actual
data. The smaller the value, the better the fit between predicted
and actual data. It is defined as shown in Eq 12.

MSE � 1
N
∑n

i�1 yi − y
�
i( )2 (12)

Where yi and y
�
i are the predicted and actual values of the series,

and N is the number of sampling points.
Pearson Correlation Coefficient. PCC indicates the overall fit

between the predicted and actual data. Its range is [-1,1]. The larger
the value, the stronger the linear correlation. It is defined in Eq 11.

Coefficient of determination. R2 is used to assess the fit between
the variables and considers the mean square error between the
predicted and actual data. It ranges from [0,1]. The larger the value,
the better the fit between the variables. The following equation
gives it:

R2 � 1 − ∑n
i�1 yi − y

�
i( )2

∑n
i�1 yi − �yi( )2 (13)

Where �y is the average value of yi(i � 1, 2, ..., n).

3.3 Experiment and result analysis

In order to assess the validity of our proposed method, we
conducted a method analysis experiment using logging data from
two wells, X and Y, in a dense sandstone reservoir in an actual
working area. The logging depth of well X was between 2750 m and
2940m, while that of well Y was between 2714m and 2870 m. The
logging curves included porosity, density, spontaneous potential,
p-wave velocity, natural gamma ray, deep lateral resistivity,
compensated neutron, and others. After removing any outliers,

we obtained two sets of logging data from wells X and Y for
training and test datasets in the Transformer architecture. First,
we screened the sensitive parameters of well X using Pearson
correlation coefficients. Next, we used the Transformer model
built with the logging data of well X to predict the porosity of
well Y. To compare our model with other existing models, we also
used bi-directional Long Short-Term Memory (BLSTM) and
convolutional neural network (CNN) in this experiment.

The correlation between the porosity and other logging
parameters was obtained by correlating the petrophysical logging
parameters of the two test study wells, as shown in Figure 4.

The logging parameters selected for this study are density
(DEN), spontaneous potential (SP), p-wave velocity (VP), natural
gamma (GR), acoustic log(DT), and compensate neutron log(CNL).
From the correlation graph shown in Figure 4, it is evident that CNL,
DEN, DT, and GR are highly correlated with porosity (POR),
whereas natural potential and longitudinal velocity exhibit weaker
correlations. Therefore, we have used the four input datasets with
higher correlation for predicting porosity in tight reservoir logs. In
this study, we have used Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE) as evaluation metrics to assess the performance of the
model. These metrics measure the deviation between the predicted
and actual data, with lower values indicating better performance.

We trained the model on the preferred well X data and used it to
predict the porosity of well Y. The results of the prediction are
presented in Figure 5. Using deep learning techniques and sensitive
feature parameters, such as CNL, DEN, DT, and GR, we obtained
good results in porosity prediction of wells. Three models, namely,
Transformer, BLSTM, and CNN, were used for porosity prediction,
and while errors existed, the overall fit to the actual porosity curve
was satisfactory. As illustrated in Figure 5, the predicted values of the
Transformer model were closer to the actual values than those of the
BLSTM and CNN models, especially in the areas of significant

FIGURE 4
Logging parameters and porosity intersection map.
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variation, where the results were more satisfactory. The prediction
errors are summarized in Table 3, and it can be concluded that the
Transformer model has more advantages.

FIGURE 5
Results of porosity prediction across wells with different models (well Y).

TABLE 3 Porosity prediction error for well Y.

Model RMSE MAE MAPE

Transformer 0.512 0.405 18.458

BLSTM 0.562 0.441 20.664

CNN 0.592 0.455 20.397

TABLE 4 Optimal network parameters.

Network parameters

Dropout rate 0.3

State size 160

Number of heads 4

Training Parameters

Minibatch 64

Learning rate 0.01

Max gradient norm 0.01
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In this study, we applied the model to the actual data of an
exploration area in eastern Sichuan for tight sandstone oil and
gas exploration. It is difficult to describe the reservoir in this
exploration area; the seismic response of the submerged river
sand body is not obvious and variable, the reservoir thickness of
the river sand body is large, but the porosity is small, the porosity
prediction is difficult, and it is a dense gas reservoir. We used the
logging data of 5 wells and optimized 12 types of seismic volume
attribute data in this work area. We divided our dataset into three
parts - a training set for learning, a validation set for
hyperparameter tuning, and a test set reserved for
performance evaluation. For hyperparameter optimization, we
use the random search method. Table 4 shows the entire search
range of all hyperparameters as follows and the optimal model
parameters.

C State Size–10,20,40,80,160,240
C Dropout rate–0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9
C Minibatch size–64, 128, 256
C Learning rate–0.0001, 0.001, 0.01, 0.1
C Max. gradient norm–0.01, 1.0, 100.0
C Num. heads–1, 4

During the training process of our dataset, a significant
amount of seismic data input is required. However, using the
basic architecture of the Transformer model, the entire

FIGURE 6
Comparison of well porosity prediction results.

TABLE 5 Comparison of the porosity prediction errors of different models;
“Means” indicates the average value of the prediction errors of different
methods; “TP” indicates that Transformer Prediction.

Well name Method MSE PCC R2

A

CNN 0.2553 0.9708 0.8071

BLSTM 0.2029 0.9642 0.8245

TP 0.1568 0.9731 0.8468

B

CNN 0.3367 0.9561 0.7533

BLSTM 0.2584 0.9664 0.8244

TP 0.1286 0.9859 0.8958

C

CNN 0.2863 0.9687 0.7862

BLSTM 0.1397 0.9462 0.8423

TP 0.0951 0.9884 0.9682

D

CNN 0.2794 0.9694 0.7955

BLSTM 0.1846 0.9708 0.8271

TP 0.1007 0.9862 0.9441

Means

CNN 0.2894 0.9663 0.7855

BLSTM 0.1964 0.9619 0.8296

TP 0.1203 0.9834 0.9137
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architecture can be deployed on a single GPU without
consuming many computer resources. For instance, when we
used NVIDIA Quadro GP100 GPU for the experimental data,

our optimal parameter TP model only required less than 2 hours
to complete training. Figure 6 presents the comparison of well
porosity prediction results, in which the red curve is the actual

FIGURE 7
Section of porosity results. (A). Frequency division inversion porosity profile; (B). TP predicted porosity profile.
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value, the blue curve is the CNN prediction value, the purple
curve is the BLSTM prediction value and the green curve is the
TP prediction value. With the CNN and BLSTM data were
added to compare network effects in this study. From the
comparison in the figure, we can find that the prediction
result of TP is more accurate than CNN or BLSTM, and the
mean square error (MSE), Pearson correlation coefficient
(PCC), and are used as regression evaluation indicators.
Table 5 selects four wells (coded by A, B, C, and D), and it
can also be proved from Table 5 that our TP can obtain more
accurate results.

Figure 7 shows the porosity result profile predicted by the TP
model in this study. Specifically, Figure 7A presents the porosity
result profile utilizing standard software for frequency division
inversion, whereas Figure 7B represents the porosity inversion of
TP training. In the porosity result profile, the red area represents
the distribution range of high porosity. The porosity curve of
critical well location A in this work area is utilized to verify the
prediction results. It is known that the porosity of tight reservoirs
inverted by traditional methods is generally small. The important
basis is the well-logging porosity, which is significantly affected
by the logging data, so the overall resolution is low. Figure 7A also
proves that the overall porosity resolution inversion of the tight
reservoir is not high, and the lateral continuity is poor. During
porosity comparison with logging, the overall porosity in
Figure 7A is relatively small due to the complex characteristics
of tight reservoirs. However, it can be found from the logging
report that the actual porosity range is 0–8%. Hence, the single
inversion method still has limitations and does not match the
porosity reservoir characteristics of the actual work area. In
contrast, Figure 7B illustrates the resulting porosity profile
predicted by the TP model. It is observed that the high values
are also concentrated near Well A compared to Figure 7A. The
overall porosity range also reaches 0–8%, but Figure 7B has a
higher resolution. The comparison around 2058 ms shows that
the porosity distribution in Figure 7B is more accurate in the
lateral direction. Figure 7A shows that the traditional method
cannot accurately invert the pore distribution in the right half, far
away from the well location, due to the limitation of logging data.
Table 6 shows the well and porosity profile prediction and the
MSE, PCC, and R2 of logging and input porosity profile,
respectively.

4 Discussion

In the previous experiment, the Transformer model’s RMSE,
MAE, and MAPE metrics for well X were 8.91%, 8.16%, and
10.68% lower than those of the BLSTM, respectively, and 13.51%,

10.98%, and 9.51% lower than those of the CNN. Although the
overall effect was not as good as that of the well porosity
prediction, the effect was more evident and reflected the
generalization ability of the proposed method. Subsequent
experiments comparing TP with several deep learning
methods showed that the proposed method had high accuracy
and strong continuity in predicting the porosity of dense
reservoirs. The MSE, PCC, and R2 of predicted actual data
porosity were 0.1203, 0.9834, and 0.9137, respectively. The
MSE of predicted porosity was decreased by 0.1691 and
0.0761 when compared with the CNN-based and BLSTM-
based methods, respectively, and the PCC was improved by
0.0171 and 0.0215, and R2 was improved by 0.1282 and
0.0841. The profile application also showed that TP accurately
predicted porosity in the training work area (MSE = 0.1872,
PCC = 0.9584, R2 = 0.9065). In summary, the TP model had
certain advantages and effects regarding overall prediction
accuracy and accuracy. Additionally, the TP model had an
advantage in predicting the porosity of a tight reservoir, which
was generally in line with the sedimentary characteristics of tight
sandstone reservoirs. The experimental verification and accuracy
analysis of the proposed method proved the effectiveness of the
deep learning algorithm in predicting the porosity of tight
reservoirs. By combining the particularity of tight reservoirs
and the advantages of deep learning algorithms, this paper
provided a new method for the porosity prediction of tight
reservoirs, which significantly improved the accuracy of
porosity prediction in tight reservoirs and provided valuable
insights for reservoir exploration and exploitation. However,
deep learning is a statistical model that needs to be improved
in solving complex earthquake prediction problems in different
work areas due to entanglement and multi-solution problems.
Therefore, more targeted modules must be added to the model,
which may lead to parameter redundancy and higher
computational overhead costs that need to be weighed
between accuracy and efficiency. To further improve the
method model, the Transformer-based encoding-decoding
model in porosity prediction may require the addition of
appropriate constraints, a smoother loss function, or a more
intelligent design, which requires more in-depth research.

5 Conclusion

This paper proposes the TP network model, a new attention-
based method for predicting porosity in tight reservoirs, which
improves prediction accuracy. During training, TP does not
directly map seismic data to inversion parameters. Instead, the
network utilizes specialized processing components to target
large data of various seismic attributes, including (1) The self-
attention mechanism, which enables global information
interaction between data and captures deeper feature
information, (2) Static covariate encoder, which integrates
static metadata into the network and adjusts the data by
encoding context vectors, (3) Gated network, which
optimizes the transfer of data, and (4) Variable selection,
which further optimizes data input. TP predicts porosity by
learning the characteristics of logs as well as seismic attribute

TABLE 6 Prediction of well and porosity profile and MSE, PCC and R2.

MSE PCC R2

Training Well 0.1203 0.9834 0.9137

Test Well 0.3285 0.9422 0.8861

Profile 0.1872 0.9584 0.9065
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bodies. The proposed TP inversion network with high
resolution, accuracy and horizontal continuity is verified in
practical data experiments to effectively predict reservoir
porosity in dense formations.
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