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The Western Himalayan Syntaxis area is located near the Pamir Plateau. The
geological structure is active and geological disasters occur frequently in this area.
In this study, we employed the Google Earth platform and visual interpretation to
identify ancient landslides in the region and to establish a regional ancient
landslide database. Then, nine landslide-influencing factors (elevation, slope,
aspect, curvature, distance to the river, distance to a glacier, lithology, distance
to fault and distance to the epicenter of earthquakes above magnitude 5) were
examined using ArcGIS software. The spatial distribution of landslides were
analyzed statistically. Finally, an IV model and WoE model were used to
evaluate the regional landslide hazard and the evaluation results were verified
via a confusion matrix and a receiver operating characteristic (ROC) curve. The
landslide database contained 7,947 landslides in this area with a total area of
3747.27 km2

. Landslides were mostly developed at an elevation of
4,000–5,000m, a slope of 15–25°, a north aspect, curvature of −0.33 to 0.33,
distance to the water system of 1,000–2000m, distance to a glacier of
2000–5,000m, Permian sandstone, siltstone, argillaceous sandstone and
Triassic siltstone, conglomerate and fine conglomerate, and distance to a fault
of 20,000–50,000m. The accuracy of the IV and WoEmodels was relatively high.
The comprehensive accuracy of the confusion matrix of the two models was
above 70% and the AUC value of the ROC curve was above 75%. The landslide
database of the Western Himalayan Syntaxis was established and the landslide
distribution and hazard assessment results can be used as a reference for landslide
disaster prevention and mitigation and engineering construction planning in
this area.
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1 Introduction

Landslide refers to the phenomenon in which the rock and soil of a slope slide
downward along a certain weakness plane under the action of gravity and other external
forces form the influence of precipitation, earthquakes and slope undercutting (Varnes,
1978; Cruden and Varnes, 1996). The ancient landslides are those that occurred during
the erosion period of river terraces at all levels before the Holocene and are in a relatively
stable state at this stage (Lu and Xu, 1984; Xu et al., 2001). The stability of the ancient
landslide is only temporary and may be revived under certain natural and human factors
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(Liu, 2018). Reactivated ancient landslide disasters occur
frequently and often cause serious casualities and economic
losses (Huang, 2009; Sassa, 2013). For example, in 2003 the
Zigui Qianjiangping ancient landslide was reactivated, thereby
causing many deaths and huge property damages (Li et al., 2008).
In 2014, the ancient landslide of the Oso community in
Washington state, United States, was reactivated, causing
nearly one-fifth of the community to be buried and the deaths
of more than 40 people (Zhang et al., 2018).

Regional landslide hazard assessment methods can be divided
into qualitative and quantitative evaluations. Qualitative
evaluation is based on engineering geological principles and
related theories of geotechnical engineering combined with the
experience of experts and researchers. There are two kinds of
quantitative evaluation. One is evaluations based on a physico-
mechanical model. The other is evaluation based on a landslide
database and influencing factors using a certain model. Some
common models include analytic hierarchy process (Xu et al.,
2001), information value models (Saha et al., 2005), logistic
regression models (Peng et al., 2009; Pirnau et al., 2017;
Zhang et al., 2021), coefficient of determination models (Zhao
and Chen, 2019), weight of evidence models (Dahal et al., 2008),
artificial neural networks (Sadighi et al., 2020; Wen et al., 2022),
random forest models (Shirvani et al., 2019) and multi-method
coupling models (Chen et al., 2017). In recent years with the
development of GIS and computer technology, researchers have
carried out more practical researches throughout the world. Lee
and Min. (2001) used logistic regression to evaluate and map the
susceptibility of the Yongin landslide in Korea. Saha et al. (2005)
used an IV model based on ArcGIS platform and the landslide
nominal sensitivity factor to draw a landslide hazard zoning map
for parts of the Himalayas. Msd et al. (2022) considered
landslides within 2 km along the Thimphu-Phuentsholing
highway in Bhutan; a landslide database was established;
11 influencing factors were selected; and a random forest
model and logistic regression were used to evaluate the
landslide hazard. Feng et al. (2016) took Chun’an County,
Zhejiang Province, a southeastern coastal area as a research
area. A landslide spatial database was established based on
field investigation and remote sensing interpretation. Artificial
neural networks, logistic regression and IV models have been
used to evaluate the landslide susceptibility and the accuracy and
prediction rates of the three models have been compared. Cui
et al. (2021) examined the co-seismic landslides caused by the
2018 Hokkaido Mw 6.6 earthquake in Japan and a co-seismic
landslide database containing 12,586 landslides was constructed
based on satellite images provided by the Google Earth platform;
in addition, a landslide hazard assessment was performed using a
logistic regression model. Yang et al. (2022) considered Anhua,
Xinhua, Taojiang, and Taoyuan in Hunan Province as the study
area, and they adopted four different landslide susceptibility
evaluation models in which a Bayesian algorithm was used to
improve the hyper-parameters and to obtain a better result.
Zhang et al. (2023) selected different areas of typical
mountainous and hilly areas to construct landslide database.
Then, a landslide susceptibility evaluation model is
constructed based on XGBoost algorithm and landslide
database, and the prediction results of the landslide

susceptibility evaluation model are interpreted by SHAP
algorithm.The previous studies on landslide hazard assessment
have achieved good results that can be used as a reference for
subsequent researches.

In recent years, with the introduction of China’s Belt and
Road economic initiative, the ancient Silk Road located in the
Western Himalayan Syntaxis has been revitalized. At the same
time, the region is the main part of the China–Pakistan
Economic Corridor. With the development of various
engineering activities, new geological induced landslide
disasters have emerged. The geological structure of this area
is complex; the crust thickness reaches about 65 Km (Beloussov
et al., 1980; Mechie et al., 2012) and many faults have also been
developed. These unique geological conditions have led to the
occurrence of landslides in this area that have the characteristics
of being large scale, large in number and recent in formation. In
this study, the ancient landslides in the Western Himalayan
Syntaxis were used for analysis visual interpretation on the
Google Earth platform and a database of ancient landslides
was established in this area. The spatial distribution of
landslides was analyzed using the ArcGIS software. On this
basis, an information value model (IV) and a weight of
evidence model (WoE) were used to evaluate the landslide
hazard and then the two methods of confusion matrix and
ROC curve were used to verify the results.

2 Geological background

The study area is located near the Pamir Plateau. It is about
366 Km long from east to west and 334 Km wide from north to
south and has an area of about 119,414 Km2. The geographical
coordinates are 70°–74E and 35–38N, as shown in Figure 1. In terms
of topography, the regional valleys are vertically staggered and the
mountains are high. The lowest altitude is 543 m; the highest is
7,674 m and the average altitude is above 4,000 m. The wide
distribution of glaciers in the Pamir Plateau and the striking
regional differences are caused by the layer-by-layer interception
of the water vapor by the northeastern-southwestern mountains
such as the Akademiya Nauk Range, the Zulu Marte Mountains, and
the Sarekol Mountains. Mountain ranges with permanent snow and
glaciers are interlaced with deep canyons, and various landforms
formed by glacial erosion and accumulation are common.

In terms of the geological structure, the formation of the
Himalayan orogenic belt was due to the collision between the
Eurasian plate and the Indian plate. The northwestern corner of
the Indian plate moved sharply northward and contacted the
interior of the Eurasian plate, causing the landmass to rise. The
region is densely faulted with strong tectonic activity. The
collision of the two tectonic plates caused the disappearance
of the ancient Tethys Ocean, forming a multi-massif, multi-
island arc. There are four plots (island arc) in the area:
North Pamir, Middle Pamir, South Pamir and the
Kohistan–Ladakh arc. Dense faults serve as the dividing lines
of these landmasses. The northern part of the study area is
dominated by the Pamir thrust fault zone. The boundary
between North and Central Pamirs is the Tanymas suture
line. The Rushan–Pshart fault zone is the boundary between
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Central and South Pamirs. The boundary between South Pamir
and the Kohistan–Ladakh arc is the main Karakoram thrust fault
zone. The Yarlung Zangbo–India suture line is in the southern
part of the study area. The exposed strata in the study area are
complex. Specific strata and lithology are shown in Table 1.

The Pamir Plateau has a typical plateau continental climate
with a long winter and large temperature differences between day

and night. Due to the high mountains, the humid South Asian
monsoon in the Indian Ocean cannot reach the area and the
amount of precipitation is relatively small and is largely
concentrated in the summer from July to September. The
region has high glacier and snow coverage, high mountains and
deep canyons, vertical climate zoning, and significant elevation
differences.

FIGURE 1
(A) Location map of the study area (B) Tectonic map of the study area.
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3 Data and methods

3.1 Data

The data sources used in this study are shown in Table 2.
Elevation, aspect, slope, and curvature are in raster data while river,
glaciers, earthquakes, faults, and lithology are in vector data. Data
extraction was completed in ArcGIS software.

3.2 Methods

3.2.1 Landslide interpretation method
Based on the satellite images provided by the Google Earth

platform, this study used visual interpretation to delineate
ancient landslides. The ancient landslides were formed a long
time ago. Therefore, the identification of ancient landslides is
primarily through the shape of the slope, the back wall of the
landslide, the back of the landslide platform depression and
landslide deposits that were artificially transformed into
terraces. The interpretation of typical ancient landslides is
shown in Figure 2.

3.2.2 Regular analysis method
In ArcGIS software, the nine landslide-influencing factors were

selected based on DEM and geological maps: elevation, slope, aspect,
curvature, distance to the river, distance to a glacier, lithology, distance
to a fault, and distance to the epicenter of an earthquake above
magnitude 5. For each influencing factor, two indexes of landslide
number density (LND) and landslide area density (LAP) in each
classification were extracted to analyze their spatial distribution. The
classification of each influencing factor is shown in Table 3.

3.2.3 Hazard assessment methods
The IV model is a statistical forecasting method based on

information theory (Jing et al., 2010). The IV model was used to
combine various landslide factors to calculate the information value of
each class under a certain influencing factor. The higher the information
value, the higher the contribution of each factor class towards landslide
occurrence (Barella et al., 2019). The model are calculated as follows:

∑n
i�1
I xi, H( ) � ∑n

i�1
ln

Ni/N
Si/S � ∑n

i�1
ln

Ni/Si
N/S

Ni The number of landslide points involving the parameter i
(grid cells)

TABLE 1 Lithology in the study area.

Formations Lithology

Quaternary (Q) Gray, gray brown, different grain size conglomerate, sandstone, conglomerate with a small amount of siltstone

Neogene (N) Argillaceous sandstone, siltstone with thin layer mudstone, calcareous lithic sandstone, coarse sandstone calcareous siltstone with mudstone,
paste mudstone and thin layer gypsum

Cretaceous (K) Limestone, mudstone, feldspar sandstone, pebbled sandstone, calcareous fine sandstone, mudstone with conglomerate

Jurassic (J) Conglomerate, coarse sandstone, quartz sandstone, siltstone, argillaceous fine sandstone with mudstone, calcareous siltstone, fine sandstone,
silty mudstone, marl

Triassic (T) Sandstone, calcareous siltstone, siltstone, clay rock, fine conglomerate and conglomerate

Permian (P) Sandstone, siltstone with limestone and basalt, limestone with siltstone, argillaceous sandstone

Carboniferous (C) Calcareous fine sandstone, calcareous argillaceous siltstone, argillaceous silty shale with a small amount of siliceous rocks, clastic limestone, fine
gravel quartz sandstone and siltstone, limestone, calcareous conglomerate

Silurian (S) Sandstone, siltstone, shale, bottom conglomerate

Ordovician (O) Massive limestone, marl, biological limestone, calcareous conglomerate, carbonaceous shale

Archean (A) Gneiss, marble, quartzite, amphibolite

TABLE 2 Data sources.

Influence factors Name of the data Data source

Elevation, slope, aspect, curvature, river 30 m Resolution Digital Elevation Model (DEM) http://www.gscloud.cn/

Fault Global tectonic fault data https://github.com/GEMScienceTools/gem-global-active-faults

lithology Geological map of the former Soviet Union and Iran https://www.usgs.gov/

Glacier Global land-based glacier data http://www.glims.org/

Earthquake Global historical seismic data https://earthquake.usgs.gov/
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Si The number of grid cells involving the parameter i and
containing landslide

S The number of grid cells with landslide.
N The total number landslide points (grid cells)
The WoE model is a hazard assessment model based on Bayes’

theorem. There are two assumptions in this model: the first
assumption is that evaluation factors are independent of each
other and the second assumption is that each evaluation factor
will not change for a long period of time (Dahal et al., 2008). The
model are calculated as follows:

W+ � ln
A1

A1+A2

A3
A3+A4

⎛⎝ ⎞⎠
W− � ln

A2
A1+A2

A4
A3+A4

⎛⎝ ⎞⎠
where, A1 is the number of the landslide pixels present on a given
factor class, A2 is the number of the landslide pixels not present in
the given factor class, A3 is the number of the pixels in the given

factor class in which no landslide pixels are present, and A4 is the
number of the pixels in which neither landslide nor the given factor
is present.

In recent years, IV and WoE models have been widely used in
landslide hazard assessment. These models have low requirements
for data and high accuracy of the results, and hence this study have
used these models to carry out a regional landslide hazard
assessment.

3.2.4 Validation method
There are only two cases for the occurrence of landslides,

occurrence and non-occurrence and thus landslides can be
considered a binary classification problem. For binary
classification problems, we can use the confusion matrix and
ROC curve to test the accuracy of each model’s results.

A confusion matrix, also known as an error matrix, can be
used to judge the accuracy of binary classification problems.
Accuracy for the landslide point value of 1, accuracy of non-
landslide point value of 0 and the overall accuracy in the
abovementioned model were quantitatively analyzed. The
confusion matrix of each model was obtained by classifying
the data of landslide points and non-landslide points using
SPSS software.

The receiver operating characteristic curve is a comprehensive
index reflecting the continuous variables of sensitivity and
specificity. The area under the ROC curve is defined as the
AUC value, and the AUC value ranges from 0 to 1. The larger
the AUC value, the higher the accuracy of the model results. When
using the ROC curve function in the analysis module of SPSS
software, we first selected 15,894 points of 1:1 landslide points and
non-landslide points. In ArcGIS software, the evaluation results of
each model were assigned to point attributes and then classified.
Seventy percent of the total points were randomly selected as a
training set, and the remaining 30% were used as a validation set to
obtain ROC curves. The flow chart of the research method is
shown in Figure 3.

4 Results

4.1 Ancient landslide database

According to the obtained ancient landslide database, a
regional landslide distribution map was produced in the
ArcGIS software. Due to the large area, we used 10 Km as the
search radius to construct a landslide number density map of the
area (Figure 4). It can be seen from the map that the landslides
are densely distributed on both sides of the Rushan–Pshart fault
zone in blocks and belts, with a maximum density of
0.7894 /Km2.

There are 7,947 ancient landslides in the study area and the total
area of ancient landslides is 3747.27 Km2. There were 32 landslides
with a single landslide area of more than 5 Km2 and the total area of
these landslides was 223.09 K m2, accounting for 0.403% of the total
number of landslides and 5.95% of the total area of landslides. The
area of landslides was divided into four levels: ≤0.1, 0.1–0.5,
0.5–1 and ≥1 Km2. The quantities of landslides in different areas
are shown in Table 4.

FIGURE 2
Schematic diagram of interpretation of typical ancient landslides
in the study area.
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4.2 Distribution law of landslides

4.2.1 Topographic factors
Elevation, slope, aspect, curvature, distance to the river, and

distance to a glacier are topographic factors affecting landslide
occurrence. Elevation has an impact on a variety of slope stability
factors, including vegetation, human activity, and many other
factors that can influence the formation of landslides (Riaz et al.,
2018). The stress state of the slope body is significantly influenced by
slope, and a landslide catastrophe may result when the stress
surpasses the failure strength (Dai et al., 2001). The aspect, which
influences the development of landslides, is affected by solar energy,
monsoon circulation, and various directions of geological structure
movement (Chen et al., 2019). The curvature is either extremely
large or extremely small, indicating that the slope’s surface curvature
is extremely large, which causes a landslide catastrophe to occur
(Wang et al., 2019). Rivers’ scouring and infiltration will cause the
slope’s foot to slide down more readily and cause geological
catastrophes like landslides (Wang et al., 2019; Sun et al., 2022).
Glacial meltwater will seep into the slope’s body, decreasing the
slope’s general stability.

As can be seen from Figure 5, LND and LAP increase initially
and then decrease with the increase in elevation. Landslides are
mainly distributed in the elevation range of 4,000–5,000 m. At this
time, LND and LAP are the largest, being 0.095 /Km2 and 4.53%,
respectively (Figure 5A). With the increase in slope, LND and LAP
increase initially and then decrease. The landslide distribution is
relatively concentrated in the slope of 15–25°, and LND and LAP
reached the maximum values of 0.118/km2 and 5.65%, respectively.
The landslides are concentrated in the range of 5–35°, where a large
number of loose deposits are accumulated on the slope surface
where the shear force and potential energy are relatively large and
the slope is unstable. When the slope is greater than 55°, there are
almost no landslides (Figure 5B). LND and LAP are the highest
when the landslide is oriented northward, being 0.079 /Km2 and
3.60%, respectively. This is because the geological structure in the
study area is protruding northward in an arc shape and the slope
rock is squeezed more intensely in the north so that the damage is
more pronounced and thus landslides are more likely to occur in the
north (Figure 5C). LND and LAP reach their maximum values in the
range of (−0.33, 0.33] at 0.086 /Km2 and 4.042%, respectively. The
overall trend is to rise first and then decline, and the (−0.33, 0.33]

TABLE 3 Influencing factor classification table.

Influencing factors Classification
quantity

Classification standard

Elevation (m) 6 1. [543, 1,000]; 2. (1,000, 2000]; 3. (2000, 3000]; 4. (3000, 4,000]; 5. (4,000, 5,000]; 6.
(5,000, 7,674]

Slope (°) 7 1. (0, 5]; 2. (5, 15]; 3. (15, 25]; 4. (25, 35]; 5. (35, 45]

6. (45, 55]; 7. (55, 83.47]

Aspect 9 1. flat (-1–0); 2. N (0–22.5, 337.5–360); 3. NE (22.5–67.5)

4. E (67.5–112.5); 5. SE (112.5–157.5); 6. S (157.5–202.5)

7. SW (202.5–247.5); 8. W (247.5–292.5)

9. NW (292.5–337.5)

Curvature 5 1. ≤ −1.67; 2. (−1.67, −0.33]; 3. (−0.33, 0.33]

4. (0.33, 1.67]; 5 >1.67

Distance to the river (m) 7 1. (0, 100]; 2. (100, 200]; 3. (200, 500]; 4. (500, 1,000]

5. (1,000, 2000]; 6. (2000, 5,000]; 7. >5,000

Distance to the glacier (m) 7 1. (0, 500]; 2. (500, 1,000]; 3. (1,000, 2000]; 4. (2000, 5,000]

5. (5,000, 10,000]; 6. (10,000, 20,000]; 7. >20,000

Strata lithology 10 1. Quaternary (Q); 2. Neogene (N); 3. Cretaceous (K)

4. Jurassic (J); 5. Triassic (T); 6. Permian (P)

7 Carboniferous (C); 8. Silurian (S); 9. Ordovician (O)

10. Swire (A)

Distance to fault (m) 8 1. (0, 500]; 2. (500, 1,000]; 3. (1,000, 2000]; 4. (2000, 5,000]

5. (5,000, 10,000]; 6. (10,000, 20,000]; 7. (20,000, 50,000]; 8. >50,000

Distance to the epicenter of an earthquake above
magnitude 5 (m)

8 1. (0, 500]; 2. (500, 1,000]; 3. (1,000, 2000]; 4. (2000, 5,000]

5. (5,000, 10,000]; 6. (10,000, 20,000]; 7. (20,000, 50.000]

8. >50,000
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interval is a turning point, indicating that the surface of the slope
is strongly curved, far from a straight line, a situation that will
lead to the development of development of landslides (Figure 5D).
LND and LAP generally increase initially and then decrease
with the increase in distance to the river, reaching the maximum
values in the range of 200–500 m of 0.099 /Km2 and 4.34%,
respectively. The number and area of landslides were the highest

in the range of 2000–5,000 m from a glacier but LND and LAP
were the largest in the range of 500–1,000 m from a glacier, being
0.126 /Km2 and 5.88%, respectively. LND and LAP increased
initially and then decreased with the increase in the distance
to the glacier; this was due to the fact that the effect of glacier
meltwater on the slope have been reduced significantly with distance
(Figure 5F).

FIGURE 4
LND map of ancient landslides in the study area.

FIGURE 3
Method flow chart.

Frontiers in Earth Science frontiersin.org07

Cui et al. 10.3389/feart.2023.1135018

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1135018


TABLE 4 Statistics of the landslides in different areas.

Classification level The number of landslides Landslide ratio (%)

≤0.1 Km2 976 12.28

0.1–0.5 Km2 4,718 59.37

0.5–1 Km2 1,499 18.86

≥1 Km2 754 9.75

FIGURE 5
The relationships between landslides and topographic factors. (A) Landslide distribution and elevation; (B) Landslide distribution and slope; (C)
Landslide distribution and aspect; (D) Landslide distribution and curvature; (E) Landslide distribution and the distance to the river; (F) Landslide distribution
and the distance to the glacier.
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4.2.2 Geological factors
Lithology is a geological factor affecting the spatial

distribution of landslides. It is widely recognized that lithology
has a significant impact on the occurrence of landslides and
that changes in lithology frequently result in differences in the
strength and permeability of rock and soil (Chen et al., 2019).
As can be seen from Figure 6, LND and LAP were the
highest when the lithology was Triassic (T), being 0.0947/km2

and 5.0467%, respectively. The second largest LND is Archean
(A) at 0.09023/km2, and the second largest LAP is Permian (P)
at 3.23%. The numbers and areas of ancient landslides in
Permian, Triassic and Neogene were large and there were
many landslides. This is because these strata are mostly
argillaceous sandstone and siltstone; the mechanical properties
of the rock and soil cause poor stability and thus the strata

are prone to geologic related landslide disasters. However,
the stratum lithology of the Triassic period had the largest
LND and LAP, because there were many landslide occurrences
in the Triassic period although the landslide area is relatively
small.

4.2.3 Earthquake factors
The distance to a fault and the distance to an earthquake

epicenter above magnitude five are seismic factors affecting the
development of landslides (Cui et al., 2021). As can be seen from
Figure 7, LND reached the maximum value in the range of
20,000–50,000 m from a fault and showed a trend of rising
initially and then decreasing. However, LAP was highest in the
range of 0–500 m from the fault and showed a trend of falling first
and then rising (Figure 7A). LND and LAP reached maximum

FIGURE 6
Relationship between landslide distribution and stratum lithology.

TABLE 5 Confusion matrix of the IV model.

Whether a Landslide (actual) Whether a landslide (forecast) percentage/% accuracy/%

No Yes

NO 5,525 2,422 69.5 71.4

Yes 2,120 5,827 73.3

TABLE 6 Confusion matrix of the WoE model.

Whether a Landslide (actual) Whether a landslide (forecast) percentage/% accuracy/%

No Yes

NO 5,527 2,420 69.5 70.6

Yes 2,247 5,700 73.3
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values in the range of 0–500 m from the epicenters of earthquakes
above 5, being 0.093 /Km2 and 14.084%, respectively and showed a
downward trend as a whole and a small upward trend in some areas
(Figure 7B).

4.3 Landslide hazard evaluation results

4.3.1 Results of IV model evaluation
In ArcGIS software, an information value is added to each

influencing factor and imported into their fields. Using the
overlay analysis function in the Spatial Analyst tool, the
information field of each influencing factor class was weighted

and summed to obtain a hazard assessment map using the
information value model in the study area. According to the
natural discontinuity point classification method (Jenks), areas
were reclassified into very low hazard (−15.132 to −2.969), low
hazard (−2.969 to −1.674), medium hazard (−1.674 to −0.594),
highhazard (−0.594 to 0.557) and very highhazard (0.557–3.220).
The landslide hazard zoning map is shown in Figure 8.

Then, using the Extract Multi Values to Points tool in
ArcGIS software, the information model hazard
reclassification grid was extracted into the ancient landslide
point attribute table of the study area, that is, the assignment
work was completed, and the attribute table was exported to
calculate and analyze the distribution of ancient landslides in

FIGURE 7
Relation between landslides and earthquake factors. (A) Landslide distribution and the distance to a fault; (B) Landslide distribution and the distance
to the epicenter of an earthquake above magnitude five.
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each hazard interval. As shown in Figure 9, with the increase in
the degree of hazard, the number of landslides, LND and LAP
have increased. The number of landslides n the very high hazard
class was 4,163, accounting for 52.38% of the total number of
landslides and the landslide area was 1927.6 K m2, accounting
for 51.44% of the total area. LND of the extremely high-hazard
area was 0.158 /Km2 and LAP was 7.296%, more than 40 times
that of the very low hazard class. In general, the number of
landslides, area, LND and LAP in the very high hazard class were
the highest and the landslide hazard assessment results were in
line with the actual landslide situation.

4.3.2 Results of WoE model evaluation
In ArcGIS software, evidence weight value are added to

each influencing factor and imported into the fields
separately. Using the overlay analysis function of the
Spatial Analyst tool, the hazard assessment map of the
ancient landslide weight of evidence model in the study
area was obtained by summing the weights of evidence
fields of each influencing factor. According to the natural
discontinuity point classification method (Jenks), the study
area was classified into five classes of very low hazard
(−15.835 to −2.807), low hazard (–2.807 to −1.350),

FIGURE 8
Landslide hazard zoning map based on IV model.

FIGURE 9
Landslide hazard statistics based on the IV model.
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medium hazard (−1.350 to 0.021), highhazard (0.021–1.478)
and very high hazard (1.478–6.021). The landslide hazard
zoning map is shown in Figure 10.

Based on the zoning shown in Figure 10, the Extract Multi
Values to Points tool in ArcGIS software was used to extract
the WoE model hazard reclassification grid into the ancient
landslide point attribute table of the study area, and the
attribute table was exported to calculate and analyze the
distribution of ancient landslides in each hazard interval.
As shown in Figure 11, the degree of landslide hazard was

proportional to the number of landslides, LND and LAP. In
the very high hazard zone, the number of landslides was 3905,
accounting for 49.14% of the total number of landslides. The
landslide area was 1941.12 K m2, accounting for 51.8% of the
total landslide area, and LND and LAP reached 0.16 /Km2 and
7.96%, respectively. The landslide in the study area was
largely concentrated in the very high hazard zone/class
and the hazard, and the hazard assessment results were in
good agreement with the actual field observation of the
landslides.

FIGURE 10
Landslide hazard zoning map based on WoE model.

FIGURE 11
Landslide hazard statistics based on the WoE model.
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4.4 Validation of evaluation results

4.4.1 Confusion matrix validation
The confusion matrix of each model was obtained by classifying

the landslide point and non-sliding point data of each model in SPSS
software as shown in Tables 5, 6. The comprehensive accuracy of the
confusion matrix of the two models was above 70%, indicating that
the abovementioned models have high accuracy for the reference
values.

4.4.2 ROC curve validation
The evaluation results of the validation sets of IV and WoE

models were both above 75.0% (Figure 12). However, the
accuracy of the IV model was slightly higher than that of the
WoE model. The results indicate that the two models have higher
accuracy for landslide evaluation in the study area, and the IV
model is better than the WoE model for landslide hazard
assessment in the area.

5 Discussion

Due to the harsh geographical environment and sparse
population in the Western Himalayan Syntaxis, there are only
few literature reports concerning landslide research. For example,
Zhang et al. (2015) interpreted landslides in Badakhshan Province,
Afghanistan, using an area of 44,059 Km2 and 608 landslides.
Compared with the previous study, the present study has a larger
scope and more landslide samples.

The evaluation of geological disasters has been carried out formany
years and various methods of analysis have been developed. In this
study, the IV and WoE models were used to evaluate and analyze the
landslide hazard in the study area and the results were verified via a
confusion matrix and ROC curve. The prediction accuracy of the IV
model was higher than that of the WoE model. This finding is
consistent with previous studies (Mandal et al., 2018; Singh and
Kumar, 2018; Wubalem and Meten, 2020). This is because the IV
model can better combine the subjective experience of experts with
objective data so that the subjective evaluation is introduced into the
analysis process and the accuracy is greatly improved. TheWoEmodel
is a data-driven method that avoids the intervention of subjective
evaluation. Hence the prediction accuracy is not as good as the IV
model. In this study, the AUC-ROC of the landslide hazard assessment
based on the IVmodel reached 78.4%. This result was better than other
cases using thismodel. For example, Chen et al. (2020) employed the IV
model and 10 factors, namely, slope, elevation, aspect, plane curvature,
profile curvature, NDVI, TWI, distance to water system, distance to
road and land use. The AUC-ROC result was 73%. Aha et al. (2021)
used the IV model and eight factors (slope, aspect, curvature, elevation,
LULC, soil, lithology and drainage density) were used for evaluation
and the AUC-ROC result was 76.09%. Achour et al. (2017) used seven
factors for evaluation (lithology, slope, distance to a fault, land use,
distance to the water system and geotechnical parameters) and the
AUC-ROC result was 77%. The combination of the influencing factors
selected in the present studywasmore suitable for the IVmodel as it has
showed a better accuracy. In this study, two models were selected from
among many evaluation models. In the future, more evaluation models
will be selected for comparison to verify the prediction accuracy of
different models.

6 Conclusion

In this study, the Western Himalayan Syntaxis was taken as the
research area. Based on high-resolution satellite images provided by
the Google Earth platform, a landslide interpretation was carried out
by artificial visual interpretation and a landslide database for this
area was established. The spatial distribution of ancient landslides in
the study area was analyzed using the nine landslide influencing
factors (elevation, slope, aspect, curvature, distance to the river,
distance to a glacier, stratum lithology, a fault and distance, and
distance to the epicenter of an earthquake above five magnitude).
The landslide hazard in the study area was evaluated by the IV and
WoE models. The conclusions are as follows.

(1) A total of 7,947 landslides were interpreted in the study area
of 119,414 K m2, with a total area of 3747 Km2 and LND of

FIGURE 12
ROC curve validation diagram based on (A) IV model; (B) WoE
model.

Frontiers in Earth Science frontiersin.org13

Cui et al. 10.3389/feart.2023.1135018

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1135018


0.0654 /Km2. More than 87% of the ancient landslides had an
area of more than 10 Km2 and the landslides in the area were
mainly medium to large landslides.

(2) The regional landslides were more developed at an elevation of
4,000–5,000 m, a slope of 15–25°, a distance to the river of
200–500 m and the distance to a glacier of 500–1,000 m. Areas
with a concave slope were more prone to landslides than convex
slopes; northward slope (0–22.5, 337.5–360) was the dominant
direction of landslide development; areas with Triassic
lithology, distance from the fault 0–500 m and distance from
the epicenter of an earthquake above magnitude 50–500 m were
more prone to landslides.

(3) The IV and WoE models were used to evaluate the landslide
hazard. The results showed that the number, area, point
density, and area density of landslides in the very high
hazard zone are the highest and the landslide hazard
evaluation results were consistent with the actual landslide
condition.

(4) A confusion matrix and an ROC curve were used to verify the
results of the landslide hazard assessment. The accuracy of
the confusion matrix was more than 70% and the AUC values
of success rate and prediction rate from the ROC curve were
higher than 0.75, indicating that the hazard assessment
results were consistent with the actual landslide data. The
IV model had a higher prediction accuracy than the WoE
model.
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