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Cycle skipping problem caused by the absent of low frequencies and inaccurate
initial model makes full waveform inversion (FWI) deviate from the true model. A
novel method is proposed to mitigate cycle skipping phenomenon by dynamic
data matching which improves the matching of synthetic and observed events to
regulate the updating of initial model in a correct direction. 1-dimentional (1-D)
Gaussian convolutional kernels with different lengths are used to extract features
of each time sample in each trace which represents the integrated properties of
wavefield at different time ranges centered on each time sample. According to the
minimum Euclidean distance of the features, the optimally matched pairs of time
samples in the observed and synthetic trace can be found. A constraint evaluates
the reliability of dynamic matching by attenuating the amplitude of synthetic data
according to the values of traveltime differences between each pairs of optimally
matched time samples is proposed to improve the accuracy of data matching. In
addition, Gaussian kernels have the capability to extract features of time samples
contaminated by strong noises accurately to improve the robustness of the
propose method further. The selection scheme of optimal parameters is
discussed and concluded to ensure the convergence of the proposed method.
Numerical tests on Marmousi model verify the feasibility of the propose method.
The proposed method provides a new approach to tackle the convergence
problem of FWI when using the field seismic data.
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1 Introduction

Full waveform inversion (FWI) suffers from the cycle skipping problem, which leads
FWI to converge to the local minima (Virieux and Operto, 2009). Sufficiently low
frequencies in observed data and a suitable initial model are important for FWI to
overcome cycle skipping (Bunks et al., 1995). However, it is difficult to provide a good
initial model for FWI without sufficient prior information, with low frequency components
usually absent from seismic field data. Therefore, many researchers have devoted much to
solving the cycle skipping phenomenon from different perspectives. There are three main
approaches to addressing this issue.

First, artificial low frequencies, which are similar to the low-frequency components of the
intact observed data that conveys long wavelength information of subsurface media, can be
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introduced into FWI. Chi et al. (2014) utilized the differences
between the envelopes of both observed and calculated data as a
misfit function to provide the long-wavelength components of the
subsurface velocity for standard FWI. Liu et al. (2018) fitted the
intensity of the observed and synthetic data and found that
sufficiently low frequencies in intensity data can help FWI avoid
cycle skipping. Sun and Demanet (2018) extrapolated low
frequencies from the band-limited signals by a one-dimensional
(1-D) convolutional neural network (CNN), which learns non-linear
mapping between training sets and labels. Yang et al. (2022)
developed a deep learning-based approach for low frequency
reconstruction in which high frequencies are transformed into
low frequencies by training an end-to-end three-dimensional
(3D) CNN.

Second, waveform-matching techniques can be used to avoid
cycle skipping. Wang et al. (2016) used dynamic time warping
(DTW), which can detect the travel-time difference between
synthetic and observed data to help FWI avoid cycle skipping.
Dong S. et al., 2020 proposed a local travel time correction
approach to decrease travel-time differences between waveforms
to improve waveform matching. Chen et al. (2022) proposed a
penalized differential DTW misfit function to further identify the
travel-time difference between observed and synthetic data.

Third, data (or model, acquisition) extension and measurement
of the differences between the observed and synthetic data in the
transformation domain improves the convexity of misfit functions.
Zhu and Fomel (2016) proposed adaptive matching filtering-based
FWI which measures time-varying phase differences between the
observed and predicted data. Huang et al. (2017) proposed the
regularized formulation of source-receiver extended inversion to
recover reasonably good velocity models from synthetic
transmission and reflection data. Barnier et al. (2018) introduced
model extension to FWI by adding a correcting term to ensure phase
matching between the observed and predicted data. Huang et al.
(2021) used the time-warping function as the extension in the data
space to solve the velocity model and time-warping extension in a
single optimization problem by the alternate direction method.
Some other solutions, such as gradient sampling (Yang et al.,
2020), wavefield reconstruction (Rizzuti et al., 2021), Bayesian
non-linear inversion (Guo et al., 2020), wide-angle seismic
acquisition (Guo et al., 2022), and global optimization (Mojica
and Kukreja, 2019), can also mitigate cycle skipping.

In addition, field seismic data are usually contaminated by noise
(both random and coherent), which also causes FWI to deviate from
the correct direction of convergence. Conventional denoising
methods (e.g., f-x deconvolution, EMD, SVD, and wavelet
transform) are usually based on theoretical model assumptions
and rely on a priori information, which has difficulty handling
complex noises and low computational efficiency (Han and Van,
2015; Liu and Zheng, 2022). Data-driven-based denoising methods
can establish a strong non-linear mapping between noise-contained
and pure data, which is currently a hot research topic in seismic
denoising. Dong et al. (2019) and Dong X. et al. (2020) used
DnCNNs to predict noise in field desert data acquired from the
Tarim region in China. Zhang et al. (2021) used a UNet structure to
suppress surface-related multiple labels with synthetic primary
labels. Dong et al. (2022a) proposed a multiscale spatial attention
network to suppress strong noises and recover weak reflections.

Dong et al. (2022b) proposed a novel strategy to generate sufficient
real noise by a generative adversarial network (GAN), which
compensates for the lack of real noise data.

There is a weak similarity between observed and the synthetic data,
especially when the initial model is inaccurate, which indicates different
travel times between the observed and synthetic traces existing in different
pairs of events. Inspired by the ideas from the features extraction of CNN
and dynamic data matching of DTW, we propose a novel approach to
achieve global-searching-based dynamic data matching by the similarity
of features of each time sample in the observed and synthetic traces. We
use 1-D Gaussian convolutional kernels to extract features of each time
sample in a single seismic trace, with the features representing the
integrated properties of wavefield (amplitude, phase and travel time,
etc.). In order to highlight the representation of convolution-based
features for each time sample, we use Gaussian kernels with different
lengths to extract the features at different time ranges centered on each
time sample; this is the same way in which CNN extracts features of
different scales from images through convolutional kernels of different
receptive fields. According to the minimum Euclidean distance of the
features, only the time sample in the observed data that optimallymatches
the time sample in the synthetic data of the same trace number can be
found. Synthetic time samples are time-shifted to align the optimally
matched observed time samples to accomplish dynamic data matching.
However, not every observed event can be optimally matched to a
synthetic event. Thus, it is necessary to introduce a constraint to
evaluate the reliability of each dynamic matching pair. We propose
that the amplitude of the synthetic time sample after dynamic matching
attenuate as the absolute value of shifted time increases, whichmeans that
a pair of optimally matched time samples with large time differences will
be more likely regarded as mismatched, and we attenuate these data
artificially to mitigate their interference to the gradient. After the steps
introduced previously, intermediate synthetic data can be generated by
dynamic data matching, which regulates the model to update in correct
directions.Meanwhile, although denoisingmethods improve the signal to
noise ratio (SNR) of the observed data, effective seismic signals will also
experience some damage. Gaussian kernels have a strong ability to extract
accurate features from noised-contained seismic traces without an extra
denoising process, thus ensuring that the extracted features do not
experience interference from other objective factors. Furthermore, the
proposed novel method can be combined with encoded multi-source to
accelerate the iterations of FWI. Numerical tests have demonstrated the
feasibility of our method.

2 Methods

2.1 Feature extraction

Features from the input data were extracted by the convolutional
kernels of CNN. Based on this function of convolution, we used 1-D
Gaussian kernels to extract features of the synthetic and observed data
trace by trace. We regarded the convolution value as the feature of each
time sample when the kernel’s center was aligned with each time sample.
Thus, the length of each utilized convolution kernel was odd. In order to
obtain more features of each time sample with different time ranges to
make dynamic matching more accurate—similar to the way in which
CNNextracts featureswith different receptivefields—we appliedmultiple
lengths of Gaussian kernels to each trace. The kernel can be expressed as
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kg n, l( ) � exp −1
2

n − nm( )
nm

[ ]2( ), n ∈ 0, l[ ], (1)

where kg represents the Gaussian kernel, l represents the length of kg,
and nm represents the middle element of kg. The convolution of the
synthetic and observed trace with Gaussian kernels can be
expressed as

fi,j,w
syn t( ) � norm kwg n, lw( )*norm di,j

syn t( )
∣∣∣∣∣ ∣∣∣∣∣( )( ),

fi,j,w
obs t( ) � norm kwg n, lw( )*norm di,j

obs t( )∣∣∣∣ ∣∣∣∣( )( ),
w � 1, 2, ..., nw; l ∈ l1, l2, ..., lw, ..., lnw[ ],
t � 1, 2, ..., T; i � 1, 2, ..., ns; j � 1, 2, ..., nr,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (2)

where * denotes the operator of convolution and di,jsyn and di,jobs are the
synthetic and observed trace for the ith shot and jth receiver for data with
ns shots and nr receivers, respectively. t and T represent the time variable
and the maximal number of time samples, respectively. fi,j,w

syn and fi,j,w
obs

represent the features of the synthetic and observed trace extracted by the
wth length of the Gaussian kernel, respectively. nw represents the total
number of Gaussian kernels used for feature extraction. The value of l
monotonically increases from l1 to lnw.We took the absolute value of each
trace to enhance the features extracted by different lengths of kernels in
case the differences among features extracted by different kernels were

not obvious due to the destructive interference of positive and negative
amplitudes during the convolution process. norm(·) denotes the operator
of normalization. We normalized each pair of synthetic and observed
traces to reduce the differences between the features of each pair of trace
caused by excessive amplitude. Finally, we operated the second
normalization to balance the value of features extracted by different
kernels, which made the contribution to dynamic data matching of each
kernel equivalent. Figure 1A shows an observed and a synthetic trace. The
cycle skipping phenomenon with different travel-time differences
occurred between the first two events of the traces; there was no
event in the observed trace matching the third event in the synthetic
trace. Figures 1B, C show the feature map of the traces. The illumination
of the feature map is centered on each event, which demonstrates the
ability for the features to extract convolutional kernels to the seismic
events; different features extracted by different lengths of kernels
represent wavefield properties in different time ranges.

2.2 Dynamic data matching and reliability
constraint

After extracting the features, a feature vector consisting of the
multiple features of each time sample can be expressed as

FIGURE 1
Features extracted by different lengths of Gaussian kernels. (A)Observed and synthetic trace. Featuremap of the (B) observed trace and (C) synthetic
trace with nw = 80 and lnw = 401 ms.
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Fi,j
syn t( ) � fi,j,1

syn t( ), fi,j,2
syn t( ), ..., fi,j,nw

syn t( )[ ],
Fi,j
obs t( ) � fi,j,1

obs t( ), fi,j,2
obs t( ), ..., fi,j,nw

obs t( )[ ],⎧⎨⎩ (3)

where Fi,j
syn and Fi,j

obs represent the feature vector of a time sample.
Calculating the Euclidean distance between the features of each time
sample in the observed trace and all time samples in the
corresponding synthetic trace, the only time sample in the
synthetic data that optimally matches the time sample in the
observed data of the same trace number can be determined
according to the minimal Euclidean distance:

to � argmin
t

∑
nw

�����������������
Fi,j
obs ts( ) − Fi,j

syn t( )[ ]2√
,

ts, to( ) � 1, 2, ..., T.

⎧⎪⎨⎪⎩ (4)

Thus, di,jsyn(to) and di,jobs(ts) are the optimally matched pairs of time
samples, where ts and to can be equal or unequal. An optimal travel-
time difference of dynamic data matching can be defined:

Δt � ts − to, (5)
where |Δt| � 1, 2, . . . , T.

Figure 2 shows the feature distances between the traces shown in
Figure 1A. Theminimal feature distances of the first two events between
the synthetic and observed trace are located at the time range of the first
two events in the observed trace (red box in Figure 2), indicating that the
synthetic events that are cycle-skipped to the observed events have been
correctly determined. Incorrect matching occurs between the third
event of the synthetic trace and the second event of the observed trace
(yellow box in Figure 2). Thus, a constraint that evaluates the reliability
of dynamic matching was needed. We constrained the dynamic
matching by attenuating the amplitude of synthetic time samples
according to |Δt|. Therefore, the intermediate synthetic data
generated from the original synthetic data after dynamic data
matching and reliability evaluation can be expressed as

d̃i,j
syn t( ) � di,j

syn to + Δt( ) · exp − Δt| |γ
T

( ), (6)

where d̃i,jsyn denotes the intermediate synthetic data and γ denotes the
attenuation factor.

Figure 3 indicates that the larger the value of |Δt|, the lower the
reliability of dynamic matching; the larger the value of γ, the

stronger the amplitude attenuation of d̃i,jsyn with the same |Δt|.
After dynamic matching, the first two events of the synthetic
trace were matched correctly with the first two events of the
observed trace, and the third event of the synthetic trace which
was matched incorrectly to the second event of the observed trace
was almost completely attenuated (Figure 4A). Although the first
two events of the synthetic trace were matched correctly by DTW,
the third event still existed and was positioned incorrectly
(Figure 4B). Our method made the cycle-skipped events with
small travel-time differences match correctly, and the cycle-
skipped events with large travel-time differences can be
completely attenuated to mitigate their interference on the
gradient, ensuring the correct updating direction of the velocity
model. As FWI iterates, |Δt| will gradually decrease, and more time
samples in the intermediate synthetic trace will not be over-
attenuated, so that more synthetic events can be used to update
the velocity model.

2.3 DCFWI

After dynamic matching, the amplitude of some of the time
samples in the intermediate synthetic trace were attenuated
artificially, which caused the amplitude information of the
intermediate synthetic data to be incorrect. In order to weaken
the interference of incorrect amplitude and emphasize that the phase
information is non-linearly, weaker FWI based on dynamic data
matching of convolutional wavefields (DCFWI) uses the global-
correlation misfit function as an alternative to the least-squares
misfit function (Choi and Alkhalifah, 2012):

J � −∑ns
i�1

∑nr
j�1

∫
t
d̃i,j
syn · di,j

obs( )dt����������∫
t
d̃i,j
syn( )2

dt

√ ���������∫
t
di,j
obs( )2dt√ , (7)

where J denotes the misfit function. According to the adjoint state
method, the gradient can be expressed as

zJ

zv
� ∑

r

∫
t

zd̃i,j
syn

zv
· λdt, (8)

where v denotes the velocity of the subsurface media. λ represents
the adjoint source and is expressed as

λ �
∫
t
d̃i,j
syn · di,j

obs( )dt · d̃i,j
syn����������∫

t
d̃i,j
syn( )2

dt

√( )3 ���������∫
t
di,j
obs( )2dt√ − di,j

obs����������∫
t
d̃i,j
syn( )2

dt

√ ���������∫
t
di,j
obs( )2dt√ .

(9)
Therefore, the gradient in the time domain can be simplified to

zJ

zv
� 2
v3

∑
r

∫
t

z2uf

zt2
· uλ

bdt. (10)

where uf and uλb denote the forward-propagated and adjoint
wavefield, respectively.

FIGURE 2
Feature distances of the traces shown in Figure 1A.
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FIGURE 3
Curves of amplitude attenuation to the synthetic time samples with different γ and |Δt|.

FIGURE 4
Comparison of convolution-based dynamic matching and DTW. The result for (A) convolution-based dynamic matching (γ = 5) and (B) DTW of the
waveforms shown in Figure 1A.

FIGURE 5
Designed velocity model for comparing standard FWI and DCFWI. (A) True and (B) initial velocity model.
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For a preliminary comparison of DCFWI and standard FWI, we
designed two horizontal layered velocity models as the true
(Figure 5A) and initial (Figure 5B) models, respectively. The

model size was 200 × 200, with a space interval in each direction
(distance and depth) of 10 m. Each grid point at surface acts as a
receiver. The dominant Ricker wavelet frequency was 20 Hz, and the

FIGURE 6
Feature maps and distances of complex traces. (A) Comparison of complex traces from encoded multi-source based on the model shown in
Figure 5. Feature maps of the (B) observed and (C) synthetic trace. (D) Distances of the traces shown in (A).
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frequencies below 10 Hz were filtered out to generate data lacking
low frequencies. An encodedmulti-source containing 15 single shots
was used as the source. Figure 6A shows that the waveforms of the
observed and synthetic trace are muchmore complex than the traces
shown in Figure 1A, and that the convolution-based dynamic
matching methods still move the synthetic events to successfully
match the correct observed event under the complex situation.
Figures 6B, C show the feature maps of the traces shown in
Figure 6A. The illumination of the feature maps shows that the
direct and reflection waves were accurately captured by
convolutional kernels. The distances between the trace shown in
Figure 6A was plotted (Figure 6D) to search for the optimally
matched pairs of events. Figure 7A shows the gradient calculated
by standard FWI. Due to incorrect matching of waveforms, the
velocity from 0.5 to 1.0 km in depth could not be updated. Figure 7B
shows the gradient calculated by DCFWI. The velocity from 0 to
1.0 km in depth could be updated more evenly after matching the
correct events and attenuating the mismatched synthetic events.
Thus, this numerical test preliminarily verified the feasibility of
DCFWI. This numerical test aims to demonstrate the ability to
mitigate the interference of cycle-skipped events on gradients by
DCFWI. However, the velocity variation in depth direction of the
model shown in Figure 5 is violent. In order to update this initial
model and obtain a desired final inverted result, a method-like
reflection waveform inversion (RWI) was needed to remove the
high-frequency migration components from the sensitivity kernel
and construct a model with low wavenumber for standard FWI.
However, this is beyond the scope of this paper.

2.4 Convergence and optimal parameter
selection of DCFWI

To demonstrate the improved convergence of DCFWI to
standard FWI and discuss the optimal parameter selection
scheme, we compared the curves of the misfit function derived
from a designed velocity model (Figure 8A). Themodel size was 69 ×
192 with a space interval in each direction (distance and depth) of
10 m. The background velocity increased linearly when the minimal
velocity was 1.5 km/s and the maximal velocity was 4.0 km/s, and a

rectangle-shaped body located in the middle of the model at a
velocity of 4.0 km/s. We linearly changed the maximal velocity from
2.5 km/s to 8.0 km/s of the background model to produce a group of
initial models to plot the misfit function curves. Two sources with
Ricker wavelets were located at the first and end grid points at a
depth of 0 km, and 192 receivers were distributed evenly with a space
interval of 10 m at a depth of 0 km. The dominant frequency of the
Ricker wavelets was 20 Hz, and frequencies below 10 Hz were
filtered out to generate data without low frequencies. Standard
FWI was performed with the correlation-based misfit function.
Figure 8B shows the curve of standard FWI; there were three
local minima except for the global minimum— two local minima
near the global minimum especially indicated that standard FWI
requires an accurate initial model to obtain good inverted results.

Figures 8C–F show the curve of DCFWI with nw = 20, γ = 20,
and lnw = 21 ms, 101 ms, 201 ms, and 401 ms, respectively. Despite
its convexity, the curve shown in Figure 8C was better than the curve
shown in Figure 8B in the near global minimum regions. Five local
minima still appeared where there were large differences between
the initial and actual velocity model. However, the curves shown in
Figures 8D–F are smooth, which indicates better convergence. The
curves of DCFWI with the same nw, γ, and different lnw show that we
selected the larger lnwwe selected behaved better than a smaller lnw in
convergence. The larger lnw extracted features for each time sample
in a larger time range, which improved the dynamic matching
between two cycle-skipped events in large travel-time differences.
Thus, the selection of parameter lnw should at least be larger than the
time lapse of a wavelet.

Figures 8F–I show the curve of DCFWI with lnw = 401 ms, γ = 20,
and nw = 2, 10, 20, and 40, respectively. Although the convexity of
the curve shown in Figure 8G is better than that of the curve shown
in Figure 8B in the near global minimum regions, three local minima
still appear where there are large differences between the initial and
actual velocity model. However, the curves shown in Figures 8F, H, I
are smooth, indicating better convergence. The curves of DCFWI
with the same lnw, γ, and different nw show that the larger nw we
selected behaved better than a smaller nw in convergence. The larger
nw indicated that we used more Gaussian kernels for feature
extraction. The more kernels we used, the more accurate was the
dynamic matching, especially for complex seismic signals. Thus, the

FIGURE 7
Gradient comparison based on the velocity model shown in Figure 5. Gradient of (A) standard FWI and (B) DCFWI.
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selection of parameter nw should be large. In addition, if we use too
many kernels to extract features, the accuracy of dynamic matching
will not further improve and the computational cost will increase
significantly.

Figures 8F, J–L show the DCFWI curve with lnw = 401 ms,
nw = 20, and γ = 5, 10, 15, and 20, respectively. Although the
convexity of the curve shown in Figure 8J is better than that of the
curve shown in Figure 8B in the near global minimum regions,

FIGURE 8
Curves of standard FWI and DCFWI with different combinations of parameters based on a designed velocity model, where red circles indicate local
minima. (A)Designed velocitymodel. Curves of (B) standard FWI andDCFWIwith (C) nw=20, ln w= 21 ms, γ= 20; (D) nw=20, lnw= 101 ms, γ=20; (E) nw=
20, lnw = 201 ms, γ = 20; (F) nw = 20, lnw = 401 ms, γ = 20; (G) nw = 2, lnw = 401 ms, γ = 20; (H) nw = 10, lnw = 401 ms, γ = 20; (I) nw = 40, lnw = 401 ms, γ =
20; (J) nw = 20, lnw = 401 ms, γ = 5; (K) nw = 20, lnw = 401 ms, γ = 10; (L) nw = 20, lnw = 401 ms, γ = 15.
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two local minima still appear where there are large differences
between the initial and actual velocity model. However, the
curves shown in Figures 8F, K, L are smooth, indicating better
convergence. The curves of DCFWI with the same lnw and nw and
different γ show that the larger γ we selected behaved better than
a smaller γ in convergence. The larger γ indicates a stricter
constraint for the reliability of dynamic matching, and that
some synthetic events that are cycle-skipped to the observed
events with large travel-time differences will be completely
attenuated to reduce the interference on the gradient of these
mismatched events. Thus, the selection of parameter γ should be
large. In addition, if we choose too large a value for γ, it indicates
an extremely strict constraint for dynamic matching. Some
synthetic and observed events with small travel-time
differences will also be completely attenuated, causing FWI to
lack sufficient valid data to update the initial model.

3 Numerical tests

We tested DCFWI on the Marmousi model (Figure 9A). The
grid dimensions were 138 × 384, and the grid spacing in each
dimension was 24 m. Each grid point on the surface acted as a
receiver, and 50 sources were evenly distributed on the surface.
The Ricker wavelet with a peak frequency of 8 Hz was used as a

source; to simulate the situation when the observed data lacked
low frequencies, a 4 Hz high-pass filter was applied to the
wavelet. The total recording time was 6 s with a sampling rate
of 0.002 s. The finite-difference method for the acoustic wave
equation with PML absorbing boundary was used for seismic
wavefield modeling. The L-BFGS optimal algorithm was used for
iterating models. The gradient calculated by Eq. 10 was not
preconditioned during the inversion process. The velocity of the
initial model linearly increased (Figure 9B). We performed
standard FWI and DCFWI with multi-scale strategy. The
number of iterations in both low frequency (0–7 Hz) and high
frequency bands (above 7 Hz) was 350. Although the inversion
in the low frequency band was the first step, the lack of
sufficiently low frequencies in the observed data caused cycle
skipping, resulting in obvious artifacts in the shallow layers of
standard FWI (Figure 9C). DCFWI behaved better, correctly
recovering the long-wavelength components of the true model
(Figure 9D). However, DCFWI artificially attenuated the
amplitude of some events in synthetic data, which caused part
of the information for further improving the inverted precision
to always be absent from the synthetic data. Therefore, DCFWI
provided an accurate initial model for standard FWI to obtain
the final high precision inverted result. The final inverted model
of standard FWI started from the initial model shown in
Figure 9C is much deviated from the true model, and the

FIGURE 9
Inversion tests. (A)Marmousi model. (B) Initial model (backgroundmodel); invertedmodel of (C) standard FWI and (D)DCFWI (nw= 20, lnw= 401 ms,
and γ = 20) in a low-frequency band. Final inverted model (E) starts from the velocity shown in (C) and (F) starts from the velocity shown in (D).
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artifacts accumulated during standard FWI (Figure 9E). The
final inverted model started from the initial model provided by
DCFWI is close to the true model (Figure 9F).

The Marmousi model can be divided into a background
model (Figure 9B) and a perturbation model (Figure 10A). By
continuously changing the maximal velocity of the former and

FIGURE 10
Convergence comparison between standard FWI and DCFWI. (A) Perturbation model. Contour of (B) standard FWI and (C) DCFWI.

FIGURE 11
Inverted model of DCFWI from noise-contained observed data.
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the percentage of the latter, a series of new models can be
produced. After calculating the misfit function of FWI on
these models, a contour indicating the convergence of FWI
can be plotted (Luo and Wu, 2015). The global minimum
appears when the percentage of the perturbation model is
100% and the maximal velocity of the background model is
4.0 km/s. Standard FWI cannot tackle the influence of cycle-
skipping and will result in incorrect inverted models (local
minima) compared to the true velocity model, especially when
the initial models differed greatly from the true velocity model
(Figure 10B). Figure 10C shows the contour of DCFWI. Although
the low frequencies of observed data are filtered out, and some of
the initial models are much more different from the true model,
DCFWI still has a strong capability for converging and obtaining
a correct inverted result (global minimum).

The random noise-contained observed data with a SNR
of −2.6 was used for anti-noise testing of DCFWI. The features
extracted by Gaussian convolutional kernels suppress random noise
in signals, so that relatively accurate features can be obtained. In
addition, the global-correlation misfit function has the ability to
decrease the impact of noise. Therefore, a relatively accurate
inverted model was obtained by DCFWI, when the observed data
lacked low frequencies and was also contaminated by noise
(Figure 11).

4 Conclusion

In this paper, we propose that features of each time sample
extracted by different convolutional kernels can be used to
dynamically match synthetic events with the correct observed
event. The use of multiple lengths of Gaussian kernels to obtain
the features centered on each time sample can improve the accuracy
of dynamic matching. Amplitude attenuation according to travel-
time differences is an effective constraint for evaluating the
reliability of dynamic matching, which produces the intermediate
synthetic data that regulates inversion in correct directions. We
discuss and conclude the optimal selections of the parameters when
DCFWI is performed. Numerical tests on the Marmousi model
demonstrate the feasibility of DCFWI for solving the cycle skipping
problem and mitigating noise interference. In the future, we will test
the application effect of the DCFWI method in field marine
seismic data.
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