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Urban parks include water bodies, non-hardened ground, and a variety of
vegetation, whose shading and evaporation effects form a “park cold island.” A
park effectively cools the surrounding environment through heat exchange. This
phenomenon is called spillover of park cooling effect (PCS) and plays an important
role in regulating the microclimate of cities. Although PCS was extensively
documented in previous studies, the effects of park landscape features on PCS
still need to be further explored, especially in China with rapid urban expansion.
The severe scarcity of urban land resources heightens the necessity to clarify the
relationship between park patch size and cooling efficiency. Therefore, in this
study, we chose Zhengzhou city (the capital of Henan province, in the central
region of China) as an example, which has experienced rapid urban land expansion
and urban population and high spatiotemporal aggregation of
heatwaves–drought–rainstorms. We used Landsat 8 imagery and high score
data in the summer of 2019 to retrieve the characteristics of land surface
temperature (LST), and then we extracted 36 city parks and identified the
spillover distance of the park cooling effect (PCSD), spillover strength of the
park cooling effect (PCSS), spillover rate of the park cooling effect (PCSR), and
11 park landscape indexes. We calculated the area threshold when a park achieves
the highest cooling efficiency, and the PCS characteristics of each park also were
quantified. The results showed that the average LST of urban parks was 2.3°C lower
than that of the entire study area; PCSS was 4.61°C at a maximum; PCSD was
between 31 and 370m, and the average value was 179 m; the average PCSR was
0.957°C/100m. For the relationship of PCS with the 11 park landscape indexes, we
found park area (AREA), park green space area (AREAg), and park perimeter (PERIM)
contributed themost to PCS. Shape of impervious surface (LSIi) and percentage of
water body (Pw) also significantly contributed to PCS. The ratio of perimeter to area
(PARA), edge density (ED), edge density of the green space (EDg), and patch density
(PD) were significantly and negatively correlated with PCS. For the relationship
between park area and PCS, the result was that the park with an area of 6–8 ha and
an internal green area of not less than 5–6 ha has the highest PCS effect. This study
can expand our scientific understanding on the influences of park landscape
characteristics on PCS and provide a scientific basis for formulating reasonable
and effective urban parks and spatial layout planning to cope with the urban heat
island effect.
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1 Introduction

Urbanization has many consequences on local climate (Amani-
Beni et al., 2021), with the urban heat island (UHI) phenomenon
reported as the most widely spread one among global cities (Tian
et al., 2013; Aram et al., 2019). Multiple processes, physically and
socioeconomically, are responsible for the magnitude, spatial
coverage, and temporal changes of UHI (Yuan and Bauer, 2007;
Yu et al., 2021). A major challenge for both scientists and
practitioners is to reduce or ease UHI through urban planning.
Here, a plausible strategy for mitigating UHI is to increase the
amount and coverage of green vegetation and water bodies across
city landscapes (Wong et al., 2021; Song et al., 2022). Increasing
urban parks is considered to be the optimal choice because they
provide additional services (e.g., carbon sequestration, pollution
reduction, and biodiversity enhancement) for ecosystems
(McPherson et al., 2013; Wolch et al., 2014; Hewitt et al., 2020)
and society (Bartesaghi-Koc et al., 2020; Blachowski and Hajnrych,
2021).

Urban parks effectively reduce their own temperature through
evapotranspiration and shading (Kraemer and Kabisch, 2022),
forming a significant cold island. Many studies have found that
the maximum temperature difference between urban park interior
and urban average can reach 6°C–8°C (Feyisa et al., 2014; Yao et al.,
2022). Furthermore, urban parks provide cooling effects to the
surrounding environment to a certain extent through at least
four boundary-layer processes (Figure 1); this phenomenon is
called the spillover of park cooling effect (PCS). In some cases,
this expansion of cold air may be more important than the park cool
island itself (Sugawara et al., 2016) because it could significantly

improve the urban thermal environment and reduce energy
consumption by buildings; the cooling effect is also a
manifestation of macro-scale ecological benefits exerted by green
spaces. Jaurgrui (1991) found that the extent of a 500-ha park’s PCS
reached up to 2 km. Blachowski and Hajnrych (2021) also evaluated
the cooling effect of four urban parks inWroclaw and found that the
maximum cooling distance was 925 m. Yan et al. (2018) used the
measurement data in Beijing Olympic Forest Park (−680 ha) at
different times (i.e., day vs. night and summer vs. winter) and found
that the park cooling effect was variable but could extend almost
1.4 km beyond the park’s border. In 27 cities in eastern China, Geng
et al. (2022) and colleagues considered local climate background in
analyzing the influence of cooler air from the park extending several
hundred meters from the park boundary. Many other studies have
shown that the cooling distance of urban parks to the surrounding
areas is mainly concentrated in the range of 600–1000 m, which can
be considered key to countering UHI at regional and global scales
(Qiu and Jia, 2020; Wang et al., 2021; Liu et al., 2022; Yao et al.,
2022).

One clear lesson from previous studies is that the parks’
cooling effect and its spillover characteristics are influenced by
park size, type, shape, and position in the landscape, as well as
their matrix (e.g., a park in a residential area versus that in a
commercial matrix) (Upmanis et al., 1998; Doick et al., 2014;
Norton et al., 2015; Xue et al., 2019; Li et al., 2020; Cheung et al.,
2021; Sugawara et al., 2021). It is worth noting that some of these
characteristics can be adjusted and changed through sound
planning and design so that parks’ climate benefits and other
services can be maximized. In recent years, the urbanization rate
increased rapidly in developing countries (Xue et al., 2019). The

FIGURE 1
Four major boundary-layer processes responsible for the air (land surface) temperatures of urban green spaces as well as their spatial effects (e.g.,
cooling spillover) at neighboring landscapes: energy balance, vertical advections, horizontal advection, and heat generation.
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impervious water surface in cities tends to be connected, and the
resulting UHI effect also shows a spreading trend (Peng et al.,
2022). Spatiotemporal clustering characteristics of
heatwaves–drought–rainstorms result in the frequent
occurrence of extreme weather events (Yao et al., 2022). For
example, in China’s Zhengzhou (the capital of Henan province),
a new first-tier city, the built-up area has increased from 224.8 to
1284.9 km2 in the past 20 years (an increase of 5.7 times) (Li et al.,
2020), and the resident population increased from 6.88 million to
12.74 million. In the meantime, the annual number of hot days
(>35°C) increased from 21 (2011) to 40 (2019). It reached 22 days
in July 2019, which was very rare. The “7.20” extreme
precipitation event on July 20, 2021, caused 398 deaths and
more than 15 million capital loss in the city. The impacts of
extreme weather caused by rapid urbanization on the lives and
properties of residents are becoming increasingly severe.
Therefore, it is urgent for us to combat this disaster by
improving the spatial structure inside cities.

Urban parks can serve as buffer zones against extreme
weather events (Baro et al., 2014). Reasonable urban park
planning is of great significance to alleviating the UHI effect,
improving the microclimate, increasing urban biodiversity and
human wellbeing, and promoting urban sustainability.
Regardless of the increasing literature on this topic, it
remains difficult to generalize the intensity of the spillover of
the cold effect in urban parks. Additionally, the area of urban
parks is increasingly being squeezed in the context of urban
expansion, and it is very vital to achieve the optimal cooling
effect with the minimum park space, which can provide guidance

for decision-makers and urban planners. To this end, we take
Zhengzhou city as a study site to 1) quantify areas of PCS from all
green spaces; 2) identify the relationship between PCS and park
characteristics; 3) explore the threshold value of the park area to
maximize the PCS. We expect our findings will be used as a
scientific basis for designing of urban parks and spatial layout
planning to reduce the UHI effect. If approved, similar methods
can be extended to other urban areas.

2 Materials and methods

2.1 Study area and data source

Zhengzhou (34.16–34.58 N, 112.42–114.14 E) is located in
the north temperate zone and has a temperate continental
monsoon climate with four distinct seasons. The annual
average temperature is 14.2°C, and the annual rainfall is
640.9 mm, which is concentrated in summer. As the capital
city of Henan province, Zhengzhou is also a transportation
hub in China. By 2021, the resident population of Zhengzhou
was about 12.7 million, and the urbanization rate was 78.4%. The
built-up area of the central urban area is 709.69 km2. Here, the
central city of Zhengzhou is taken as the study area, with a total
area of 1019.5 km2. A total of 36 parks within the urban center
were selected (Figure 2, attached Table 1).

Landsat 8 remote sensing images taken at 11:01:13 on July 7,
2019, were utilized (http://www.gscloud.cn/), with good imaging
quality and clear ground features and no clouds and band stripe.

FIGURE 2
Location of the study area, (A)Henan province in China; (B) Zhengzhou in Henan province; (C) study area in Zhengzhou; (D) distribution of 36 urban
parks (1–36 is the code name for the park).
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The remote sensing imager is equipped with Operational Land
Imager (OLI) and Thermal Infrared Sensor (TIRS), including
11 bands, among which two thermal infrared bands can be used
to retrieve land surface temperature (LST) data. The first few days
of the study period were sunny and windless, and the weather
conditions were good, excluding the influence of factors such as
rainfall on the results.

In order to reduce or eliminate the influence of atmospheric
environmental conditions on remote sensing image quality,
radiometric calibration and atmospheric correction were carried
out on multi-spectral bands. In addition, the corrected Landsat
8 remote sensing data were classified by the support vector machine
method. According to the research needs, three categories of green
space, water body, and impervious water surface were obtained. The
classification accuracy was 99%, and the verified Kappa coefficient
was 0.98, which met the application requirements. At the same time,
parks in the city are extracted using vector boundary data for
clipping (http://www.amap.com). Data processing was carried out
in ENVI 5.3 and ArcGIS 10.8.

2.2 LST retrieval

The PCS from the park to its vicinity was gradually mitigated by
the urban surface heat environment (Jansson et al., 2006). During
daytime, the impervious surface has a fast heating rate, resulting in
the air temperature and LST being similar in the park, where the
green spaces have relatively small thermal inertia and a fast heating
rate, which causes the cooling effect in the park to be less
pronounced (Yan et al., 2018). Here, we used the LST retrieved
from remote sensing data instead of the air temperature. Generally,
air temperature and LST are mutually influential, and several studies
have found evidence of a close statistical relationship and similar
spatial patterns between them (Schwarz et al., 2012). LST has been
applied as a proxy to study air temperature. Our study requires a
large sample of parks to explore solutions to enhance PCS, and in
this case, it is more convenient and reasonable to use the LST
obtained from the satellite infrared band.

At present, LST inversion algorithms mainly include the
atmospheric correction method, single-window algorithm, and split
window algorithm (Yu et al., 2014; Qiu and Jia, 2020; Liao et al., 2021).
Referring to other research studies and according to the characteristics
of the study area (Cao et al., 2010; Li et al., 2012; Sun et al., 2012; Li et al.,
2020), we used the atmospheric correction method to invert land
surface temperature. The atmospheric correction method, also
known as the radiative transfer equation (RTE), is a traditional
algorithm based on the atmospheric radiation transfer model. The
principle is to remove the errors caused by atmospheric heat radiation
to the surface from the total heat radiation observed by satellite sensors
(Li et al., 2012; Barsi et al., 2014). The thermal radiation intensity is then
converted to the corresponding surface temperature. The formula is as
follows (Wang et al., 2018; Xue et al., 2019):

TS � K2

ln K1
B TS( )+1( )

. (1)

B TS( ) � Lλ − L↑ − τ 1 − ε( )L↓[ ]
τε

. (2)

Here, TS is the surface temperature, B(TS) is the brightness value of
blackbody radiation, and K1 and K2 are the coefficients. In TIRS
10 band of Landsat 8, K1 =774.885 W ·m−2 · sr−1 · μm−1 and
K2 =1321.079 W ·m−2 · sr−1 · μm−1. L↑ and L↓ are the upward
and downward radiation intensity to the atmosphere,
respectively, and τ is the atmospheric transmittance. The three
parameters can be obtained from NASA’s website (http://
atmcorr.gsfc.nasa.gov). ε is the surface emissivity, and Lλ is the
thermal infrared brightness value received by the sensor. ε can be
calculated by the normalized vegetation index (NDVI) using the
following methods (Sobrino et al., 2004):

ε � 0.004PV + 0.986. (3)

PV � NDVI − NDVIsoil
NDVIveg − NDVIsoil

0.05≪NDVI≪ 0.75. (4)

Here, PV is the vegetation coverage and NDVIveg and NDVIsoil are
NDVI of vegetation and bare land, respectively. In addition, when

TABLE 1 Selection of 11 landscape indexes.

Landscape index Definition

Overall characteristics AREA Area of a park patch (ha)

PERIM Perimeter of a park patch (m)

PARA Ratio of the perimeter to area

Inner composition ED Edge density (m/ha)

PD Patch density (#/100 ha)

AREAg Area of the green space in a park (ha)

Pw Percentage of the waterbody in a park (%)

EDg Edge density of the green space (m/ha)

Landscape shape LSI Landscape shape index

LSIg Landscape shape index of the green space

LSIi Landscape shape index of the impervious surface
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NDVI exceeds 0.75, PV equals 1; when NDVI is less than 0.05, PV

equals 0.

2.3 Park cooling effect measurement

In order to quantify the PCS, we selected the spillover distance of
the park cooling effect (PCSD), spillover strength of the park cooling
effect (PCSS), and spillover rate of the park cooling effect (PCSR) to
describe it. Previous studies have shown that PCSD is concentrated
within 1000 m (Chang et al., 2007; Xie and Li, 2020; Zhu et al., 2021). To
guarantee that PCSD is within the buffer distance, we set up multi-stage
buffer zones in 30-m units along the park boundary within 1500 m
outside the park and statistically obtained the average LST within each
buffer zone T1, T2, and T3. The piecewise function was used for fitting
analysis of these values, and the LST curve model around the park was
established (Figure 3).

L, PCSD, is the horizontal distance between the park boundary
and the first inflection point of the LST curve (Qiu and Jia, 2020),
which is located at the position where the slope of the LST curve
changes sharply or tends to be stable (Figure 3) (Sun et al., 2012; Du
et al., 2016). PCSS is the difference between the LST at the cooling
boundary of the park and the average LST inside the park, and the
calculation formula is as follows:

PCSS � T L( ) − Tmean. (5)
Here, T(L) is the LST at which the park reaches its maximum PCSD,
and Tmean is the average LST inside the park. PCSR is the LST change
rate within unit distance, and the calculation formula is as follows:

PCSR � PCSs/PCSD. (6)

The fitting of the piecewise function and the determination of
the inflection point were completed in R 4.1.3’s segmented package.

2.4 Selection of landscape index

In order to analyze the relationship between the landscape
pattern inside the park and PCS, this study selected 11 indicators
(Table 1) for analysis from the overall characteristics, internal
composition, and landscape shape of the park. The index
calculation was completed in FRAGSTATS 4.2 and ArcGIS 10.8,
and the significance and calculation method of each index can be
referred to Wu (2013).

2.5 Calculation of the threshold value of park
area

PCS is a non-linear process. In the context of scarce urban land
resources, it is essential to quantify the threshold of park cooling
efficiency and determine the optimal park size. The maximization
method was adopted to standardize the park area and PCS index,
and the logarithmic function was used for fitting. The formula is as
follows:

y � a · lnx + b. (7)
y′ � a · x−1. (8)

Here, y is PCS (PCSD, PCSS, and PCSR), x is the landscape
index related to park area (AREA; AREAg), and y′ is the cooling
efficiency, which is optimal when the slope is equal to 1 (Peng
et al., 2020). Before the threshold, a small increase in the park
area will lead to a considerable increase in PCS, while when
the park area exceeds the threshold, PCS cannot be
significantly enhanced by increasing the park area (Zhu
et al., 2021; Yao et al., 2022). So, the corresponding park
area when the slope of the fitting curve is 1 can be identified
as the threshold.

FIGURE 3
Illustration of the cooling effect of a park.
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3 Results

3.1 LST features of Zhengzhou and the parks

Based on formula (1) ~ (4), the average LST in the study area is
37.8°C, which is consistent with field observation for noon

temperature in summer. The LST in the city center is apparently
higher than that in the suburbs (Figure 4A). The average LST in the
First Ring Road is 1.4°C higher than that outside the Fourth Ring
Road, indicating an obvious UHI effect (Figure 4B). Due to the
different characteristics of the underlying surface, the fluctuation of
LST in UHI is significant. The main reason is that some urban parks,

FIGURE 4
(A) Spatial distribution of land surface temperature (LST) in Zhengzhou city; (B) mean LST between each ring road.

FIGURE 5
Land surface temperature (LST) inside 36 urban parks.
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rivers, and lakes have low LST, forming obvious low-temperature
patches, such as Longhu Park and Xiliuhu Park, which play the role
of a “cold island” in the city.

The spatial superposition analysis of park patches and LST
showed that the average LST in 36 parks is 35.5°C, which is 2.3°C
lower than the average LST in Zhengzhou, indicating that there is
a clear cooling effect in urban parks. However, the average LST in
different parks varies significantly (Figure 5). There are 28 parks
having LST lower than the average LST in Zhengzhou, among
which Park 2 and Park 3 have the lowest LST (33.9°C). The LST of
Park 34 is the highest, reaching 40.7°C. In addition, the LST
values of Park 31 and Park 36 are both higher than 38.8°C,
exceeding the average LST of Zhengzhou.

3.2 Cooling effects of urban parks

The average LST of the multi-stage buffer zone in each park
was extracted, and the LST varied with distance in four types
(Figure 6). The changes of LST in the buffer zone of 33 parks are
similar to those given in Figures 6A–C, such as Park 3, Park 18,
and Park 26. The LST–distance fitting curve of such parks shows
a trend of increasing first and then a flat trend, which indicates
that the LST decreases significantly within a certain distance
around them. PCS gradually weakens as the distance increases.
When the distance exceeds its PCSD, LST change is no longer
obvious or fluctuates slightly due to the change in underlying

surface properties (Li et al., 2013; Peng et al., 2020). On the
contrary, in three parks (Park 34, Park 35, and Park 36), the LST
in the buffer zone is lower than that in the park (Figure 6D),
indicating that the park has a “thermal effect” spillover. We used
piecewise function to perform fitting analysis on temperature
values of multi-stage buffer and obtain PCSD. The results showed
that the fitting effect is good and all R2 values are greater
than 0.9.

Figure 7 shows the impact of the park on the surrounding
environment. The average PCSS of 33 parks with PCS in the
study area is 1.8°C, where the PCSS values of Park 1 and Park
2 are the highest, with both exceeding 4°C. PCSS values of Park
32 and Park 33 are the lowest, being only 0.04°C and 0.05°C,
respectively. Meanwhile, the difference in PCSD is significant,
with an average of 179 m (Table A2). The number of parks with
PCSD between 100 and 200 m forms the majority, accounting for
39.4% of the total number of samples. There are only six parks
with PCSD more than 300 m, accounting for 18.2%. PCSD values
in Park 1 and Park 4 are larger, at 370 m and 345 m, respectively.
The smallest PCSD is of Park 32, which is only 31 m. Overall,
parks have the greatest cooling effect on the surrounding area
within 200 m. The average PCSR of 33 parks with PCS is 0.96°C/
100 m, which means that for every 100-m increase in distance
from the park, the LST will increase by about 0.96°C. The PCSR
of Park 27 and Park 22 exceeded 1.70°C/100 m. The smaller
PCSR is of Park 33, with a cooling intensity of only 0.13°C per
100 m.

FIGURE 6
Four typical curves for LST (°C) along the buffer zone at the edge of the 36 parks.
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3.3 Correlation of PCS with park landscape
features

We analyzed the relationship between the 11 landscape
characteristic indexes of the parks and PCS (PCSD, PCSS, and
PCSR) (Figure 8). The results showed that park landscape features
have a strong influence on PCS. PARA, ED, EDg, and PD were
inversely correlated with PCSD. The correlation coefficients
were −0.81, −0.76, −0.72, and −0.57, respectively, which
indicates that the increase of PARA and ED was not
conducive to the generation of larger PCSD. Qiu and Jia
(2020) pointed out that PD is the most important negative
indicator of the cooling effect. In this study, the increase in
PD also has a negative effect on PCSD, but the degree of influence
is not as strong as that of the first three.

AREA, PERIM, AREAg, LSIi, LSI, LSIg, and Pw were positively
correlated with PCSD. The correlation coefficients were 0.86, 0.85,
0.85, 0.79, 0.6, 0.59, and 0.55, respectively. Specifically, the role of
AREA, PERIM, AREAg, and LSIi in promoting PCSD is obvious,
which is consistent with the research results of Cao et al. (2010) and
Yao et al. (2022). Therefore, PCSD can be significantly expanded by
increasing AREA, AREAg, and changing LSIi, while the cooling

benefits from changing LSI and LSIg or increasing the proportion of
water are less obvious.

In terms of PCSS, ED and PARA had the most significant
negative effect on it, with correlation coefficients of −0.74,
followed by EDg (−0.62) and PD (−0.56). Comparing the
results of the PCSD’s study, we found that the impacts of the
four landscape indicators (PARA, ED, EDg, and PD) on PCSD
and PCSS are similar. The difference is that the correlation
between these four indicators and PCSS is not as good as that
of PCSD. This means that PARA, ED, EDg, and PD have
significant negative effects on PCS. How to alleviate the
negative effects of these four aspects is crucial to improve the
cooling effect of urban parks.

AREAg, AREA, PERIM, LSIi, and Pw were positively correlated
with PCSS, with correlation coefficients of 0.77, 0.76, 0.67, 0.6, and
0.57, respectively. The results demonstrated that AREAg is the
primary influencing factor and the degree of influence on PCSS
exceeds that of AREA and PERIM. LSIi had a weaker effect on PCSS
than on PCSD. Pw has a similar effect on both. In addition, LSI and
LSIg had no significant correlation with PCSS.

PCSR was not significantly correlated with landscape elements
such as AREA and LSI but only had a positive correlation with PCSS.

FIGURE 7
(A) Type of urban parks; (B) PCSD, spillover distance of the park cooling effect; (C) PCSR, spillover rate of the park cooling effect; and (D) PCSS,
spillover strength of the park cooling effect.
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3.4 The threshold value of park area

We used non-linear functions to fit the correlation between
the area element of the park (AREA and AREAg) and its PCS
feature (PCSD and PCSS) (Figure 9). Formulas 7 and 8 were used
to calculate the area threshold when the PCS efficiency of the park
was at its highest. The results manifested that when the efficiency
of the PCSD is the highest, the best AREA was 8.08 ha (Figure 9A)
and the best AREAg was 5.71 ha (Figure 9B). The AREA with the
best PCSS efficiency was 6.80 ha (Figure 9C), and the AREAg was
5.08 ha (Figure 9D). In general, the park area to achieve high PCS
efficiency in Zhengzhou city should be 6–8 ha, while the internal
green space area should be controlled within 5–6 ha.

4 Discussion

4.1 Influence of park landscape
characteristics on LST within the parks

Urban parks are considered an effective way to mitigate the
UHI (Chiesura, 2004; Ayala-Azcárraga et al., 2019), which is
further confirmed by this study. The average LST of 36 parks in
the study area is 2.3°C lower than that of Zhengzhou city, and the
LST of the 33 parks is lower than that of the surrounding
environment, forming an obvious “urban cold island.”

However, the LST difference between different parks and the
surrounding environment is not consistent, and the PCSS is
between 0.04°C and 4.61°C. The LST of only three parks was
higher than that of the surrounding environment, forming a
“heat island.”

The LST is closely related to the landscape characteristics within
the park, such as the size of the green spaces and water bodies.
Whether the spatial configuration of the patches facilitates
ventilation and heat exchange entails further investigation.
Existing studies have also demonstrated that the patch inside the
larger ED park is severely fragmented, and it is arduous to form a
relatively stable microclimate (Cheung et al., 2021; Wu et al., 2021).
The larger the PARA, the stronger the heat exchange capacity is
between the park and the surrounding environment (Yu et al., 2020),
which is not conducive to the formation of low-temperature areas.
Furthermore, the impervious water surface also seriously affects the
change of the LST inside the park. As an example, in our study, the
proportion of impervious water surface in the three parks with UHI
effect is over 65%, and the mean LSI is 1.82, which is far lower than
the mean 2.70 of 33 parks with PCS. This indicated that
concentrated and continuous hardened surfaces increase park
LST rather than decreasing it.

In order to explore the causes of thermal effects in parks (Park
34–36), we calculated the mean values of indicators for two types of
parks and explored the relationship between park landscape
indicators and park LST (Tables 2, 3). From the table, we can
find that AREAg, AREA, and LSIi can effectively reduce LST, among
which AREAg is the most paramount influencing factor. However,
these indicators of Parks 34–36 are much smaller than those of other
parks. These three parks account for very little vegetation (34.8%),
which means that they lack a cooling source and cannot efficiently
reduce LST inside the park. Also, the mean values of PARA, PD, and
ED in Parks 34–36 are higher than in other parks, and these three
characteristics can cause the park temperature to increase. In this
case, Parks 34–36 presented a situation where the park LST was
higher than that of the surrounding environment.

4.2 Influence of park landscape
characteristics on the surrounding thermal
environment

PCSD and PCSS are major aspects of the cooling effect of the park.
The larger PCSD suggests that more individuals can enjoy the cooling
benefits of parks, while the improvement of PCSS means that the
cooling effect directly felt by the human body is more obvious, both of
which are very significant for improving the happiness of urban
residents. We found the average PCSS in the study area is 1.8°C,
and the maximum can exceed 4°C. PCSD can reach 370 m (Park 1)
and has the most obvious cooling effect on the surrounding 200 m, and
the average PCSR is 0.957°C/100 m. Our work showed that ED, PARA,
EDg, and PD are notably inversely correlated with PCSD and PCSS,
while AREAg, AREA, PERIM, LSIi, and Pw have a positive correlation
(Figure 8), which is consistent with previous research results (Oliveira
et al., 2011; Asgarian et al., 2014; Yang et al., 2017; Aram et al., 2019; Yu
et al., 2020). The curves of landscape indicators and PCSD showed that
as PARA, PD, ED, and EDg increased, the increase in park cooling range
gradually slowed down. This decrease is non-linear but follows a

FIGURE 8
Correlation coefficients between PCS and impact factors in
Zhengzhou city. All factors shown in the diagram were significant at
p < 0.01. PCSD: spillover distance of the park cooling effect; PCSS:
spillover strength of the park cooling effect; PCSR: spillover rate
of the park cooling effect; PD: patch density; EDg: edge density of the
green space; PARA: The ratio of the park perimeter to area; ED: edge
density; LSI: landscape shape index; LSIg: landscape shape index of the
green space; Pw: the percentage of the water body in park; LSIi:
landscape shape index of the impervious surface; PERIM: park
perimeter; AREA: park area; AREAg: the area of the green space in a
park.
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logarithmic relationship (Figures 10A–D). This is because the park with
a larger PARA is longer and narrower, and its width decreases while its
boundary increases, which is not conducive to formation of the cold
island effect. This is consistent with the conclusion proposed by Xie and
Li (2020) that the park width is positively correlated with the cooling
effect. Qiu and Jia (2020) pointed out that PD is the most influencing
factor, which has a negative impact on the cooling effect of parks. This
study also confirmed the view that the increase in PD and ED caused by
park fragmentation will reduce PCSD (Figures 10A, C, D). In general,
parks with smaller PARA have more superior PCS, but the increase of

ED and PD caused by internal patch fragmentation is a crucial
hindering factor of PCS.

Vegetation within the park effectively reduces LST through
shading, evapotranspiration, and increasing albedo, and it is an
indispensable source of PCS (Knight et al., 2016; Fan et al., 2019;
Blachowski and Hajnrych, 2021; Li et al., 2021; Wong et al., 2021).
Our and other studies have proved that increasing AREAg is a
paramount method to enhance the PCS (Figure 10F) (Cheng et al.,
2015; Lin et al., 2015; Chen et al., 2022; Wang et al., 2022). However,
with an increasing EDg, the green areas inside the park are broken up

FIGURE 9
Fitting relationship between the area factor (AREA/AREAg) and the PCS (PCSD/PCSS). PCSD: spillover distance of the park cooling effect; PCSS:
spillover strength of the park cooling effect; AREA: park area; AREAg: the area of the green space in the park.

TABLE 2 Correlation coefficients for parks’ LST and 11 landscape indexes in Zhengzhou city.

Impact factors PD EDg PARA ED LSI LSIg Pw LSIi PERIM AREA AREAg

LST 0.53a 0.55a 0.67a 0.67a / / −0.51a −0.53a −0.62a −0.69a −0.71a

aSignificance at the 0.01 level; /not significant.

PD, patch density; EDg, edge density of the green space; PARA, the ratio of the park perimeter to area; ED, edge density; LSI, landscape shape index; LSIg, landscape shape index of the green

space; Pw, the percentage of the waterbody in the park; LSIi, landscape shape index of the impervious surface; PERIM, park perimeter; AREA, park area; AREAg, the area of the green space in

park.

TABLE 3 Average values of six landscape characteristic indices in two types of parks, the Parks 1–33 had “urban cooling effect” and the Parks 34–36 had “urban
thermal effect”.

Impact factors Parks 1–33 Parks 34–36 Impact factors Parks 1–33 Parks 34–36

AREAg 79.03% 34.8% PARA 330 509

AREA 9.20 0.92 PD 165 342

LSIi 2.70 1.82 ED 458 768

PD: patch density; PARA: the ratio of park perimeter to area; ED: edge density; LSIi: landscape shape index of the impervious surface; AREA: park area; AREAg: the area of the green space in the

park.
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FIGURE 10
Relationship between 11 landscape indexes and spillover distance of the cooling effect (PCSD), (A) PD; (B) PARA; (C) ED; (D) EDg; (E) AREA; (F) AREAg;
(G) PERIM; (H) LSIi; (I) LSI; (J) LSIg; (K) PW. PD: patch density; PARA: The ratio of the park perimeter to area; ED: edge density; EDg: edge density of the green
space; AREA: park area; AREAg: the area of the green space in park; PERIM: park perimeter; LSIi: landscape shape index of the impervious surface; LSI:
landscape shape index; LSIg: landscape shape index of the green space; Pw: The percentage of the water body in the park.

TABLE 4 Simulation results of the park cooling area.

Park area (ha) Number Total park area (ha) Park cooling area (ha)

Case A 40 1 40 52.29

Case B 10 4 40 78.46

Case C 5 8 40 88.38
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and divided, and PCSD gradually decreases (Figure 10D). Notably, the
growth rate of PCSD is gradually slowed downwith increasing AREAg.
In park design or construction, if the vegetation area exceeds the
threshold, changing the vegetation shape may have better benefits
(Figure 10J). In addition, PCSD can be expanded by increasing the area
and perimeter of a park, changing the park shape, and increasing the
proportion of water bodies (Zhu et al., 2021; Chen et al., 2022; Yang
et al., 2022; Zheng et al., 2022).

4.3 The threshold value of area for urban
park planning and design

In the case of urban expansion and extremely scarce available
land resources, it is arduous to enhance the PCS by expanding the
urban park area. It is very significant to achieve the best cooling
effect with minimum park space. The non-linear relationship
between the park area and PCS has been widely recognized by
scholars (Chang et al., 2007; Cao et al., 2010; Wu et al., 2021). Our
results also manifested that PCSD and PCSS showed a logarithmic
relationship with AREA (Figures 9A, B). PCS gradually slowed down
with an increase in the park area, which was also confirmed byWang
et al. (2022) in the latest study. Nevertheless, most studies only prove
the existence of the threshold value between the two, but few studies
quantify the threshold value, which makes it difficult to implement
the planning to improve the cooling efficiency of urban parks.

Our results demonstrated that 6–8 ha park patches can exert the
most effective PCS in Zhengzhou city. In order to further verify our
threshold calculation results, we simulated the cooling situation of
the park (Figure 11) according to the fit curves of AREA and PCSD
(Figure 10E). The results showed that when a 40-ha mega-park was
set into four 10-ha parks with the same total area, the cooling range
increased from 52.29 to 78.46 ha (Table 4), an increase of 50.4%.
Furthermore, when the park was set into eight 5-ha parks, the
cooling range increased by 69%. This indicated that medium-sized
parks have higher cooling efficiency than large parks, and it is
feasible to use 6–8 ha as the threshold range. In addition, parks with
large patches are easily restricted by a series of external factors such
as topography and roads. Consequently, in order to better achieve
the cooling benefits brought by urban parks, it is more effective to
establish more medium-sized parks in cities.

4.4 Limitations and future research
directions

There are some limitations in our research. First, the remote
sensing data are limited. In terms of acquiring LST, the TIRS of
Landsat 8 has a low resolution, and some miniature parks are
abandoned because they are difficult to be recognized by remote
sensing data. In addition, the imaging time of remote sensing data
used in this study is 11:03, and a single remote sensing image
constrained our conclusions on temporal dynamics (such as day
and night) of PCS. Also, the water body has a considerable cooling
effect (Peng et al., 2020) and is an important part of the PCS, but the
number of parks with water bodies in the study area is small, which
may undermine the applicability of the research conclusion of this
study to a wider area. Here, we only discuss the influence of landscape
characteristics on the PCS, and the influence of other factors (such as
human activities, social economy, architectural layout, green space,
and water body) needs to be further studied. Finally, the research on
the threshold of PCS needs to be further conducted. We only put
forward a design scheme for the maximum efficiency of parks to exert
the PCS in terms of area. Other factors are entailed in future studies.

Future research needs to solve the problem at a spatial–temporal
dimension, with the help of a new type of unmanned aerial vehicle or
the use of ‘remote sensing + ground monitoring’ means, which can
obtainmore realistic LST data. Beingmore granular in the settings of
the buffer zone can guarantee accurate capture of the LST changes in
the surrounding environment to identify the PCS. Long time-series
studies should also be carried out to better understand the diurnal or
seasonal variations of PCS. In addition, it is also very important to
obtain more park samples from different cities, which can help
reduce the uncertainty caused by the small number of samples and
the single city, and obtain more practical value planning schemes.
Finally, full consideration of the relationship between the park’s
internal and external factors and PCS can obtain more
comprehensive results.

5 Conclusion

In this study, we analyzed 36 parks in Zhengzhou city using Landsat
8 data, aiming to quantify the PCS and the impact of the park’s
landscape characteristics on it. Moreover, in order to maximize the
cooling effect of the park, we also explored the park area threshold and
proposed the ideal park area and the proportion of internal vegetation,
which has practical significance for urban planning. The results are
summarized below: 1) urban parks have a significant PCS, with a PCSs
of 0.04°C–4.61°C. The average PCSS of 33 parks in the study area is
1.8°C, and only three parks have a thermal effect; 2) the piecewise
function can better fit the relationship between LST and the distance
around the park. The PCSD is between 31 and 370 m, and the cooling
effect on the surrounding 200 m is the most obvious. The average PCSR
is 0.9574°C/100 m; 3) ED, PARA, EDg, and PD are notably negatively
correlated with PCS, while AREAg, AREA, PERIM, LSIi, and Pw have
positive effects on the enhancement of PCS; 4) 6–8 ha park patches can
achieve the best PCS efficiency in Zhengzhou city. In this case, it is most
appropriate to control the internal green space area at 5–6 ha.

In the context of global warming and increasing scarcity of land
resources, rational green space system planning will become

FIGURE 11
Simulation results of the park cooling range under different areas
of the park: Case A was a 40-ha park, Case B was a 10-ha park, and
Case C was a 5-ha park.
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increasingly paramount (Chen et al., 2022; Yao et al., 2022). Previous
research has shown that larger parks can produce stronger cooling
effects (Zhu et al., 2021; Liu et al., 2022), but in our work, medium-
sized parks were shown to have higher cooling efficiencies.
Therefore, in the planning of urban parks, 6–8 ha can be used as
the best park area to alleviate the UHI. Our results showed that the
larger the park area, the lower the degree of fragmentation, the
higher the proportion of green space and water body, the simpler the
boundary between the park and the inner green area, and the more
complex the shape of the impervious surface, the better the PCS.
Moreover, our study area is located in the temperate continental
monsoon climate zone, and the study time is summer. The results of
the study are also instructive for other cities in this climate zone,
especially some cities that have not yet carried out such studies,
which can provide policymakers in these cities with some practical
reference.
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Appendix

TABLE A1 Characteristics of urban parks in the study area.

Park AREA (ha) PERIM (m) PARA Park AREA (ha) PERIM (m) PARA

1 41.36 2711.23 65.55 19 1.91 517.42 270.83

2 28.55 2425.36 84.96 20 0.40 288.05 714.02

3 21.20 1939.53 91.48 21 1.14 512.83 450.40

4 38.21 2724.32 71.30 22 3.67 1067.63 291.00

5 16.87 1646.97 97.63 23 2.40 1097.03 457.76

6 23.43 3146.46 134.26 24 2.90 802.89 276.99

7 6.41 1001.64 156.32 25 2.18 703.73 322.67

8 3.17 1161.29 365.80 26 6.01 1002.71 166.89

9 26.26 3241.706 123.45 27 1.31 492.67 375.14

10 4.20 1055.89 251.17 28 3.01 1019.01 338.77

11 14.42 2579.14 178.81 29 10.01 1768.49 176.67

12 6.45 1186.44 184.07 30 1.92 1091.93 568.96

13 5.31 1810.44 341.21 31 8.34 1133.26 135.93

14 0.84 354.16 420.73 32 0.56 279.34 500.06

15 2.49 715.47 287.90 33 1.34 1040.73 778.11

16 17.13 2325.85 135.77 34 0.78 352.37 450.01

17 4.58 893.45 195.17 35 1.17 583.58 497.08

18 20.96 2049.22 97.75 36 0.81 473.55 582.75
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TABLE A2 Fitting result of segmental linear functions of buffer temperature and distance.

Park Segmental linear functions 1 Segmental linear functions 2 R2 PCSD (m) PCSS (°C) PCSR (°C/100 m)

1 T=0.0113L+34.955 (L≤370.063) T=0.00057L+38.906 (L≥370.063) 0.9796 370.10 4.61 1.247

2 T=0.0126L+34.137 (L≤319.855) T=0.00084L+37.912 (L≥319.855) 0.9897 319.86 4.24 1.325

3 T=0.0117L+34.029 (L≤287.09) T=0.00151L+36.966 (L≥287.09) 0.9912 287.09 3.54 1.232

4 T=0.0073L+35.725 (L≤345.064) T=0.00028L+38.157 (L≥345.064) 0.9762 345.06 2.81 0.816

5 T=0.0080L+35.858 (L≤307.55) T=0.00110L+37.983 (L≥307.55) 0.9807 307.55 2.77 0.900

6 T=0.0038L+37.09 (L≤315.887) T=0.00009L+38.262 (L≥315.887) 0.9775 315.89 1.34 0.425

7 T=0.0096L+34.458 (L≤220.422) T=0.00235L+36.063 (L≥220.422) 0.9920 220.42 2.30 1.046

8 T=0.0070L+37.275 (L≤173.528) T=0.00313L+37.954 (L≥173.528) 0.9993 173.53 1.21 0.699

9 T=0.0099L+34.738 (L≤288.043) T=0.00064L+37.424 (L≥288.043) 0.9778 288.04 3.21 1.115

10 T=0.0102L+37.001 (L≤158.971) T=0.00287L+38.174 (L≥158.971) 0.9946 158.97 1.69 1.060

11 T=0.0127L+35.100 (L≤249.66) T=0.00061L+38.129 (L≥249.66) 0.9765 249.66 3.62 1.449

12 T=0.0108L+35.79 (L≤160.245) T=0.00151L+37.288 (L≥160.245) 0.9840 160.25 1.93 1.205

13 T=0.0051L+37.419 (L≤195.08) T=0.00111L+38.199 (L≥195.08) 0.9868 195.08 1.02 0.522

14 T=0.0104L+36.364 (L≤111.682) T=0.00313L+37.183 (L≥111.682) 0.9976 111.68 1.16 1.035

15 T=0.0150L+35.881 (L≤110.627) T=0.00387L+37.116 (L≥110.627) 0.9986 110.63 1.66 1.503

16 T=0.0055L+35.486 (L≤315.899) T=0.00049L+37.082 (L≥315.899) 0.9539 315.90 2.17 0.686

17 T=0.0108L+35.79 (L≤160.245) T=0.00151L+37.288 (L≥160.245) 0.9840 160.25 1.93 1.205

18 T=0.0145L+35.295 (L≤166.899) T=0.00038L+37.665 (L≥166.899) 0.9841 166.90 2.57 1.537

19 T=0.0045L+37.832 (L≤100.882) T=0.00117L+38.175 (L≥100.882) 0.9986 100.88 0.46 0.454

20 T=0.0047L+37.47 (L≤42.222) T=−0.0013L+37.723 (L≥42.222) 0.7740 42.22 0.19 0.460

21 T=0.0066L+38.568 (L≤95.676) T=0.00343L+38.871 (L≥95.676) 0.9971 95.68 0.63 0.660

22 T=0.0165L+36.988 (L≤164.326) T=0.00021L+39.667 (L≥164.326) 0.9811 164.33 2.87 1.748

23 T=0.0123L+36.699 (L≤108.083) T=0.00157L+37.859 (L≥108.083) 0.9901 108.08 1.38 1.278

24 T=0.0081L+37.902 (L≤130.713) T=−0.00002L+38.968 (L≥130.713) 0.9800 130.71 1.14 0.869

25 T=0.0130L+37.530 (L≤78.891) T=−0.00102L+38.637 (L≥78.891) 0.9831 78.89 1.04 1.324

26 T=0.0095L+36.570 (L≤103.857) T=0.00004L+37.552 (L≥103.857) 0.9610 103.86 1.03 0.988

27 T=0.0175L+37.400 (L≤108.428) T=−0.00037L+39.338 (L≥108.428) 0.9917 108.43 1.93 1.783

28 T=0.0090L+37.877 (L≤80.219) T=0.00048L+38.560 (L≥80.219) 0.9894 80.22 0.72 0.904

29 T=0.0049L+37.109 (L≤249.728) T=0.00124L+38.023 (L≥249.728) 0.9874 249.73 1.45 0.579

30 T=0.0053L+38.280 (L≤52.857) T=−0.00283L+38.712 (L≥52.857) 0.9168 52.86 0.28 0.537

31 T=0.0055L+38.837 (L≤201.415) T=−0.00217L+40.397 (L≥201.415) 0.9848 201.42 1.14 0.564

32 T=0.0013L+37.760 (L≤31.267) T=−0.00077L+37.826 (L≥31.267) 0.9651 31.27 0.04 0.141

33 T=0.0013L+38.720 (L≤38.889) T=0.00069L+38.745 (L≥38.889) 0.9963 38.89 0.05 0.127

34 T=−0.0048L+40.569 (L≤470.986) T=−0.00009L+38.331 (L≥470.986) 0.9922 - - -

35 T=−0.0046L+38.777 (L≤439.881) T=0.00167L+36.019 (L≥439.881) 0.9833 - - -

36 T=−0.00233L+39.100 (L≤34.245) T=0.0012L+38.979 (L≥34.245) 0.9086 - - -

Average - - - 179.04 1.80 0.957
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