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Due to the strong noise that exists in GRACE (Gravity Recovery and Climate
Experiment) temporal gravity field solutions, geophysical signals are normally
drowned which need many effective filtering approaches. Considering the
advantage of the ensemble empirical mode decomposition (EEMD) approach,
we used the EEMD to filter the noise in this study together with the empirical mode
decomposition (EMD) for comparisons. EMD method is a spectrum analysis
method, which is very effective for non-stationary signals. EMD process is
essentially a means to process non-stationary signals. It has been applied in
many fields in recent years. Considering the characteristics of the spherical
harmonic coefficient model that the noise level higher with the increasing
degree, we divided the gravity field solutions into two parts (degrees 2–28 and
degrees 29–60) based on the ratios of the latitude-weighted root mean square
(RMS) over the land and ocean signals when adopting different truncated degrees.
For the real GRACE solution experiments, the results show that the fitting errors of
EEMD approach are always smaller than those of EMD approach, and the mean
RMS ratio of EEMD is 3.45, larger than 3.40 of EMD. The simulation results show
that the latitude weighted rootmean square errors for EEMD approach are smaller
than those of EMD, indicating that EEMD can extract the geophysical signals more
accurately. Therefore, it is reasonable to conclude that EEMDperforms better than
EMD for filtering GRACE solutions.
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1 Introduction

As the global climate and environmental issues become more serious with the passage of
time, more accurate monitoring of land water storage, sea level change, glacial melt, and
redistribution of surface mass is important to this problem. The successful GRACE (Gravity
Recovery and Climate Experiment) satellite, jointly developed by NASA and DLR, has made
it possible to provide highly accurate global gravity field observations, paving the way for the
observation of global climate change (Feng, 2013; Lu et al., 2015; Ning et al., 2016). The
GRACE plays an important role in the study of regional hydrology (Landerer et al., 2010), ice
sheet balance (Velicogna &Wahr, 2013) and ocean mass redistribution (Chambers & Bonin,
2012). And through GRACE, an Earth gravity field map with a spatial resolution of several
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hundred kilometers and a time resolution of 1 month is provided
(Bettadpur et al., 2012; Watkins & Yuan, 2012; Dahle et al., 2013).

The GRACE satellite is subject to a number of factors in its
orbit that can cause a certain amount of error in the spherical
harmonic (SH) coefficients of the gravity field model it provides,
such as satellite orbit error, instrument error, and satellite
attitude measurements (Tapley et al., 2004). These errors can
have a combined effect on the time-varying Earth’s gravity field
model. The mass density of the earth’s surface change seriously
affected the time-varying gravity field model inversion. The
serious north-south (NS) striping errors in the gravity field
inversion is mainly due to the configuration of satellite orbits
for the GRACE mission, which can mask the true geophysical
signal and be detrimental to the subsequent work, so some
filtering methods are needed. Currently commonly used
filtering methods can be divided into two categories (Guo
et al., 2018). The first type of filtering algorithm is the
introduction of filtering factors to reduce the weight of higher
order terms in the data processing, which is called spatial filtering

and so as to achieve the purpose of removing the striping error,
mainly including Gaussian filtering (Wahr et al., 1998), Wiener
filtering (Sasgen et al., 2007), Fan filtering (Zhang et al., 2009),
and DDK filtering (Kusche et al., 2007; Kusche et al., 2009), etc.
However, there are certain limitations of this type of filtering,
with the increase of the filtering radius, although the noise is
effectively removed, the real signal is also gradually weakened,
that is, at the expense of the spatial resolution is sacrificed to
achieve the removal of stripe noise (Zhan et al., 2011). The second
type of filtering is decorrelation filtering, which uses polynomial
fitting to achieve the purpose of decorrelation, including
polynomial fitting (PnMm) and sliding window polynomial
fitting, such as the commonly used P4M6 (Chen et al., 2007),
P4M15 (Chambers et al., 2012), Duan (Duan et al., 2009) and so
on. Some scholars also introduced the temporal and spatial
filtering, mainly includes empirical orthogonal functions
(Schrama et al., 2007; Wouters & Schrama, 2007), the
stochastic filter (Wang et al., 2016), multichannel singular
spectrum analysis (Guo et al., 2018; Prevost et al., 2019; Wang
et al., 2020), and the least square filter (Crowley & Huang, 2020).

Temporal filtering treats the NS striping noise as white/
random noise, and it is suggested that this random signal can
be identified with the growth of time information (Yi et al., 2022).
Nowadays, a combined filtering approach is the preferred choice.
The adaptive time-frequency localization analysis approach
empirical mode decomposition (EMD) (Huang et al., 1998), was
used to post-process the time-varying GRACE gravity field models,
demonstrated that EMD can better remove the strong noise with
less signal leakage (Huan et al., 2022; Ai et al., 2022). Considering
the mode mixing problem existed in EMD approach, an ensemble
EMD (EEMD) approach was developed by Wu et al. (2009). In
view of the advantage of EEMD approach with respect to EMD,
and the good performance of EMD for filtering GRACE gravity
field models, here in this study we will try to apply EEMD to extract
the geophysical signals from the SH coefficients of GRACE time-
varying gravity field models, together with EMD approach for
comparisons. The rest of this paper is organized as follows: Section
2 introduces the theories of EEMD and EMD. In Section 3, we
describe and analyze the results in the spectrum domain and
spatial domain and Section 4 is the simulation experiment,
Section 5 is the summary of the results.

2 Methods

In today’s signal processing field, there are many signal
processing approaches, such as empirical mode decomposition,
variational mode decomposition, local mean decomposition, etc.
However, most of the signals we face are non-linear and non-
stationary, in order to achieve our desired decomposition effect,
we need to use more efficient and convenient analysis approach.
EEMD is an adaptive spectrum analysis approach which improved
the mode mixing problem on the basis of EMD, has been widely
applied in many research fields. For example, global navigation
satellite system (GNSS) data processing (Niu et al., 2018),
mechanical vibration analysis (Lei et al., 2009), diagnosis of
winding faults in a transformer (Mejia-Barron et al., 2017), and
so on.

FIGURE 1
The flow chart of empirical mode decomposition approach.
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2.1 Empirical mode decomposition
approach

Compared with wavelet analysis and other spectral analysis
approaches, EMD is more adaptive and convenient to extract the
signal information from the noisy time series Figure 1. The main
steps of EMD approach are as follows.

(1) Fitting all the maximum and minimum points of the original
time series x(t), and fit the maximum emax(t) and minimum
envelope emin(t) by cubic spline function.

(2) Calculating the average value m(t) of the upper and lower
envelope.

m t( ) � emax t( ) + emin t( )
2

, (1)

(3) Subtracting m(t) from the original time series x(t) to get a new
time series h(t),

h t( ) � x t( ) −m t( ), (2)

(4) Judging whether h(t) satisfies the two basic conditions of
IMF (Intrinsic Mode Functions), Physically, the necessary
condition for defining meaningful instantaneous frequency is
that the function is symmetric about the local zero mean
value and has the same number of zero-crossing and extreme
values. Based on these observations, we propose a class of
functions called Intrinsic Mode Functions (IMF). i.e.,: 1) In
the entire data segment, the number of extreme points and
the number of zero-crossing points must be equal or the
difference cannot exceed one at most. 2) At any time, the
average value of the upper envelope formed by the local
maximum points and the lower envelope formed by the local
minimum points is zero, that is, the upper and lower
envelopes are locally symmetrical concerning the time axis
(Zhang et al., 2017). However, for the actual decomposition
process, the second condition is difficult to satisfy and the
threshold expression for stopping filtering for each
component is as follows:

SD � ∑N
t�1

dk+1 t( ) − dk t( )| |2
d2
k−1 t( )[ ] (3)

where dk(t) and dk−1(t) are two adjacent data sequences in the IMF
selection process and N represents the length of time series, SD
represents the threshold at which each IMF stops filtering, which is
usually taken as a number between 0.2 and 0.3 (Huang et al., 1998).
If it is satisfied, set h(t) as the first IMF component c1(t) of the
original time series. If not, repeat steps 1 and 2, until it satisfies the
two conditions of IMF.

(5) c1(t) is separated from the original time series to generate a new
series r(t) � x(t) − c1(t). Repeat the above steps to obtain n
IMF components and a residual sequence only when the
residual sequence satisfies the monotonic condition.

(6) The original series x(t) after EMD decomposition can be
expressed as follows,

x t( ) � ∑n
i�1
ci t( ) + r t( ), (4)

(7) Normally the high-frequency components are recognized as
noise, and the remaining components are used to reconstruct
the signals.

s t( ) � ∑n
i�d
ci t( ) + r t( ), (5)

where d is the boundary point between noise and signal component.

2.2 Ensemble empirical mode
decomposition approach

EEMD approach was developed to compensate for the
shortcomings of the EMD approach in terms of mode mixing,
and can decompose a complex signal into a collection of IMFs
based on the local eigentime scales of the signal (Huang et al., 1998).
EEMD takes advantage of the unique feature that white noise has a
mean value of zero and adds the same white noise to the signal to be
analyzed, masking out the noise in the signal itself by adding
artificial noise several times to obtain a more accurate upper and
lower envelope. The EEMD algorithm improves on the
shortcomings of EMD’s confounding modes and perfectly retains
its adaptive, orthogonal characteristics. The specific procedures are
as follows.

Step 1. Gaussian white noise is added to the original time series
x(t), and w(t) is determined by the standard deviation of the true
signal.

Step 2. The new generated time series x′(t) � x(t) + w(t) is
decomposed by EMD, resulting in n IMF components
ci(t)(i � 1, 2,/, n) and the residual component r(t). The
corresponding SH coefficient signal is reconstructed as s′(t) �∑n

i�dcj(t) + r(t).

Step 3. Repeat steps 1–2 for P times, then the final extracted signals
s(t) is computed by averaging all reconstructed signal s′(t) for P
times.

2.3 Ensemble empirical mode
decomposition for filtering GRACE time-
varying gravity field models

The RL06 version of the earth gravity field models developed by
CSR (the Space Research Center) are adopted, whose SH coefficients
are up to degree and order (d/o) 60. Considering that the noise
increases with the increasing degree, to better filter the noise of
different degree SH coefficients, we decide to divide the SH
coefficients into two parts (d/o 2–28 and 29–60) and filter using
differ strategies. Noting that the boundary degree 28 is determined
by computing the latitude weighted RMS of land and ocean (Chen
et al., 2007) for all degree SH coefficients (Figure 2).
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The specific filtering procedures are presented as follows: 1)
Removing the mean field; 2) Interpolating the missing months
using cubic spline; 3) Improving the endpoint effect using an
autoregressive model to extend the coefficient sequence forward
and backward to three maximum points and three minimum
points (Guo et al., 2016); 4) Filtering the stripe errors using
DDK7 approach; 5) Applying EEMD for filtering the time-
varying gravity field models, for the d/o 2–28 SH coefficients,
all IMFs whose period larger than 0.4 are retained, and for d/o
29–60, all IMFs whose period larger than 0.8 are used to
reconstruct the signals. Considering the computation
efficiency and accuracy for extracting signals, the
decomposition times of degrees 2–28 is 10 times and the
number of decomposition of degrees 29–60 is 30 times.
Noting that for the real GRACE time series, the true signal is
not known, thus we use the reconstructed SH signals by EMD
approach to generate the added noise. 6) Reconstruct the filtered
SH coefficients, and convert into global mass change in terms of
equivalent water height (EWH). The processing flow for filtering
the GRACE SH coefficient is shown in Figure 3.

3 Results and analysis

3.1 Comparison of filtered SH coefficients

We adopted the CSR RL06 SH coefficients (d/o 60) covering the
period from April 2002 to August 2016, with 17 missing months,
representing 9.8% of the total months. Following the processing
procedures presented in Section 2, we perform the EEMD and EMD
for filtering GRACE SH coefficients. Normally the signal is low-
frequency, the noise has a relative high frequency. Besides, it is hardly
to filter the strong noise accurately when just use the simple filtering
approach (Guo et al., 2018; Shen et al., 2021), therefore a combined
filtering approach is preferred. Considering the advantage of DDK filter
(Prevost et al., 2019) and applicability of EEMDapproach, we determined
to use the combined filtering, which adopted the decorrelation filtering
(i.e., DDK7) approach for eliminating the stripe noise, and EEMD for
removing the remained high-frequency errors.

Many previous studies concluded that the low-degrees part of
the gravity field model contains less noise, mainly the real
geophysical signals, while the high-degrees part contains more

FIGURE 2
The mean RMS_ ratios with the increasing degree (no filtering) over April 2002 to August 2016.

FIGURE 3
The flowchart of EEMD for filtering GRACE models.
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noise and the real signal is relatively small. Therefore, here we take
two coefficients C3,2 and C60,59, for example,. The power spectrum
analysis approach is used to judge whether the component belongs
to signal or noise (Huan et al., 2022). The highest point of power
whose period corresponding is the main period of the IMF
components (Shu et al., 2007). Figure 4 shows the IMF
components of the two SH coefficients derived by EEMD and

EMD. For the IMF components, IMF2-IMF4 are related to the
dominant semiannual and annual periods, IMF5-IMF6 mainly
2.1–2.5 years period components and IMF7-IMF8 mainly related
to the long-term trend (Schmidt et al., 2008). The reconstructed SH
signal by EEMD and EMD approaches are presented in Figure 5. It
can be seen that the amplitude fluctuation range of the reconstructed
coefficients is very similar just with slight differences.

FIGURE 4
IMF components for C3,2 and C60,59 coefficients (Up: EEMD; Bottom: EMD).

FIGURE 5
Comparison of coefficient reconstructions for C3,2 (Left) and C60,59 (Right).

Frontiers in Earth Science frontiersin.org05

Huan et al. 10.3389/feart.2023.1132862

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1132862


In order to test the performances of EEMD approach with
respect to EMD, we calculated the fitting errors of SH
coefficients by two approaches as follows,

σ �

����������������
1
N

∑N
t�1

x(t) − s(t))2( ,

√√
(6)

where σ represents the fitting error, s(t) represents the reconstructed
SH signals filtered by EMD and EEMD, x(t) is the original SH
coefficients, and N represents the length of each SH coefficient
series. The fitting errors of EEMD are 8.3384e-12 and 2.8451e-
12 for C3,2 and C60,59 coefficients, smaller than 8.4614e-12 and
2.8463e-12 for EMD approach, respectively. Figure 6 presents all the
fitting errors of all SH coefficients, we can conclude that the fitting error
of EEMD is almost smaller than that of EMD regardless of low or high
degree part, indicating that EEMD can extract more information of
original SH coefficients than EMD. In order to verify our results more
precisely, a comprehensive analysis is carried out in Section 3.2.

3.2 Global mass change comparison

To further verify the advantages of EEMD approach in
extracting the geophysical signal from GRACE SH coefficients,
we convert the reconstructed SH signals by EEMD and EMD to

EWH in 1+ × 1+ grids. In this section we randomly select 2 months
May 2013 and January 2016, for example,. Figure 7 shows the global
mass changes in May 2013 and January 2016. From Figure 7, we can
find that the NS stripe errors are suppressing significantly after
DDK7, however, some noise remained, which are removed by EMD
and EEMD approaches. Noting that after EEMD filtering, the
general shape and amplitude of the original signal in some areas
are well preserved, such as Greenland, Arctic, and Antarctic. To
conduct a more accurate signal quality analysis, we selected the
Greenland as a case study, as shown in Figure 8. We compared the
EEMD-filtered signal with the EMD and the Gaussian method. It is
reasonable to conclude that EEMD and EMD methods can
effectively improve the leakage error compared with the Gaussian
method. And the leakage error of EEMD filtered signal is smaller
than that of EMD filtered signal and the reserved signal is stronger.

To evaluate the filtering efficiency of EEMD and EMD, we used
the ratio of latitude weighted RMS of land and oceans. It is mainly
based on the fact that the surface mass of the whole land varies more
than the oceans, in addition to the C20 term, the variability ratio is
the ratio of latitudinal weighted RMS values on land and ocean
signals (Chen et al., 2006). To reduce the leakage of signals from
land, we use a 300 km buffer zone.

RMSratio � RMS MASSland + Err( )
RMS MASSocean + Err( ), (7)

FIGURE 6
The fitting errors of GRACE SH coefficients after filtering by EMD and EEMD and their differences (in log10).
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where MASSland andMASSocean represent the signals on land and
ocean, respectively, Err is the noise.

Table 1 shows the RMS_ratios of EMD and EEMD filtering are
4.74 and 4.53, 4.65, and 4.45 for May 2013 and January 2016,
respectively. As shown in Figure 9, all the RMS_ratios of EEMD

approach are almost larger than those of EMD. One thing should be
mentioned is that we further present the RMS_ratios which not done
the modification of endpoint effect in Figure 9, we can find that the
corresponding results can better show the well performance of
EEMD for filtering the noise. Noting that before improving the

FIGURE 7
Global mass changes in May 2013 and January 2016 (Row 1: No filtering; Row 2: DDK7; Row 3: EMD; Row 4: EEMD).
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endpoint effect, there exist 128 months RMS_ratios of EEMD
method which are higher than EMD, and 132 months after
improved the endpoint effect. The mean RMS_ratio of EEMD is
3.45 and the EMD is 3.40, which reflects the noise filtering effect of
EEMD from another perspective. In all, we can conclude that EEMD
performs better in filtering the noise and preserving the geophysical
signals than EMD.

4 Simulation experiments

Though we have validated the advantage of EEMD for filtering
the noise and extracting the geophysical signals from GRACE SH
coefficients, the simulation experiments are also performed in this
study. The CSR RL06 Mascon gridded data are converted to SH
coefficients and SH coefficients are up to degree and order (d/o) 60,

FIGURE 8
EWH map in Greenland after EEMD, EMD, Gaussian smoothing 300 km (G300 km) together with DDK7 and No filtering.
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which is used as the true SH signals. To simulate the real GRACE
type noise, we generated the noise from the time-varying gravity
field model by DDK7 & EMD filtering, similar to Vishwakarma et al.
(2016). Then the noise was added to the true signals to generate the
noisy GRACE SH coefficients. Here we take March 2008 as an
example to show the global mass changes extracted by EEMD, EMD
and Gaussian smoothing 300 km combined with DDK7 filtering
approaches in Figure 10. It is obviously to find that the EEMD and
EMD approaches can both better filtering the noise with less signal
leakage than Gaussian smoothing 300 km.

To evaluate the quality of extracted signals, we use the latitude
weighted root mean squared errors (RMSE) of global mass change
differences between true (Mascon) signal and extracted signal by
EEMD, EMD and Gaussian smoothing 300 km (Wang et al., 2020),
which are calculated as follows,

RMSE Ω( ) �

��������������∑
∀i∈Ω

Δvi2. cosφi( )∑
∀i∈Ω

cosφi

,

√√
(8)

where Δvi represents the differences between the true (Mascon)
signals and the reconstructed signals, φi is the corresponding
latitude, Ω represents a spatial range and can be global or
regional. And all grids within Ω are summed based on their area
weights reflected by latitudes.

The relative improvement percentage (IMP) of spatial RMSE of
EEMD with respect to EMD and Gaussian methods is calculated by,

IMPE � RMSEEMD − RMSEEEMD

RMSEEMD
× 100% (9)

IMPG � RMSEGaussian − RMSEEEMD

RMSEGaussian
× 100% (10)

Here we compute the spatial RMSEs of five selected global and
regional areas including global, ocean, land, Amazon and Yangtze
basins. Figure 11 shows the spatial mean RMSEs of all available
months for five selected regions over April 2002 to August 2016 and
the corresponding IMPs. It is clearly to find that all the spatial
RMSEs of EEMD are smaller than EMD and 300 km Gaussian
smoothing approaches, and the relative improvements of EEMD
with respect to 300 km Gaussian smoothing are more significant
than those of EMD approach for five selected regions, which indicate
that EEMD can extract the geophysical signals more accurately than
EMD and 300 km Gaussian smoothing approaches. Besides, we
further compute the mean mass changes over four regions (Land,
Ocean, Amazon and Yangtze) and shown in Figure 12. The
corresponding RMSEs of three filtering approaches in terms of
the mean mass changes are presented in Table 2. Through the

FIGURE 9
The RMS_ratios of all available months from April 2002 to August 2016 by EEMD and EMD (Up: Improving the endpoint effect) and (Bottom: No
improving the endpoint effect).

TABLE 1 The RMS_ratio of EMD and EEMD approach for May 2013 and January
2016.

Index 2013.05 2016.01

EEMD 4.74 4.65

EMD 4.53 4.45
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FIGURE 10
Global mass changes extracted by EEMD, EMD, Gaussian smoothing 300 km (G300 km) approaches together with DDK7 filter in March 2008.

FIGURE 11
The spatial mean RMSEs of EEMD, EMD and Gaussian 300 km for all available months over April 2002 to August 2016 in five selected global and
regional areas and the corresponding IMPs (red dotted line: EEMD is relative to Gaussian; black line: EEMD is relative to EMD).
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simulation experiments, we can draw the conclusion that EEMD can
extract closer geophysical signals than EMD and 300 km Gaussian
smoothing approaches.

5 Conclusion

In this paper, EEMD approach is first applied to filter the time-
varying gravity field models, together with the EMD approach. We
evaluate the filtering efficiency of EEMD in both spectral and
spatial scale, respectively. For the real GRACE SH coefficients
analysis, the fitting errors of all SH coefficients by EEMD approach
are smaller than those of EMD approach. The mean RMS_ratios of
all available months for EEMD is 3.45, higher than 3.40 of EMD
approach. The results show that EEMD can better filter the noise
and extract more geophysical signals. Besides, the simulation
results show that all the mean RMSEs of EEMD are smaller
than EMD for global, ocean, land, Amazon and Yangtze,
indicating that EEMD can extract the closer geophysical signals
than EMD with respect to the true signals from CSR mascon data.
In summary, we can believe that EEMD is a good choice for
extracting the geophysical signals and filtering the noise from
GRACE time-varying gravity field models.
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FIGURE 12
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