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Disastrous landslides have become a focus of the world’s attention. Landslide
susceptibility evaluation (LSE) can predict where landslides may occur and has
caught the attention of scientists all over the world. This work establishes
integrated criteria of potential landslide recognition and combines the
historical landslides and newly-identified potential landslides to improve the
accuracy, rationality, and practicability of a LSE map. Moreover, slope units can
well reflect the topographic constraint to landslide occurrence and
development, and Graph Convolutional Network (GCN) can well portray the
topological and feature relation among various slope units. The combination of
slope units and GCN is for the first time employed in LSE. This work focuses on
Wanzhou District, a famous landslide-serious region in the Three Gorges
reservoir area, and employs multisource data to conduct potential landslide
recognition and LSE and to reveal the distribution characteristics of high
landslide susceptibility. Some new viewpoints are suggested as follows. 1)
The established criteria of potential landslide recognition consist of the
characteristics of active deformation, stratum and lithology, tectonics,
topography, micro-geomorphology, environment, meteorology,
earthquakes, and human engineering activity. These criteria can well
eliminate 4 types of false alarm regions and is successfully validated by field
survey. 2) 34 potential landslides are newly discovered, and the movement of
these potential landslides were controlled or induced by the combined action
of soft-hard interbedding rock mass, steep topography, frequent tectonic
movement, strong fluvial erosion, abundant precipitation, and intensive road
and building construction. 3) The GCN algorithm reaches a relatively high
accuracy (AUC: 0.941) and outperforms the other representative machine
learning algorithms of Convolutional Neural Network (AUC: 0.926), Support
Vector Machine (AUC: 0.835), and CART Tree (AUC: 0.762). 4) High landslide
susceptibility is caused by the coupled action of weathered rock cavities, soft
rock and swelling soil, strong river erosion, abundant rainfall, and intensive
human engineering activity.
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1 Introduction

A great deal of countries around the world, e.g., America, Brazil,
Italy, German, India, Norway, Indonesia, Ecuador, and Columbia,
suffer from the serious threat of landslides (Reichenbach et al., 2018;
Guzzetti et al., 2020; Carrera et al., 2021). Population death, economic
loss, urban damage, and infrastructure destruction have frequently
occurred during catastrophic landslide events (Haque et al., 2019;
Garcia-Delgado et al., 2022). Wanzhou District is the central region in
the Three Gorges reservoir area. According to the disaster statistics
provided by the Wanzhou Bureau of Planning and Natural Resources,
900 geological hazards occurred, and landslides occupied 73.56%. On
5 September 2004, a massive landslide in Wanzhou District destroyed
more than 180 buildings, about 300 acres of farmland, and above
500 telegraph poles (ROWDGReport, 2005). The direct economic loss
attained CNY 50 million, and the landslide-affected people reach 1281
(ROWDG Report, 2005). The reason for the enormous loss of
catastrophic landslides is that potential (hidden) landslides are
quite difficult to be discovered in advance (Xu et al., 2019) and
that the regions with high landslide susceptibility are not identified
accurately. Therefore, it is of increasing urgency to find potential
landslides at their early deformation stage and to exactly evaluate
landslide susceptibility, so that prevention and control measures can
be adopted accurately and timely.

A large number of potential landslides have not been discovered
(Xu et al., 2019), and the early discovery of potential landslides has
always been a great challenge worldwide. At present, the
characteristics of surface deformation [extracted by Interferometric
Synthetic Aperture Radar (InSAR) technique], geomorphology, and/
or topography are employed to identify potential (active) landslides
across extensive regions (e.g., Wang Y. et al., 2022; Wang Z. et al.,
2022; Zhang et al., 2022). These studies have significantly contributed
to and facilitated the progress of potential landslide identification.
However, due to the inherent limitation of InSAR technique in phase
aliasing effect, geometric distortion, and one-dimensional
deformation measurement (Xu et al., 2019; Mondini et al., 2021),
the integration of deformation, geomorphological, and topographical
features has still caused relatively low recognition precision and
relatively high false alarm rates in landslide identification via field
validation. The Chinese Ministry of Natural Resources organized to
implement potential landslide identification in the high susceptibility
regions, and the precision was 69.9%, 62.8%, 44%, and 29.8%,
respectively in the provinces or municipality of Sichuan, Hubei,
Shanxi, and Chongqing (MNR Report, 2020). Actually, landslides
are a complex system that is controlled by geology, relief, and
environment, induced by meteorology, earthquake, and human
engineering activity, and embodied in material movement and
particular geomorphology (Xu et al., 2022). Thus, a more
comprehensive feature set is necessary, including the disaster-
controlling, disaster-triggering, surface deformation, and disaster
micro-geomorphology characteristics. This integrated feature set
can improve the identification precision of potential landslides,
reduce the false alarm, and decrease enormous waste of manpower,
financial resources, and time in validating fake landslides.

There have been plenty of excellent works in landslide
susceptibility evaluation (LSE, also called as landslide susceptibility
mapping, LSM), and a variety of algorithms were suggested or
employed in these works. These diverse methods typically consist
of logic regression (Shou and Chen, 2021; Ge et al., 2022), weights of

evidence (Goyes-Penafiel and Hernandez-Rojas, 2021), fuzzy logic
(Nwazelibe et al., 2023), Analytical Hierarchy Process (AHP)
(Wadadar and Mukhopadhyay, 2022), Information value (Es-
Smairi et al., 2022), statistical index model (Berhane and Tadesse,
2021), support vector machine (SVM) (Daviran et al., 2022), random
forest (RF) (Taalab et al., 2018), convolutional neural network (CNN)
(Aslam et al., 2022), recurrent neural network (Ngo et al., 2021), and
ensemble learning [such as boosted regression tree-random forest
(Chowdhuri et al., 2021), random forest-cusp catastrophe model (Sun
et al., 2022), CNN with metaheuristic optimization (Hakim et al.,
2022), and so on]. Hakim et al. (2022) suggested two ensemble deep
learning models including the ensemble of CNN and grey wolf
optimizer (GWO) and the complex model of CNN and imperialist
competitive algorithm (ICA). The CNN-GWO and CNN-ICA models
outperform the standalone CNN model; thus, the deep learning
algorithm with optimization algorithms can improve LSE accuracy
(Hakim et al., 2022). Ghorbanzadeh et al. (2022a) proposed an
integration framework of a deep learning model with rule-based
object-based image analysis (OBIA) for landslide detection. The
F1-score value of the integrated ResU-Net-OBIA framework was
8% and 22% higher than those of the ResU-Net and OBIA
algorithms, respectively (Ghorbanzadeh et al., 2022a).
Ghorbanzadeh et al. (2022b) devised a multisource landslide
benchmark dataset (Landslide4Sense) and established
11 segmentation models to conduct landslide detection by using
the Landslide4Sense dataset. The ResU-Net model outperformed
other 10 models of U-Net, PSPNet, ContextNet, DeepLabv2,
DeepLab-v3+, FCN-8s, LinkNet, FRRN-A, FRRN-B, and SQNet
(Ghorbanzadeh et al., 2022b). Landslide detection and maps are
crucial to accurately evaluate landslide susceptibility. Moreover, the
comparison among various machine learning algorithms has also
attracted scientists’ attention, for example, the comparison among
artificial neural network (ANN), SVM, RF, and different CNNs
(Ghorbanzadeh et al., 2019), and the comparison among object-
based image analysis (OBIA)-multilayer perceptron neural network
(MLP-NN), OBIA-RF, OBIA-machine learning stacking, and
Dempster-Thafer theory (Tavakkoli Piralilou et al., 2019). Shahabi
and Hashim (2015) compared the AHP, weighted linear combination
(WLC), and spatial multi-criteria evaluation (SMCE) models in LSE in
the Cameron Highlands in Malaysia, and SMCE achieved the highest
accuracy. Bui et al. (2018) combined AIRSAR data and GIS technique
to conduct LSE in a tropical environment, compared the performance
of SVM and index of entropy (IOE) and indicated SVM a promising
model in LSE in tropical regions. Ngo et al. (2021) performed national-
scale LSE in Iran based on 4069 historical landslides, compared the
recurrent neural network (RNN) and CNN algorithms and suggested
that RNN achieved a 3.4% higher AUC value than CNN. These studies
have made important contributions to LSE technique development.

However, the vast majority of present LSE studies are conducted
based on optical images and historical landslides and neglect the risk
from potential (hidden) landslides. In recent years, a few studies
became to focus on the influence of surface deformation on
landslide susceptibility and employed deformation features (derived
by InSAR technique) to validate or refine the LSE results acquired
from historical landslides (e.g., Xie et al., 2017; Zhao et al., 2019;
Hussain et al., 2020; Hussain M.A. et al., 2021; Hussain S. et al., 2021;
Lin et al., 2021; Meghanadh et al., 2021; Cao et al., 2022; Meghanadh
et al., 2022). These studies actually concerned the known landslides.
The overwhelming majority of researches on LSE are in terms of

Frontiers in Earth Science frontiersin.org02

Wang et al. 10.3389/feart.2023.1132722

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1132722


known landslides. Moreover, a handful of studies carried out LSE
according to the potential landslides, instead of the historical ones
(Nhu et al., 2020; Kouhartsiouk and Perdikou, 2021). These above
works involving surface deformation detection have greatly improved
the accuracy of LSE. However, both historical landslides and potential
landslides reflect landslide generation, movement, risk, and
susceptibility. Thus, it can enhance the precision and rationality of
LSE to involve both known landslides and potential landslides. At
present, very few studies performed LSE by integrating both historical
landslides and potential landslides. Deng et al. (2022) recognized the
potential landslides according to surface deformation extracted by
Small Baseline Subset InSAR (SBAS-InSAR) technique. A landslide
inventory composed of historical and potential landslides was
constructed, and a hybrid method of information value and
random forest was employed to evaluate landslide susceptibility.
Kontoes et al. (2021) identified active landslides in terms of the
surface deformation (derived by multi-temporal InSAR technique),
topographic, geomorphological, and surface cover features. The
algorithm of weights of evidence was adopted to carry out LSE
based on the known and potential landslides.

Graph Convolutional Network (GCN) is suggested to learn from
graph-structured data, i.e., to extract features from non-Euclidean
structure data (Kipf and Welling, 2017; Kipf, 2020). GCN features
three important advantages (Kipf and Welling, 2017; Kipf, 2020): 1)
strong universality, 2) illumination of topological structure, and 3) a
low-pass filter. First, GCN can be employed in various unstructured
data so long as they can be expressed in graph structures (Kipf, 2020).
Second, GCN can well depict the topological structure among data by
nodes, sides, weights, in-degree, and out-degree (Kipf and Welling,
2017). The topologically-connected nodes reflect the context
information that is very significant and useful to increase the
prediction precision. Third, low frequency signals include the most
important information and exclude the abnormal information and
noises; thus, GCN can learn themost effective feature by convolutional
operation (Kipf and Welling, 2017). At present, GCN has been rarely
used in the landslide area. Ma et al. (2021) proposed T-GCN to predict
slope deformation displacement by considering the spatial correlation
among all the monitoring sensors. The predicted displacement values
were close to themeasured ones inmost sensors (Ma et al., 2021). Jiang
et al. (2022) suggested a graph convolutional incorporating GRU
network to predict the displacement of two typical landslides
according to Global Navigation Satellite System (GNSS)
observations. At present, GCN has not applied in LSE by previous
studies.

Slope units can accurately depict the topographic constraint to
landslide occurrence and distribution. Therefore, slope units are
employed in this work as evaluation units. However, slope units
feature diverse sizes, manifold geometric shapes, and irregular
spatial structures, and a suitable LSE method is required to portray
the topological relation among various irregular slope units. Thus, the
features from the topologically-connected slope units (i.e., the context
information) can be aggregated and transferred to the current slope
unit to improve its landslide susceptibility prediction accuracy. GCN is
an appropriate method. It can exactly depict the topological relation
and feature association among various irregular slope units and
effectively learn the most significant features from neighbor slope
units; thus, it is hopeful to achieve a relatively good LSE result.
Therefore, the coupling of slope units and GCN is employed for
the first time in this work to conduct LSE.

Therefore, significant advance has been achieved in potential
landslide recognition and LSE; however, there are still 2 problems
constraining the accuracy. 1) Potential landslides are usually identified
according to the characteristics of surface deformation, topography,
and/or geomorphology. The indispensable disaster-inducing features
are neglected, which to some degree restricts the recognition accuracy
and causes relatively high false alarm rates. 2) Landslide susceptibility
is dominantly performed according to the historical landslides. The
neglection of risks from potential landslides limits the precision,
rationality, and practicability of LSE maps. Moreover, GCN can
adequately learn feature dependency and non-linear relation within
the context and has been successfully applied in various prediction
problems (e.g., Lv et al., 2021; Jafari andHaratizadeh., 2022). However,
it has not been employed in LSE that is actually a prediction problem
of landslide occurrence probability.

This work employs multisource data of geology, topography,
meteorology, human engineering activity, optical images, and
Synthetic Aperture Radar (SAR) images and adopts time-series
InSAR technique and a deep learning algorithm to identify
potential landslides and to conduct LSE in Wanzhou District, a
famous landslide-severe region in China. There are 4 main
contributions in this work. 1) Integrated criteria for potential
(active) landslide identification is established. These criteria
combine the active deformation, disaster-controlling, and disaster-
triggering mechanism and may offer references for a standard of
InSAR technique in landslide effective investigation. 2) Both known
landslides and potential landslides are involved to evaluate landslide
susceptibility; thus, the accuracy and rationality of LSE can be
improved. 3) A GCN of 4 layers, combined with slope unit
segmentation, is constructed and for the first time applied in LSE
to achieve a relatively high accuracy. 4) The distribution characteristics
of high landslide susceptibility in the study area is revealed as the
common function of lithology, topography, environment,
meteorology, and human engineering activity.

2 Study area

The study area (Figure 1), Wanzhou District, covers an area of
3457 km2 and is located at the vital central region in the Three Gorges
reservoir area. The area is famous for serious geological disasters, and
662 historical landslides widely occurred there. The exposed strata are
dominant in the sedimentary rocks of the Triassic and Jurassic ages,
and the strata of the Quaternary and Permian ages also crop out in
local regions (1:200,000 Geological map). The prevalent lithology is
clastic and carbonate rocks (Luo, 2006), and synclines and anticlines
are developed (1:200,000 Geological map). The area is characterized by
low mountains and hills and multistage river terraces under the
functions of the Yangtze River cutting and crustal uplift (WDGEM
Report, 2012).

The study area features abundant river valleys and a complex
overland runoff network, and the Yangze River runs through the area.
Rainfall is generally concentrated fromApril to October and obviously
decreases from November to the next March due to the subtropical
warm humid climate (Gao et al., 2005). Wanzhou District was the
maximum relocation area of migrants in the Three Gorges hydro-
conservation project, and human engineering activity is intensive,
including a dense transportation network, rapidly expanded towns,
and continual agricultural activities.
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Therefore, the study area is depicted by the Jurassic sliding-prone
strata (Gui, 2014; 1:200,000 Geological map), softened rock mass (Gui
et al., 1998), developed fold structure, intense river cutting and erosion,
abundant seasonal rainfall, frequent human engineering activity, and
numerous cutting slopes. It has become a densely-populated city
accompanied by concentrated geological hazards, especially landslides.

3 Data and methods

3.1 Data

Eight sets of multisource data (Table 1) are employed to extract
surface deformation, geoenvironmental factors, and landslide-
inducing factors; thus, potential landslide identification and LSE
can be implemented. 1) Sentinel-1A SAR images are adopted to
extract active deformation by SBAS-InSAR technique. 2) Google
Earth images, combined with Setinel-2 images, are employed to
interpret road networks and drainage systems. In addition, Google
Earth images are also adopted to interpret landslide micro-
geomorphological features, e.g., fissures, collapses, gullies, free
surfaces, and slide terraces. 3) Landsat-8 multispectral images are
used to extract normalized differential vegetation index (NDVI). 4)
SRTM digital elevation model (DEM) data are utilized to construct the
topographic factors of elevation, aspect, slope angle, plan curvature,

profile curvature, topographic wetness index (TWI), and surface
roughness (Mohammadi et al., 2020). Moreover, SRTM DEM data
are also used to conduct topographic correction of SAR
interferograms. 5) A geological map is employed to establish the
geological factors of stratum and distance to fold. 6) Land use data are
used to analyze the types of human engineering activity. 7) Climate
Hazards Group InfraRed Precipitation With Station Data (CHIRPS)
rainfall data are adopted to establish the meteorological factor of
cumulative rainfall. 8) The data of historical landslides that occurred
before 1 May 2020 are used to reflect landslide development
characteristics.

3.2 Methods

The technical process is shown in Figure 2 and includes
6 procedures. First, active deformation characteristics are extracted
by time-series InSAR technique. Second, Geoenvironmental and
disaster-triggering factors are established from the multisource data.
These factors are composed of two classes of indices: the assessment
indices of landslide susceptibility and the identification indices of
potential landslides. Third, an integrated criterion set for potential
landslide identification is proposed, including the active deformation
feature, landslide-controlling geoenvironment, and landslide-inducing
mechanism. Fourth, potential landslides are recognized according to the

FIGURE 1
Engineering geological setting of the study area. (A) Location of the study area in Chongqing city. (B) Topography variation inWanzhou district. (C) Strata
and fold structures. (D) Abundant river systems, dense transportation networks, and extensively-distributed historical landslides. The symbols include: J1-2z =
Ziliujing formation of early and middle Jurassic age; J3p = Penglaizhen formation of late Jurassic age; J1z = Zhenzhuchong formation of early Jurassic age;
J3s = Suining formation of late Jurassic age; T3xj = Xujiahe formation of late Triassic age; J2s = upper Shaximiao formation of middle Jurassic age; T1d =
Daye formation of early Triassic age; J2x = Xintiangou formation of middle Jurassic age; T1j = Jialingjiang formation of early Triassic age; T2b = Badong
formation of middle Triassic age; and J2xs = lower Shaximiao formation of middle Jurassic age. The administrative boundary data are from national catalogue
service for geographic information, PRC.
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criteria and validated by field survey. Fifth, landslide susceptibility is
evaluated according to both historical landslides and potential
landslides by slope unit segmentation and a GCN algorithm. Sixth,
the distribution features of high landslide susceptibility is revealed,
including the common action of lithology, relief, river erosion, rainfall,
and human engineering activity.

3.2.1 Active deformation extracted by SBAS-InSAR
technique

SBAS-InSAR technique (Berarino et al., 2002) utilizes the
interference pairs with short spatial and time baselines to extract

time series of surface deformation. This technique includes five steps:
SAR image registration, interferogram filtering, removal of flat-earth
and terrain phases, phase unwrapping, and geocoding (Berarino et al.,
2002; Ge, 2013). SBAS-InSAR technique has the advantage of good
coherence among differential interference image pairs, a high time
sampling rate and spatial density of coherence, and minimium errors
generated by atmospheric phase delay (Berarino et al., 2002). Thus, it
can extract accurate and continuous surface deformation
measurement.

The differential interference phase δφj of the jth differential
interferogram after removal of atmosphere, topography, and noise

FIGURE 2
Technical process of potential landslide recognition and landslide susceptibility assessment.

TABLE 1Multisource data utilized in this work. The abbreviations include: SRTM = shuttle radar topography mission; USGS = United States geological survey; WBPNR =
Wanzhou bureau of planning and natural resources; CHIPRS = climate hazards group infrared precipitation with station data; and UCSB = university of california Santa
Barbara.

Data type Data Date Resolution Data source

Remote sensing image Google Earth image 2020.12.31; 2021.8.4 1.08 m, 0.54 m Google Earth

Sentinel-1A SAR image 2019.4.5–2020.11.1 5 m × 20 m European Space Agency

Setinel-2 image 2020.3.19 10 m

Landsat-8 2019.8.13 30 m USGS

Topography SRTM DEM 2000 30 m USGS

Geology Geological map — 1:200,000 National Geological Archives, PRC

Geography Land use 2020 10 m European Space Agency

Meteorology CHIRPS Satellite 2019.2.28–2020.11.1 5 km UCSB

Disaster Historical landslide Until April 2020 — WBPNR
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phases is produced from the SAR images shot at the times t1 and t2
(t1 < t2) and is calculated in Eqs 1, 2 (Necsoiu et al., 2014).

δφj � φt2
− φt1

≈
4π
λ

dt2 − dt1( ) (1)

in which dt2 and dt1 are the cumulative displacements in the SAR line
of sight (LOS) at the times t2 and t1, respectively, and λ is the radar
wavelength.

δφj � ∑t2,j
k�t1,j+1

tk − tk−1( )vk (2)

in which vk is the deformation velocity at the time tk.
Thus, all the unwrapping differential interference phases

constitute a matrix form (Eq. 3) (Necsoiu et al., 2014).

δφ � B · V (3)

TABLE 2 Geoenvironmental and disaster-triggering factors of landslides. The factors marked by “#” are the evaluation indices of landslide susceptibility that pass the
multicollinearity inspection and Spearman correlation coefficient test. The abbreviations include: TWI = Topographic wetness index; and NDVI = Normalized difference
vegetation index. See Figure 1 for the meaning of the stratum symbols.

Factor type No. Factor Grade

Geoenvironmental
factor

Topographic 1 Elevation# Continuous

2 Slope angle (°)# Continuous

3 Slope aspect# (1) Flat; (2) N; (3) NE; (4) E; (5) SE; (6) S; (7) SW; (8) W; (9) NW

4 Plan curvature# Continuous

5 Profile curvature# Continous

6 Surface roughness Continuous

7 TWI Continuous

Geological 8 Stratum# (1) J3p; (2) J3s; (3) J2s; (4) J2xs; (5)J2x; (6) J1-2z; (7)J1z; (8)T3xj; (9)T2b; (10)T1j; (11)T1d

Tectonic 9 Distance to fold (km)# Continuous

Environmental 10 Distance to river (m)# Continuous

11 NDVI# Continuous

Inducing factor Meteorological 12 Cumulative rainfall
(mm)#

Continuous

Human engineering
activity

13 Distance to road (m)# Continuous

14 Land use# (1) Grassland; (2) Woodland; (3) Bare land; (4) Construction land; (5) Water area; (6)
Agricultural land

FIGURE 3
Synthetic criteria for potential landslide recognition.
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The singular value decomposition (SVD) algorithm is employed to
calculate the generalized inverse matrix of Matrix B, and then the
deformation velocity V can be obtained (Necsoiu et al., 2014). The
principle and procedure are specifically illuminated in the literature of
Berarino et al. (2002), Necsoiu et al. (2014), and Liao and Wang,
(2014).

In this work, 49 ascending SAR images covering 2 flood seasons
are employed to monitor active surface deformation. In order to
guarantee sufficient interferograms and good coherence, the
threshold of the time baseline is set as 60 days. A total of
209 interferograms are generated, and on average, a SAR image
participates in constituting 8.53 image pairs. The time baseline
varies from 60 days to 12 days and is 35.48 days averagely. The
spatial baseline changes from 117 m to 2 m, with an average of
49.73 m. The plots of spatial and temporal baseline connections are
shown in Supplementary Figure S1.

3.2.2 Construction of geoenvironmental and
disaster-triggering factors

There are two types of influencing factors associated with landslide
development and occurrence: disaster-controlling (geoenvironmental)
factors and disaster-inducing factors. According to the cause
mechanism (WDPNRB Program, 2022) and field survey of
landslides in Wanzhou District, the associated disaster-controlling
and disaster-triggering factors are established (Table 2) and employed
as the initial indices of LSE. The indices in Table 2 marked by “#” has
passed the multicollinearity inspection (Miles, 2005) (Supplementary
Table S1) and Spearman correlation coefficient test (Spearman, 2010)
and are used as the final indices of LSE. Moreover, the factors of slope
angle, stratum, distance to fold, distance to river, cumulative rainfall,
and distance to road cover the characteristics of topography, lithology,
tectonics, environment, precipitation, and human engineering activity
and are utilized as the identification indices of potential landslides in
the study area.

3.2.3 Identification criteria of potential landslides
The inherent limitation of InSAR technology causes numerous

noises and high false alarm rates in landslide investigation; thus, an
integrated criterion set is necessary to improve the identification
accuracy. The proposed universal criteria for potential landslide
identification are composed of the surface deformation,
geoenvironmental (disaster-controlling), and disaster-inducing
characteristics (Figure 3). This criterion set is in terms of landslide
generation, development, and failure mechanism; thus, it can
effectively reduce the false alarm in landslide identification.

A slope is a potential (active) landslide when it meets the following
7 criteria.

(1) Deformation criteria. A slope is confidently moving when its LOS
deformation velocity |VLOS| >2σ, and σ is the standard deviation of
the SAR LOS deformation velocity and reflects the uncertainty of a
velocity value (Solari et al., 2020; Bekaert et al., 2020). Moreover, the
deformation of the slope should possess spatial continuity, i.e., at least
2 × 2 adjacent pixels have velocities higher than 2σ (Wang et al.,
2022a).

(2) Stratum criterion. The slope situated in a facility-sliding stratum is
more possible to move. Landslides generally occur in sliding-prone
strata featuring soft rocks, soft-hard interbedding rocks, or highly-
weathered hard rocks (Liu and Ren, 2008; Li et al., 2017). They
seldom occur in the strata composed of slightly-weathered or
unweathered hard rocks.

(3) Tectonic criterion. The slope located around faults and folds ismore
likely to lose stability because of the relaxation and destruction of
strong neotectonism to soil and rock mass (Tatard et al., 2010;
Ehteshami-Moinabadi, 2022). In the study area, about 40% of
historical landslides occurred within 3 km of folds.

(4) Topographic criterion. The slope angle is above 10° because a
landslide generally occurs on a hillside with an angle larger than
10° (Zhou et al., 2006). It needs to be illuminated that approximately

FIGURE 4
GCN structure in this work.
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horizontal landslides are developed in the study area due to the
unique lithology of the weak intercalation enriched in
montmorillonite (Yin, 2007). The historical landslides in the study
area possess slope angles between 6° and 48°. Thus, the slope angle
threshold for the study area is set as 5°.

(5) Micro-geomorphological criterion. The slope features landslide
micro-geomorphological features, including free surfaces, an
exposed back wall, an extrusive front edge, sunken terraces,
cracks, and so on.

(6) Environmental criterion. Surface cover damage on a slope is
sometimes associated with a landslide, e.g., vegetation damage
and bare land expansion (Wang et al., 2022b). Moreover, a slope
by a river more possibly evolves into a landslide under the cutting
and erosion of river water on the slope foot (Richard et al., 1984).
In the study area, 94.86% of historical landslides occurred within
2 km of rivers, and 49.84% are distributed within 400 m of rivers.

(7) Triggering mechanism criterion. The deformation of the slope is
explicitly related to some triggering factor, e.g., earthquakes,
precipitation, snowmelt, or human engineering activity. The
relation is measured according to the Pearson correlation
coefficients passing a significance test with the significance value
lower than 0.05 (Wang et al., 2022b). The relation to an
earthquake is calculated by the Pearson correlation coefficient
between deformation velocity and peak ground acceleration (PGA),
the relation to precipitation is in terms of the Pearson correlation
coefficient between cumulative displacement and cumulative rainfall,
the relation to snowmelt is determined by the Pearson correlation
coefficient between deformation velocity and temperature in the ice
and snow melting season, and the relation to human engineering
activity is according to the Pearson correlation coefficient between area
proportion of active deformation and distance to road or building

(Wang et al., 2022a;Wang et al., 2022b). InWanzhou District, there is
no obvious relation between landslides and the occurrence of
snowmelt or earthquakes during the monitoring period; thus, only
the criteria in precipitation and road construction are adopted in
Wanzhou District.

3.2.4 GCN algorithm for landslide susceptibility
evaluation

The principle of spectral-based GCN (Kipf and Welling, 2017;
Kipf, 2020) is concisely illuminated as follows. A graph G is depicted
as G = (V, E, A, X, D) (Franco et al., 2009), in which V indicates the
node set (slope unit set), E is the side set that connects nodes, A is the
adjacency matrix that illuminates the geometric and topological
relation, i.e., the location adjacency among various slope units, X
denotes the feature matrix of nodes, and D is the degree matrix that
reflects the number of sides connected to each node. There are
mainly two operations on feature extraction involved in a spectral
GCN: propagation operation and spectral-based convolution
operation.

The propagation operation consists of aggregation and updation
procedures. The aggregation model aggregates the features of the
neighbor slope units, and the updation model combines the
aggregated feature from the neighbors and the feature of the
current slope unit itself to update the feature of the current slope
unit (Eq. 4) (Franco et al., 2009; Kipf and Welling, 2017).

xt+1
k � f lk, lco k[ ], xt

k, lne k[ ]( ) (4)
in which xt+1

k and xt
k are the status information of the slope unit k at the

(t+1)th and tth aggregations, respectively. lk, lco[k],; lne[k] represent the
features of the slope unit k, the sides connected to the unit k, and the
neighbor slope units of the unit k, respectively. f (*) is the local transition

FIGURE 5
Identification of potential landslides. (A) Surface deformation. (B) Active deformation and potential landslides in Sub-region A. (C) Active deformation and
potential landslides in Sub-region B. (D) 34 identified potential landslides. The abbreviation PL, potential landslide.
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function shared by all the nodes and updates the status information of
the current node according to the neighbor information.

The spectral-based convolution operation conducts a
convolution operation after the Fourier transform on a graph
(Bruna et al., 2013). It performs a convolution operation on the
singular values of the graph Laplacian matrix (Bruna et al., 2013).
The computational formula of graph convolution is shown in Eq. 5
(Kipf and Welling, 2017).

H m+1( ) � ReLU( ~D
−1
2 ~A ~D

−1
2H m( )W m( )) (5)

in whichH (m) indicates the feature matrix in themth layer, andH (0)=X;
~D =D+I; ~A =A+I, and I is the identity matrix; W (m) is the weight
matrix of the filter in the mth layer; and ReLU (*) denotes a non-linear
activation function. Note the aggregation operation is involved in the
convolution operation, and during a convolution process, each node
aggregates the neighbor node information before multilayer non-
linear transforms (Kipf and Welling, 2017).

A GCN of 4 layers is constructed in this work (Figure 4), and the
output feature from the GCN is shown in Eq. 6. Moreover, the
Dropout function (Hinton et al., 2012) is adopted to randomly

abandon neighbor nodes (including the nodes that are 2 hops
away) to avoid overfitting, and the Softmax prediction layer is used
to transform the output feature from the GCN to probability values
associated with landslide susceptibility.

Z � ReLU ÂReLU ÂReLU ÂReLU ÂXW 0( )( )W 1( )( )W 2( )( )W 3( )( )
(6)

in which Â � ~D
−1
2 ~A ~D

−1
2.

Moreover, in this work, the mean curvature watershed algorithm
(Romstad and Etzelmüller, 2009; Hua et al., 2021) is adopted to segment
the study area into 625,713 slope units in terms of the DEMdata. A total
of 14,833 slope units, composed of the landslide and non-landslide units
of the same number, are randomly partitioned into 70% for GCNmodel
training and 30% for model accuracy evaluation.

3.2.5 Other classical machine learning algorithms
CNN (LeCun et al., 1989; LeCun and Bottou, 1998) is an attractive

deep learning algorithm, and CART decision tree (C&T Tree) (Breiman
et al., 1984) and SVM (Cortes and Vapnik, 1995) are both representative
machine learning algorithms. These three algorithms have been extensively

FIGURE 6
Disaster-controlling and disaster-inducing characteristics of 34 newly-discovered potential landslides. (A) Distribution of potential landslides in various
strata. (B) Distribution of hidden landslides on steep mountains. (C) Control action of folds on potential landslides. (D) Influence of river cutting on landslides.
(E) Relation between landslide distribution and road construction.
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applied in LSE; thus, the LSEmap generated by GCN is compared with the
ones produced by CNN, C&T Tree, and SVM, respectively.

The key ideas in a CNN mainly include local receptive fields, local
connections, shared weights, and pooling (LeCun and Bottou, 1998). Local
receptive fields focus on the most relevant and important context features
and neglect disrelated and inessential information to improve the prediction
accuracy (LeCun and Bottou, 1998). Local connections mean the nodes in
the current layer only connect to part of nodes in the last layer; thus, local
characteristics are learned to improve the network learning efficiency
(Lecun and Bottou, 1998; Goodfellow et al., 2016). Shared weights are
to share convolution kernels and filters; thus, the number of network
parameters can be effectively reduced to construct a lightweight network
and to improve the computing power (Lecun and Bottou, 1998; Lecun and
Ranzato, 2013). Pooling operation decreases the dimension of feature maps
during feature aggregation and retains most significant features; thus, it can
effectively overcome an overfitting problem and enhance the network
generalization ability (Lecun and Bottou, 1998; Liu et al., 2016).

The principle of SVM is to calculate an optimal hyperplane, and the
indistinguishable samples in a low-dimensional space can be separable by
the hyperplane in a high-dimensional space (Cortes and Vapnik, 1995). It
has a distinctive advantage in learning from small-size sample sets, and
kernel functions can effectively solve linearly inseparable problems, avoid
curse of dimensionality and reduce computational complexity (Cortes and
Vapnik, 1995). Moreover, slack variables and a penalty coefficient are
employed to avoid the influence from abnormal samples, and the model
generalization capability can be improved (Cortes and Vapnik, 1995).

C&T Tree is a binary tree, and its core idea is split operations
(Breiman et al., 1984). During each iteration of split, the optimal value of
the optimal feature is determined according to the minimum error sum
of squares (ESS) and is selected as the split condition (Breiman et al.,
1984). The smaller is the ESS value, the more pure is the split sample set,
and the more optimal is the feature (Breiman et al., 1984). A decision
tree is recursively built, and the built process ends when the tree depth
meets the threshold condition (Breiman et al., 1984).

3.2.6 Model precision evaluation
Model precision is evaluated by 6 indices: Accuracy, True positive

rate (TPR), F1-score, Root mean square error (RMSE), Mean absolute
error (MAE), and AUC (area under curve). Their computational
formulas are shown in Eqs 7–13.

Accuracy � TP + TN

P +N
(7)

TPR � TP

TP + FN
(8)

Precision � TP

TP + FP
(9)

F1 − score � 2
1/Precison + 1/TPR (10)

RMSE �

����������∑M
i�1

yi − y′
i( )2

M

√√
(11)

FIGURE 7
Deformation and cause characteristics of the potential landslide PL-8. (A) Active deformation features. (B)Macroscopical deformation signs. (C) Relation
between active deformation and precipitation. The abbreviation ADarea = obvious deformation area. The base images are Google Earth images.
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MAE � 1
M

∑M
i�1

yi − y′
i

∣∣∣∣ ∣∣∣∣ (12)

In which TP, TN, FN, FP, P, and N are the numbers of true positive

samples, true negative samples, false negative samples, false positive

samples, positive samples, and negative samples, respectively. M is the

number of samples, and yi and y′
i are the true and prediction values,

respectively.
AUC is the area under a receiver operating characteristic (ROC)

curve, and the x-axis and y-axis of a ROC curve are false positive rate
(FPR, i.e., 1-Specificity) (Eq. 13) and TPR (i.e., Sensitivity), respectively.

FPR � FP

FP + FN
(13)

in which FP is the number of false positive samples.

4 Results

4.1 Identification of potential landslides

According to the suggested integrated criteria for potential
landslides, thirty-four potential (active) landslides are newly

FIGURE 8
Deformation characteristics and inducing mechanism of the potential landslide PL-33. (A) Movement features and line of sight (LOS) deformation
velocity. (B) Landslide geomorphological features. (C) Connection between active deformation and road construction. (D) Link between landslide movement
and precipitation. The abbreviation ADarea = obvious deformation area. The base images are Google Earth images.
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discovered (Figure 5). These landslides feature five main disaster-
controlling and disaster-inducing characteristics (Figure 6). 1)
85.29% are situated in the Jurassic strata, a type of well-known
sliding-prone stratum (Gui, 2014). This type of stratum is
characterized by soft-hard interbedding rocks, e.g., the
interbedding of quartz sandstone and mudstone, the interlayered
rock mass of mudstone, feldspathic quartz sandstone, and siltstone,
the interbedding of quartz sandstone and shale, and the interbedding
of feldspathic quartz sandstone, shale, and sandy mudstone
(WDGEM Report, 2012). 2) 82.35% feature steep topography,

with slope angles larger than 20°. 3) Nine are located within 1 km
of the folds, with the minimum distance of 28 m. 4) 41.18% occurred
within 500 m of the rivers, with the nearest distance of 141 m. 5)
91.18% were moving under the function of precipitation, in which
8 landslides were deforming under the common action of rainfall
and road construction. Moreover, the movement of 3 landslides is
triggered by road construction, instead of precipitation. Therefore,
the soft-hard interbedding rock mass, steep topography, frequent
tectonic movement, and strong fluvial erosion have created a suitable
geoenvironment for landslide development, and abundant

FIGURE 9
Field validation of 5 newly-discovered potential landslide regions. The obvious deformation and damage features are indicated in the photos.
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precipitation and intensive human engineering activity have induced
landslide movement.

Two newly-discovered potential landslides, PL-8 and PL-33,
induced by different mechanisms are selected as examples.
Regarding PL-8 (Figure 7), it is a typical precipitation-induced
landslide. Multiple long and wide gullies spread over the whole
slope surface and converge at the slope foot (Figure 7B). Surface
runoff scoured along the gullies, eroded the soil and rock mass and
deeply cut the slope body. In addition, rainwater infiltrated through
the cracks, softened the rock mass, and caused the generation of a

weak sliding surface. Thus, the landslide became to move slowly,
and the deformation progress was quite consistent with the rainfall
variation (Figure 7C). The landslide slid relatively fast from May to
November and crept relatively slow from December to the next
April. As for PL-33 (Figure 8), its occurrence and development
were triggered by both rainfall and road construction. A township
road runs across the steep slope (Figure 8A), and road construction
relaxed the soil and rock mass, destroyed the stress equilibrium and
caused rock mass unloading. Moreover, the lithology features the
alternating layers of mudstone, feldspathic quartz sandstone, and

FIGURE 10
Evaluation indices of landslide susceptibility. (A) Elevation. (B) Slope angle. (C) Slope aspect. (D) Topographic wetness index (TWI). (E) Plane curvature.
(F) Profile curvature. (G) Distance to river. (H) Surface roughness. (I) Distance to fold. (J) Stratum. (K) Normalized differential vegetation index (NDVI).
(L) Distance to road. (M) Land use. (N) Cumulative rainfall. The abbreviations include: HL = Historical landslide; and PL = Potential landslide.
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siltstone (Figure 6A), and mudstone is inclined to be softened and
disintegrated under water-rock interaction (Huang and Che, 2007).
Thus, under the coupled function of gravity unloading and
rainwater softening, the slope lost stability and slowly moved.
Together with the slope movement, the backwall was exposed,
and cracks were generated and linked together (Figure 8B). The
landslide exhibited intensive deformation near the road (Figures
8A, C) and moved faster in rainy season and slower in dry season
(Figure 8D).

4.2 Field validation

The study area is famous for a mountain city, and mountain roads
are rugged, narrow, and difficult to pass over, which have brought
great difficulties to field survey. Five identified potential landslide
regions, which can be accessible, are selected to conduct field survey
and are all successfully validated as landslides (Figure 9). These

landslides are located in residential areas and have seriously
threatened human lives and properties, including residential
buildings, work sheds, roads, farmlands, orchards, woodlands, or
fish ponds. One sub-landslide occurred beside an expressway under
construction and may cause danger to the safe operation of the
highway and to the safety of passing vehicles. Moreover, these
landslides all feature obvious deformation signs, consisting of
building cracks, road cracks and subsidence, descending sills,
collapses, loose deposits, and small sub-landslides. For example, the
width and length of a crack on Landslide PL-21 even attained 60 cm
and 30 m, respectively. In the Landslide PL-28 region, multiple fish
ponds ruptured, and water seeped into the ground due to the slope
deformation. The settlement height of the cropland even reached
nearly 2 m.

4.3 Landslide susceptibility evaluation

The established evaluation indices are shown in Figure 10. All the
14 indices pass the multicollinearity inspection (Supplementary
Table S1); however, the factors of surface roughness and
topographic wetness index (TWI) do not pass the Spearman
correlation coefficient test. Therefore, only the 12 indices marked
by “#” in Table 2 are employed to evaluate landslide susceptibility.
The generated LSE map is shown in Figure 11. 74.57% of the
historical and potential landslides are situated in the very high
and high susceptibility regions that occupy 24.82% of the study
area (Table 3). The values of the precision indices are 0.94, 86.22%,
87.91%, and 0.86 for AUC, Accuracy, TPR, and F1-score,
respectively (Table 4).

5 Discussions

5.1 Advancement of the established criteria
for potential landslide identification

Due to the intrinsic defect of InSAR technique, e.g., phase
noises and decoherence, there are a great number of false alarm

FIGURE 11
Landslide susceptibility map. The abbreviations include: VLS = Very
low susceptibility; LS = Low susceptibility; MS = Medium susceptibility;
HS = High susceptibility; and VHS = Very high susceptibility.

TABLE 3 Statistics of landslide susceptibility assessment.

Susceptibility Area (km2) Area proportion (%) Landslide number Landslide number proportion (%)

Very high 552.43 15.98 400 57.47

High 305. 6 8.84 119 17.1

Medium 412.07 11.92 72 10.34

Low 460.13 13.31 65 9.34

Very low 1726.77 49.95 40 5.75

TABLE 4 Precision of landslide susceptibility evaluation.

Indice Accuracy (%) TPR (%) F1-score RMSE MAE AUC

Train 87.76 89.44 0.8795 0.2969 0.1915 0.951

Test 86.22 87.91 0.8647 0.3119 0.203 0.941
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regions generated by SBAS-InSAR monitoring. These fake
regions are characterized by similar shapes to landslides,
obvious deformation features, and steep relief. Thus, they are
easily misidentified as potential landslides according to the
present commonly-used criteria based on surface deformation
and topography: the absolute value of LOS deformation velocity
is larger than 10 mm/yr, and the slope angle is above 10°. Eighty-
eight representative false alarm regions are shown in Figure 12
and can be partitioned into three types. 1) Fifteen fake regions
are originated from phase noises, and the deformation of these
regions lacks in inducing mechanism. Thus, these fake regions
fail to meet the environmental criteria and triggering
mechanism criteria proposed in this work. 2) Forty false
regions are embodied as ground subsidence caused by human
engineering activity, e.g., road construction,
building construction, or farmland cultivation, rather than
mass movement along slopes. Four fake regions of this type
feature hard rock mass dominant in limestone and dolomite
limestone, and no historical landslide occurred in this type of
stratum. Therefore, these regions mismatch the micro-
geomorphological criterion and stratum criterion. 3)
Thirty-three false alarm regions do not exhibit landslide

geomorphological characteristics such as free surfaces.
Thus, they do not conform to the micro-
geomorphological criterion. Three examples of fake regions
are shown in Figure 13.

5.2 Comparison with other machine learning
algorithms

The LSE maps of the established GCN, CNN (LeCun et al.,
1989; LeCun and Bottou, 1998), SVM (Cortes and Vapnik, 1995),
and C&T Tree (Breiman et al., 1984) algorithms are shown in
Figure 14. Regarding CNN, the network structure is composed of
one input layer, two convolutional layers, two max-pooling
layers, and one fully connected layer with the Softmax
function. The value of learning rate is set as 0.001,
AdamOptimizer is employed to update the network weight
values and to speed up the convergence, and a mean squared
error is adopted as the loss function. As for SVM, a radial base
function is used as the kernel function, and the values of the
penalty coefficient C and the parameterγare both set as 0.1. As to
C&T Tree, the value of minimum impurity change is set as
0.0001, the minimum record numbers in parent and child
branches are both 2%, and the tree depth is 5. The LSE
statistics and accuracy assessments are shown in Figures 15,
16. The number proportion of landslides falling in very high and
high susceptibility regions are 74.57%, 61.64%, 59.77%, and
36.21%, respectively for the GCN, CNN, SVM, and C&T Tree
algorithms. GCN generally possesses the highest LSE accuracy.
The AUC values are 0.941, 0.926, 0.835, and 0.762, respectively
for the GCN, CNN, SVM, and C&T Tree algorithms. Therefore,
GCN is superior to other three machine learning algorithms in
the study area.

5.3 Distribution characteristics of high
landslide susceptibility

Very low and low susceptibility regions are mainly
distributed in the strata of T1d, T1j, T2b, and T3xj, and some
areas are dominant in hard rocks of limestone and dolomite
limestone and feature high rock strength and good rock
structure stability. This type of region is primarily far away
from rivers (>2 km), dominated by woodland and grassland, and
suffered from low rainfall (<1300 mm/yr). Rainwater flew down
a slope rapidly, and it was difficult to generate water
storage. Therefore, very low and low susceptibility regions are
characterized by relatively good rock stability, dense
vegetation, slight influence from river erosion
and human engineering activity; thus, the slopes are relatively
stable.

Medium susceptibility regions are primarily situated in the
strata of J2s, J1-2z, and J3p and feature soft-hard interbeddings
that consist of the interbedding of mudstone, feldspathic quartz
sandstone, and siltstone, interbedding of shale, limestone, and
quartz sandstone, and interbedding of quartz sandstone, lithic
sandstone, and shale. Shale and mudstone tend to be softened
after absorbing water (Huang and Che, 2007; Teng et al., 2010).
Most areas are located 1-2 km away from rivers, and some regions

FIGURE 12
Some representative false alarm regions superimposed on (A)
LOS deformation velocity extracted by SBAS-InSAR technnique, and
(B) Landsat 8 images. N indicates the false alarm regions caused by
phase noises, HA represents the false alarm regions produced
from human activity, and NLM means the false alarm regions without
landslide geomorphological characteristics.
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were influenced by agricultural activity. Therefore, under the
combined action of river erosion, softened rock mass,
groundwater fluctuation, and agricultural irrigation, some
slopes became instable and evolved into landslides.

Very high and high susceptibility regions are mainly located
along the Yangtze River and its tributaries. Very high
susceptibility regions are primarily distributed within 1 km of
rivers, and some very high and high susceptibility areas are
situated within 2 km of rivers. This type of area is dominated by
construction land and agricultural land, and some areas are
dominant in woodland. Abundant rainfall (>1320 mm/yr) is a

remarkable feature, and the slope degree varies from 10° to 30°.
The exposed strata mainly consist of J2s, J2x, J2xs, and J3s, and
are characterized by the interbedding of quartz sandstone and
siltstone, interbedding of quartz sandstone, shale, and
mudstone, and interbedding of sandstone and mudstone. The
interbedding of sandstone and mudstone is easily weathered to
generate cavities (Jian et al., 2005). Moreover, due to frequent
rainfall, mudstone and montmorillonite produced soft swelling
soil (Gui, 2014). This kind of soil became saturated when
suffering from water action; thus, the shear strength
significantly decreased, and the sliding force of soil and rock

FIGURE 13
Three examples of false alarm regions. (A) Active deformation in a false alarm region sourced from phase noises. (a) Google image of the false alarm
region shown in (A). (B) Active deformation in a false alarm region caused by human engineering activity. (b) Google image of the false alarm region shown in
(B). (C) Active deformation in a false alarm region without landslide geomorphology. (c) Google image of the false alarm region shown in (C). N indicates the
false alarm regions caused by phase noises, HA represents the false alarm regions produced from human activity, and NLMmeans the false alarm regions
without landslide geomorphological characteristics.
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mass obviously increased (Gui, 2014). Therefore, under the
coupled action of weathered rock mass, soft rock and swelling
soil, strong river erosion, abundant rainfall, and intensive

FIGURE 14
Landslide susceptibility assessment maps. (A) GCN algorithm. (B) CNN algorithm. (C) SVM algorithm. (D) C&T Tree algorithm.

FIGURE 15
Landslide susceptibility statistics of the GCN, CNN, SVM, and C&T
Tree algorithms.

FIGURE 16
Precision comparison of landslide susceptibility evaluation by the
GCN, CNN, SVM, and C&T Tree algorithms.
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human engineering activity, the stress balance was destroyed,
shear strength sharply reduced, weak sliding surfaces formed,
and then landslides occurred and moved down along relatively
steep topography (Figure 17).

6 Conclusion

This work establishes integrated criteria for potential landslide
recognition, and these criteria can be universally applied in various
landslide-affection regions. The criteria cover the slope movement,
disaster-controlling, and disaster-triggering mechanism and are
composed of the characteristics of active deformation, stratum and
lithology, tectonics, topography, micro-geomorphology, environment,
meteorology, earthquakes, and human engineering activity. This
criterion set obviously decreases the false alarm rate of potential
landslide identification and is successfully validated by field survey. In
addition, this work combines historical landslides and the newly-
identified potential landslides to implement LSE; thus, the accuracy,
rationality, and practicability of a LSE map are improved. Moreover,
GCN can well portray the topological and feature relation among various
slope units, and aGCNof 4 layers is established to conduct LSE. TheGCN
algorithm reaches a relatively high accuracy and outperforms the other
representative machine learning algorithms of CNN, SVM, and C&T
Tree. The following conclusions are drawn in this work.

(1) The suggested criteria can well eliminate 4 types of false alarm
regions: (a) fake regions sourced from phase noises, (b) fake

regions caused by human engineering activity, (c) false areas
with stable rock structure, and (d) false areas without landslide
micro-geomorphological features. These fake regions are
characterized by similar shapes to landslides, obvious
deformation features, and steep relief. Thus, they are easily
misidentified as potential landslides according to the present
commonly-used criteria based on surface deformation and
topography.

(2) According to the proposed criteria, 34 potential landslides are newly
discovered in the famous landslide-serious region,Wanzhou District.
The soft-hard interbedding rock mass, steep topography, frequent
tectonic movement, and strong fluvial erosion have created a suitable
geoenvironment for potential landslide development. In addition,
abundant rainwater infiltrated into the fractured rock mass, softened
rock and soil, and caused the generation of a weak sliding surface.
Furthermore, intensive human engineering activity, especially road
construction and building construction, relaxed the soil and rock
mass, destroyed the stress equilibrium, and led to slope toe mass
unloading. Therefore, under the combined action of lithology, relief,
tectonic movement, river erosion, precipitation, and human
engineering activity, a slope gradually lost stability, slowly moved
along steep topography, and evolved into an active landslide.

(3) The combination of slope units and GCN is for the first time
employed in LSE and achieves a relatively high precision. The
values of the precision indices are 0.94, 86.22%, 87.91%, and
0.86 for AUC, Accuracy, TPR, and F1-score, respectively.
Moreover, the constructed 4-layer GCN outperforms the classical
machine learning algorithms: CNN, SVM, and C&T Tree. The

FIGURE 17
Distribution characteristics of high landslide susceptibility in the study area. The symbols are from the website: https://www.iconfont.cn/.
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number proportion of landslides falling in very high and high
susceptibility regions are 74.57%, 61.64%, 59.77%, and 36.21%,
respectively for the GCN, CNN, SVM, and C&T Tree algorithms.
TheAUCvalues are 0.941, 0.926, 0.835, and 0.762, respectively for the
GCN, CNN, SVM, and C&T Tree algorithms. Therefore, GCN
generally possesses the highest LSE accuracy.

(4) The distribution characteristics of high landslide
susceptibility are illuminated. The study area features the
particular lithology of sandstone and mudstone
interbedding that was weathered to generate cavities. In
addition, under the influence of abundant rainfall, the
unique mudstone and montmorillonite in the facility-
sliding strata produced soft swelling soil, and the soil
absorbed water, became saturated and led to a decrease in
shear strength and an increase in sliding force. Moreover,
strong erosion from the Yangtze River and its tributaries, and
intensive perturbation from road construction, building
construction, and agricultural cultivation facilitated slope
instability. Therefore, high landslide susceptibility is caused
by the coupled action of weathered rock cavities, soft rock and
swelling soil, strong river erosion, abundant rainfall, and
intensive human engineering activity.
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