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The crack closure in impact coal seams induced by high-pressure air blasting
greatly affects gas drainage efficiency. The length of the crack closure was
calculated and analyzed based on energy and elastic theories. The closure
region was then determined to be 3.8 m from the blasting hole. The results of
a high-pressure air blasting experiment in the underground of one coal mine in
China showed that the effect of crack closure on gas drainage efficiency
manifested as a decreased amplitude of gas emission in the crack closure
region. At 1.0–4.0 m from the blasting hole, the amplitude of gas emission in
the observation holes first increased and then decreased with increasing distance
from the blasting hole. At 1.8–2.5 m from the blasting hole, the amplitude of the
gas emission was maximal. At 4.0 m from the blasting hole, the crack was nearly
closed, and the gas emission in the observation holes wasminimal. The theoretical
calculation had good consistency with the field test results; thus, it can provide an
important reference for an appropriate arrangement of gas drainage boreholes.
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1 Introduction

The coal seams in China have large amounts of coal seam gas (Dai et al., 2019; Zou et al.,
2019; Huang et al., 2022; Men et al., 2022). However, the existing coal seam gas has not been
sufficiently utilized due to its low permeability in the rock mass, geological complexities, and
equipment limitations. The Shenyang Coal Science Research Institute pioneered the
development of the compressed air blast technique and equipment that has been widely
used in China (Li, 2013; Li, 2015). The application of this technique in Huainan Mine
showed that the predicted influential area resulting from the compressed air blast was
inconsistent with real-world data. This might be attributed to the closure of the fractures,
leading to difficulties in gas transport in the rock mass. More specifically, after the
compressed air is released, fractures close to the elastic rock mass zone tend to close,
resulting in a reduction of the flow channels for coal seam gas transport. These fractures can
only be re-opened if the high-pressure gas is pumped through into the rock mass. The
present work is a case study of the influence of compressed air blasts on the performance of
coal seam gas drainage.
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2 Coal failure mechanism due to
compressed air blasts

After the compressed air blast, the resulting blasting wave and
pressure jointly damage coal through compressive and tensile
stresses. The borehole wall is heavily damaged and fractured into
small pieces, whereas the rock mass in the distance to the borehole
wall forms fractures due to tangential stress. The fracture propagates
further into the rock mass and continuously consumes energy
provided by the air blast. As a result, the blasting wave-induced
energy tends to decrease as it propagates further, leading to
formation of only elastic failure in the rock mass (Ning, 2012;
Zhang et al., 2017; Gao et al., 2018; Yang et al., 2019).

2.1 Elastic energy consumption Et due to
compressed air blasts

Beyond the fracture boundary, only elastic deformation occurs
due to the wave blast. The elastic deformation in the unit volume of
rock δt is according to the following formula (Cai et al., 2014; Li
et al., 2018; Cheng et al., 2022):

δt � 1
2

σrεr + σθεθ( ) � σr2

2Em
1 + λ2( ).

Thus, the energy consumed due to the elastic deformation is

Et � ∫RE

r1

2πrδEdr,

Et � π 1 + λ2( ) pmrm( )2
2Em α − 1( ) 1 − rm

RE
( )2 1−α( )⎡⎣ ⎤⎦,

where εr and εθ are the strain along the radial and tangential
directions, respectively, relative to the borehole, m and α are
coefficients where α � 2 − v/(1 − v), v � 0.3, α � 1.57, Em the
Young’s Modulus of coal, 4.6 GPa, rm � b1/2 is the radius of the
fracture, λ is a coefficient equivalent to v/(1 − v) � 0.43, RE is the
radius at which the elastic deformation starts to occur,
RE � 1+v

Em

(σt+σw)rm2

r , 4.0 m, σt is the tensile strength, and σw is the
initial stress.

The immediate stress induced on coal when air blasting occurs is
calculated according to the following equation:

pm � ρvp · ρkyvs2
2 ρvp + ρkyvs( ),

where ρ is the coal density (1334 kg/m3), vp is the compressive
wave velocity (1856 m/s) determined by laboratory testing, ρky is the
density of the compressed air (83.85 kg/m3), and vs is the
compressed air velocity at the releasing nose (243.7 m/s) as
determined by measurement.

2.2 Fracture closure

After the air blast, the fracture propagates to an extent beyond
which the deformation remains elastic. Once the blasting wave
energy is completely consumed, the fractures at the boundary
between the fracture and elastic deformation zone tend to close

under the action of load F. For ease of calculation, the friction is
ignored and the closure of the fractures is elastic. The energy
consumption time is very short (approx. 25 μs), and the length of
the coal is l (Figure 1).

The probability of damage to the microelement of the coal is
assumed to be the damage variable D according to

D � ∫J

0
P x( )dx � 1 − exp − J/J0( )m[ ].

If the rock microelement strength is J, then σ1 � σc, ε1 � εc
when the peak point gradient is 0, and the relevant microelement
strength is Jc. When the rock at the closure zone has residual
strength, D � 1; hence, exp[−(J/J0)m] � 0. The strength
parameters in the microelement, J, J0, and m can be calculated
as follows:

m � − σc − 2μσ3( )
σc − 2μσ3 − Eεc + hEεc( ) ln σc−2μσ3−Emεc+ξEmεc

hEmεc
( ),

J � σ1
* + 2σ3

* + sinφ

3
��������
3 − sin 2φ

√ σ1
* − σ3

*( )2,
J0 � Jc

J1 σc − 2μσ3 − Emσc + ξEmεc( )
σc − 2μσ3

[ ]1/J1
,

where σ1* and 2σ3* are the effective stresses of σ1 and σ3,
respectively, and φ is the internal friction angle.

The fracture closure coefficient ξ can be calculated according to

ξ � 1 − σr − 2μσr

Emεr
,

where μ is the Poisson’s ratio, σr is the residual strength in MPa,
and εr is the residual strain.

FIGURE 1
Schematic diagram of the fracture closure.
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Considering the expansion of the fracture resulting from coal
seam gas adsorption in the fracture, σz is the summation of closure
stress in coal fractures σe (Meng and Li, 2015; Vyacheslav et al.,
2016; Peng and Zheng, 2020; Liu et al., 2022) and expansion stress
σp, and the expansion stress due to the coal seam gas adsorption in
the fractures is calculated as follows (Xue et al., 2015; Chu et al.,
2022):

σp � 2aRTρ 1 − 2v( ) ln bp( )[ ]/ 3V( ),

where a and b are adsorption coefficients, p is the compressive
stress of the coal seam gas (1.2 MPa), v is the Poisson’s ratio, ρ is the
coal density (334 kg/m3), R is the molar gas constant (8.31 J/
(mol·K)), T is the absolute temperature (297.35 K), and V is the
molar volume (22.41 L/mol).

The effective stress σe and actual stress σZ are as follows:

σZ � σe + σp,

σZ � κσe,

where κ is the effective stress coefficient according to

κ � 1 −K/Ks,

where K is the water bulk modulus and Ks is the coal solid particle
bulk modulus. κ is 0.7.

During the blasting, the decay of the blasting wave peak in the
coal mass is calculated as follows:

pE � pE
rm
rE

( )3

.

Assuming the total force on the coal in the elastic zone results
only from the blasting wave,

pE � F.

Considering the conservation of energy, the energy in the elastic
zone is not completely released, with most of the energy converted to
kinetic energy, while a minor portion is stored in the elastic zone.

Et � E1
t + Q1.

The simplified form is

E′
t � ηEt.

The energy from the elastic zone is assumed to contribute to the
fracture closure according to

E′
t � ηEt � Fl sin

φ

2
cos

φ

2
,

where η is the energy coefficient, and it equals 1 when all energy is
used for fracture closure.

The length of the fracture closure is

1 �
ηπ 1+λ2( ) pmr0( )2

2Em α−1( ) 1 − r0
RE

( )2 1−α( )[ ]
pm

rm
rE
( )3 sin φ

2 cos
φ
2

.

The effective closure length in the fracture is

ly � ξl.

After compressed air blasting, fractures form, leading to an
increase in the gas flow channels. In contrast, the fractures close

to the elastic zone tend to close, resulting in decreased gas flow
channels. Therefore, the borehole for air blasting should be
drilled within the fracture propagation zone. In addition, if
the borehole height is more than the height of the fracture
closure zone, the amount of coal seam drainage decreases
greatly.

The effective drainage zone is assumed to be as far as L from the
borehole according to

L � ap + b1 + b2 − ly,

where a* is the blasting radius (0.094 m), b1 is the thickness of the
loose area, and b2 is the thickness of the fracture propagation.

The diameter of the loosened area can be calculated as follows
(Qian, 2010):

b1 � 1 − 2v( ) 1 + v( )
3 1 − v( )

ρcp2

σp
( )1/31

2
0.61Ez

1/3

ρcpσp( )1/9.
The diameter of the fracture propagation is calculated as follows

(Qian, 2010):

b2 � ρcp2

4 1+sin θ
1−sin θ( )σ0⎛⎝ ⎞⎠1/3

1
2

0.61Ez
1/3

ρcpσp( )1/9.
As such,

L � 0.094 + 1 − 2v( ) 1 + v( )
3 1 − v( )

ρcp2

σp
( )1/31

2
0.61Ez

1/3

ρcpσp( )1/9 +
ρcp2

4 1+sin θ
1−sin θ( )σ0⎛⎝ ⎞⎠1/3

1
2

0.61Ez
1/3

ρcpσp( )1/9 − ξ

ηπ 1 + λ2( ) pmr0( )2
2Em α − 1( ) 1 − r0

RE
( )2 1−α( )⎡⎣ ⎤⎦

pm
rm
rE

( )3

sin
φ

2
cos

φ

2

,

where v is Poisson’s ratio (0.3), ρ is the coal density (1334 kg/m3),
and cp is the compressive stress velocity in the coal mass (1856 m/s).
η is 0.75, EZ is the energy resulting from the blast, σ* is the
compressive strength of the coal (28.63 MPa), σ0 is the tensile
strength (0.462 MPa), θ � π/18, and φ � 2π/45. Substituting all
these parameters into the equation mentioned previously leads to
L � 3.8m.

3 Field testing

3.1 Site background

The field testing was conducted in the transport roadway in a
single coal mine. The compressed air blasting was initiated in a coal
seamwith a thickness of 3.6 m. The stress from the coal seam gas was
1.6 MPa, and the gas intake was around 6.11 m3/t. The seam was
weak and the gas permeability was 0.0111 m2/MPa2·d. The roadway
was reinforced by cable bolts and steel mesh.

3.2 Testing methodology

A 0.5-m-deep borehole was drilled into the seam, followed by
the installation of the blasting detonation. When the stress
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reached 60 MPa, the compressed air was released. Two to three
blasts were performed in each borehole. Eventually, one drainage
borehole and 12 blasting boreholes were formed. In addition,
adjacent to the blasting boreholes, another 14 boreholes were
drilled for observation (Figure 2). The observation boreholes
were drilled 0.5 m deep into the seam with a drill bit 94 mm in
diameter. All these boreholes were sealed thereafter. Blasting
boreholes were drilled similarly. As soon as the compressed air
blasting occurred, the drainage borehole was connected to the gas
drainage system. All gas drainage parameters were the same in
each borehole. The variations in coal seam gas drainage volume
during the drainage were measured. The gas drainage volumes
measured in each observation borehole were used to aid in
identifying the locations of fracture closure.

3.3 Testing results and analysis

As shown in Table 1 and Figure 3, blasting in 12 blasting
boreholes showed increased gas flow in the observation
boreholes. The observation boreholes within 2 m of the blasting
holes had the largest gas flow. The gas flow decreased from the
observation borehole 1 m (borehole 13) to that 1.5 m (borehole 16)
from the blasting borehole. The flow then increased to the
observation boreholes 1.8 m (boreholes 20, 21, 24, and 25) away
from the blasting borehole before decreasing again to the
observation boreholes 2 m (borehole 14) and 2.5 m (boreholes 19,
22, 23, and 26) away from the blasting borehole. The gas flow
increase peaked at the observation borehole 3 m (borehole 15) from
the blasting borehole and reached its minimum in the observation
borehole 4 m (borehole 18) from the blasting borehole. The gas flow
increase was more obvious in the zone within 3 m from the blasting
borehole. The increasing rate of gas intake peaked in the zone
1.8–2.5 m from the blasting borehole. The increasing rate of gas flow
peaked in the zone 1.5 m from the blasting borehole. The rate was as
high as 55.56%, and the gas drainage was also enhanced most
significantly in this area. The gas flow increase tended to
decrease more than 2.5 m from the blasting borehole. The
increasing rate reached its minimum in the zone 4 m from the
blasting borehole, where it was close to the fracture closure zone.

After the air blasting, the rate of gas intake tended to increase
and then decrease with distance from the blasting borehole. When
approaching the fracture closure zone, the increasing rate reached its
minimum. The increasing rate of the gas intake on the left-hand side
of the blasting borehole was greater than that on the right-hand side.
This might be attributed to the orientation of the in situ major

FIGURE 2
Borehole pattern.

TABLE 1 Variation in coal seam gas flow before and after the compressed air blast.

Borehole
no.

Before blasting After blasting Variation in coal seam
gas flow/%

Total gas flow/
(mL·min-1)

Coal seam gas volume
percentage/%

Total gas flow/
(mL·min-1)

Coal seam gas volume
percentage/%

13 2232.55 98 3213.57 100 43.94

14 1545.87 99 2131.64 100 37.89

15 1225.61 99 1840.45 98 50.17

16 1108.60 97 1724.58 98 55.56

17 783.90 98 955.90 100 21.94

18 1382.67 98 1586.20 100 14.72

19 1487.45 97 2104.89 98 41.51

20 983.27 98 1422.99 99 44.72

21 1164.56 99 1705.73 98 46.47

22 1572.35 98 2291.81 99 45.74

23 1374.53 98 1611.08 98 17.21

24 1231.09 98 1632.79 99 32.63

25 1028.61 99 1397.06 99 35.82

26 792.54 99 923.94 98 16.58

Frontiers in Earth Science frontiersin.org04

Song et al. 10.3389/feart.2023.1131386

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1131386


principal stress. The observation boreholes above the blasting
borehole (boreholes 19–22) had higher gas intake increase rates
than those below the blasting borehole (boreholes 23–26). Although
the induced stress level at the top and bottom of the blasting
borehole by the blasting wave tended to be the same, the induced
failure differed, with tensile and compressive failures dominating the
top and bottom, respectively. As the tensile strength is always much
less than the compressive strength, the influential area resulting
from air blasting at the top would be much larger than that at the
bottom.

4 Conclusions

a. As a result of compressed air blasting, the huge blasting wave
induced extensive fractures that propagated into the coal mass,
leading to increased gas flow channels. The gas intake above the
air-blasting borehole was higher than that below. The difference
in gas intake between the zones on the left and right was
attributed to the in situ major principal stress.

b. The compressed air blasting propagated the fractures into the
coal mass up to a certain extent, beyond which the coal mass
remained intact. The fractures close to the boundary tended to
close, leading to decreased gas flow channels. In other words, the
real fracture length was always smaller than the theoretical
fracture length.

c. The observations of gas flow and intake volumes confirmed that
the fracture started closing 4 m from the blasting borehole, a
finding consistent with the theoretical value of 3.8 m. This also
demonstrated that the theoretical model proposed in this study
could predict the fracture length and, hence, aid in coal seam gas
drainage prediction. However, the gas migration in the coal seam
had the characteristics of an unstable flow field and was also
affected by factors such as the construction quality of the

drainage hole and the gas flow in the hole. Therefore, further
research is needed.
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FIGURE 3
Schematic diagram of variations in coal seam gas flow.
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