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The Sanjiang orogenic belt, located in southwestern China and the southeastern
Tibetan Plateau, includes a variety of economically important metal deposits.
Previous studies have focused on Lu-Hf isotopic mapping to suggest its
lithospheric architecture and mineralization. In this study, we provide the
results of Nd isotopic mapping and compare them with the results of Hf
isotopic mapping based on the similarity of Sm-Nd and Lu-Hf isotope systems,
which indicate three juvenile domains with high εNd(t) and young Nd model ages
within the Eastern Qiangtang-Simao terrane, while presenting negative εNd(t)
values over the entire horizon. The very negative εNd(t) and old Nd model ages
found in the Tengchong-Baoshan terrane and Changning-Menglian suture
suggest that these terranes are old and might be reworked. The Nd isotopic
mapping of the Sanjiang orogenic belt also suggests a relationship between
different lithospheric architectures and the locations of distinct ore deposits.
Porphyry-skarn Cu–Mo–(Au) deposits occur in the juvenile crust, which has
relatively high εNd(t) (−3.3–5.1) and young TDM ages, whereas skarn and
hydrothermal vein-type W–Sn deposits and Pb‒Zn‒Cu‒Ag deposits are located
in the low-εNd(t) area.
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1 Introduction

The formation of the continental crust is a major consequence of planetary
differentiation and has played a key role in the evolution of life and the climate of this
planet (Campbell and Allen, 2008; Couzinié et al., 2016), as well as in the formation of some
ore deposits. The deep crust is not only a zone for crust-mantle interactions and
material–energy exchange processes but also a source of many felsic magmas and deep
geothermal flows (Hou and Zhang, 2015). With the retention, storage, and subduction of
mantle-derived magma at the bottom of the crust, the reworking of the old crust, the
formation of juvenile material, and the lateral and vertical growth of the lithosphere occur in
the deep crust; the mineralized metals are also adjusted for distribution and re-enrichment
(Hou et al., 2015; Hou and Zhang, 2015). Thus, for understanding the formation of large
mineralized systems and the spatial distribution of the assemblages of mineralized metals, it
is critical to reveal the material composition and distribution of the deep lithosphere, in
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particular, the distribution of old and juvenile materials (Hou and
Zhang, 2015; Hou et al., 2020). In collisional orogenic systems, the
formation of the juvenile crust is considered to be relatively
unimportant (e.g., Kerrich et al., 2005; Groves and Bierlein,
2007); in fact, large ore deposits are formed (e.g., Hou and Cook,
2009), which are suggested to be associated with the reworking of the
old crust, remelting of the juvenile crust, and migration of crustal
melts and fluids (e.g., Hou and Cook, 2009; Lu et al., 2013; Hou et al.,
2015; Xu et al., 2021).

Whole-rock Sm-Nd and zircon Lu-Hf isotopic mapping has
recently been adopted as a tool for evaluating crustal evolution,
which estimates the age of continental crust (e.g., DePaolo, 1988;
DePaolo et al., 1991; Kovalenko et al., 2004) and constrains the
localization of mineral deposits (Mole et al., 2013; Mole et al., 2014;
Hou et al., 2015; Champion and Huston, 2016). Typically, the
analogous behavior of Lu-Hf and Sm-Nd isotopic systems in
mantle-derived magmas is considered to cause the positive
correlation between εHf(t) and εNd(t) values (Vervoort and
Patchett, 1996). However, Nd–Hf isotopic decoupling has
frequently been reported in previous petrological studies (e.g.,
Bizimis et al., 2004). Thus, comprehensively considering
differential isotopic mapping can contribute to the understanding
of the formation of the crust. The advantages of zircon Hf isotopic
mapping include 1) high metadata precision, as determined in situ;
and 2) the abundance of data due to its simple analytical process and
relatively low cost. Conversely, it should be noted that εHf(t) values
from different zircon grains in a sample or different sites in a zircon
vary greatly, up to more than ten ε units. Thus, the representative
values, mostly median data (Wang et al., 2016; Xu et al., 2021) and
weighted average data (Hou et al., 2015), for Hf isotopic mapping are
distinct according to different authors. However, the whole-rock Nd
isotopic value is an objective average of a specific whole-rock sample
and can be an unbiased method for the isotopic mapping of large
areas and have more advantages than Hf isotope mapping of
subjectively selected zircons (Hou and Wang, 2018).

The Sanjiang orogenic belt (SOB) has attracted considerable
interest among the scientific community in terms of its
orogenesis and metallogenesis (e.g., Yin and Harrison, 2000;
Hou et al., 2007; Deng et al., 2014a; Wang et al., 2014).
Several studies have focused on Lu-Hf isotopic mapping to
suggest the terrane boundary and mineralization of porphyry
Cu–Au, orogenic-Au, and rare earth element deposits (Wang
et al., 2016; Xu et al., 2021). Du et al. (2016) stressed that the
mapping of εNd(t) and εHf(t) using the method of Kriging
interpolation proposed that the Changning-Menglian suture
was the boundary of two different regional terranes, and
indicated the empirical correlation between Nd isotopic
mapping and differential mineralization. For instance, the
granite-related W-Sn deposits occur in low-εNd(t) and -εHf(t)
areas, while the porphyry-skarn Cu–Mo mineralization is found
in high positive εHf(t) and higher negative εNd(t) regions.

However, some fundamental issues are not fully explained,
for example, the crustal structures and the tectonic evolutionary
history reflected by both εNd(t) and TDM values and the
relationship between Nd isotopic mapping and further
reasons for the appearance of some types of metallic
mineralization, such as Pb‒Zn‒Cu‒Ag and W–Sn deposits,
as well as the Cu–Mo mineralization mentioned above. These

issues are critical for understanding the crustal evolution and
spatiotemporal distribution of distinct mineral deposits.

In order to further explain the issues mentioned above, we
collected more isotopic data of igneous rocks (665 published whole-
rock Rb-Sr and Sm-Nd isotopic analyses), which provided more
details about the crustal composition. The isotopic mapping was
contoured with the reverse distance weighted interpolation method,
which was better for processing the small dataset. Then, we present
an overview and re-evaluation of the Cu–Au–(Mo) mineralization,
skarn, and hydrothermal vein-type W–Sn and Ag–Cu–Pb‒Zn
deposits in the SOB. We focus on 1) the spatiotemporal
distribution of Nd isotopic data of igneous rocks; 2) the
distribution and formation of juvenile and old components; and
3) the relationships between Nd isotopic mapping and different
mineralizations.

2 Geological setting

The Sanjiang orogenic belt (SOB) is located within the eastern
Himalayan-Tibetan orogen and is composed of three major rivers:

FIGURE 1
Simplified geologicalmap of the Sanjiang orogenic belt, modified
after Deng et al. (2014a) and Xu et al. (2021). Abbreviations: ZYA,
Zhongzan-Yidun arc terrane; EQST, Eastern Qiangtang-Simao
Terrane; BT, Baoshan-Tengchong Terrane; and SCC, South
China Craton.
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Jinshajiang, Lancangjiang, and Nujiang (Hou et al., 2007; Deng et al.,
2014a). Several major continental terranes are preserved in the SOB,
including Zhongzan, Eastern Qiangtang, Western Qiangtang, a part
of Lhasa, a part of Southern China, Simao, Baoshan, and Tengchong
from north to south. The boundaries between the units are major
sutures or magma arcs (Deng et al., 2014a; Wang et al., 2014; Deng
et al., 2014b). We adopted the “terrane” division scheme of Xu et al.
(2021) to simplify the calculation (Figure 1). The Sanjiang orogenic
belt is derived from two stages (Deng et al., 2020): accretionary
orogenesis in the Palae-Mesozoic with the subduction of the Tethys
and collisional orogenesis that began in the Cenozoic
(approximately 65 Ma) (Hou et al., 2020).

2.1 Zhongzan-Yidun arc terrane

The Zhongzan-Yidun arc (ZYA) terrane is a combination of the
Zhongzan block and the Yidun arc, bound by the Garze-Litang
suture to the east and by the Jinshajiang suture to the west (Figure 1).
The Zhongzan block could have been derived from the Yangtze
block because they have similar Paleozoic stratigraphic sequences
and paleontological fossils (Chang, 2000; Xiao et al., 2004), and it is a
result of the opening of the Garze-Litang ocean, which is a branch of
the Paleo-Tethys (Deng et al., 2020) from the late Paleozoic. The
Jinshajiang Ocean is another branch of the Paleo-Tethys and was
closed in the Middle Triassic (Deng et al., 2020).

Magmatism in this terrane mainly occurred in the Late Triassic
and Late Cretaceous periods (Xiao et al., 2004). The former is found
as medium-to high-K calc-alkaline diorite, monzonite, granodiorite,
granite, and volcanic rocks (Qu et al., 2002; He et al., 2013; Wu et al.,
2014). The latter is mainly found as monzogranite, biotite granite,
and granitic porphyry (Qu et al., 2002; Wang et al., 2014).

2.2 Eastern Qiangtang-Simao terrane

The eastern Qiangtang-Simao (EQST) terrane, which
extends from north to south, constitutes the main and
central parts of the SOB (Figure 1). The Jinshajiang-
Ailaoshan suture, which is located to the east of the EQST,
was the westward subduction area of the branch of the Paleo-
Tethys ocean, while the Longmucuo-Shuanghu-Changning-
Menglian suture located to the west was the eastward
subduction area of the main Paleo-Tethyan (Deng et al.,
2014a; Deng et al., 2014b). The coupling of the subduction of
the Proto-Tethys oceanic plate underneath the Simao block and
the opening of the Paleo-Tethys ocean suggests that the Eastern
Qiangtang and Simao blocks are two Gondwana-derived
microcontinents (Usuki et al., 2013; Deng et al., 2014a). The
Eastern Qiangtang block was amalgamated with the Western
Qiangtang subterrane as the Qiangtang Terrane in the early
Jurassic (Hou et al., 2003; Yang et al., 2014) and is the south-
central part, while the Lhasa terrane, which is derived from the
Australian margin of the Gondwana supercontinent (Zhu et al.,
2013), is the southernmost part.

Magmatism in the area developed in the late Permian to very
early Triassic in continental-margin arcs, such as the Jomda-
Weixi arc along the northern Jinshajiang-Ailaoshan suture (Zi

et al., 2012a; Zi et al., 2012b) and the Yaxuanqiao arc in the
southern part (Fan et al., 2010; Cai et al., 2014; Xu et al., 2016).
The Changning-Menglian Paleo-Tethys subducted beneath the
Simao Terrane, resulting in the formation of the Yunxian-Jinggu
Arc. This Arc was intruded by the Lincang granitic pluton, which
consists of a peraluminous S-type granite with U‒Pb zircon aging
from 248 to 203 Ma (Peng et al., 2008; Dong et al., 2013; Peng
et al., 2013). It is worth noting that the Eocene‒Oligocene
potassic porphyry intrusions are large and widespread along
the Jinshajiang-Red River deep-crustal fault zone in the
Eastern Qiangtang block (Yang et al., 2014).

2.3 Baoshan-Tengchong Terrane

The Baoshan-Tengchong (BT) terrane consists of the
Baoshan subterrane and Tengchong subterrane, which were
once located at the northern margin of Gondwana and
accreted to the Eurasian continent in the late Mesozoic
(Metcalfe, 2006; Jin et al., 2014) (Figure 1). The Baoshan
subterrane experienced a similar trend, but the accretionary
time might have been in the late Paleozoic to early Mesozoic
(Metcalfe, 2013). The Changning-Menglian suture located to the
east of the BT might have preserved the subduction of the Proto-
Tethys and Paleo-Tethys oceanic plates (Deng et al., 2014a; Xu
et al., 2021). This suture correlates with the Longmu Tso-
Shuanghu Suture in eastern Tibet.

FIGURE 2
εNd(t) and ages of samples from the SOB.
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2.4 South China Craton

The South China Craton (SCC) is a block with an Archean
history (Gao et al., 1999). Continuous subduction and mantle plume
activities following the breakup of the Columbia supercontinent
resulted in large volumes of Neoproterozoic volcanic rocks (Xu et al.,
2021). The Jinshajiang-Ailaoshan suture, which is accompanied by
Eocene–Oligocene alkaline magmatic rocks along the western
margin of the SCC (Figure 1), was a result of the India-Asia
continental collision during the Cenozoic and lithospheric
thickening (Wang et al., 2016; Xu et al., 2021).

3 Petrography of samples

Granitoid and mafic igneous rocks occur widely in the SOB,
which consists of several parallel orogens and are the result of
distinct orogenic activities (Deng et al., 2013). The collision between
India and Asia was initiated at approximately 70–65 Ma (Yin and
Harrison, 2000), and the samples collected can be divided into two
groups: pre-collisional (≥65 Ma) and syn-collisional (<65 Ma) (Hou
et al., 2020). It is important to note that the granite samples or pluton
that were heavily contaminated by crustal material may show lower
or uneven εNd(t) values, thus masking the real information of the
crustal component (Maier et al., 2000). These samples with possible
bias were excluded from the analyses to present the true distribution
of Nd isotopic values. The data points plotted on the map (Figure 2)
that have different colors show that the εNd(t) values are not very
different from other adjacent data points, which could be from the
same granite intrusions unless the intrusion ages of the samples are
very different. The pre-collisional period covers a long span of time,
from the Paleozoic to the entire Mesozoic, and the 79 samples
collected were derived from all terranes except the SCC. These
samples consisted of monzogranite, granodiorite, granite,
leucocratic granite, and gneissose granite.

The other 141 samples collected during the post-collisional
period occurred predominantly in the BT and SCC and partly in
the EQST; none occurred in the ZYA. The latest U‒Pb age of the
samples (YS-60) is 22.4 Ma from the Red River shear belt (Zhang
and Schaerer, 1999). The lithology of these relatively new samples is
similar to that of the older samples and includes leucocratic granite,
monzonitic granite porphyry, biotite granite porphyry, granite
porphyry, and granite.

Overall, these igneous rocks are widespread in all terranes of the
SOB, and their ages were obtained by the U‒Pb zircon method.
These can be used to constrain the percentage of old continental and
young mantle-derived juvenile components at the terrane scale
(Wang et al., 2009; Hou et al., 2020).

4 Sr-Nd isotopic characteristics and
mapping

4.1 Nd isotopic interpretation

Previously published Nd isotopic data from 220 samples were
used to evaluate the crustal evolution in this region over time based
on existing zircon U‒Pb ages or other isotopic ages, such as Ar–Ar

or K–Ar ages. To produce a data set for the SOB, a consistent
method was used to recalculate the data (Maboko and Nakamura,
1996). The specific calculation methods and parameters are as
follows (Jacobsen and Wasserburg, 1980; Wu et al., 2002).

ϵNd t( ) � (143Nd/144Nd[ )
i
/(143Nd/144Nd)CHUR − 1]×104

(143Nd/144Nd)i � (143Nd/144Nd) − (147Sm/144Nd) eλt − 1( )
fSm/Nd � (147Sm/144Nd)/(147Sm/144Nd)CHUR − 1

TDM1 � 1
λ
ln 1 + (143Nd/144Nd) − 0.51315

(147Sm/144Nd) − 0.2137
⎡⎣ ⎤⎦

TDM2 � TDM1 − TDM1 − t( ) fCC − fS( )/ fCC − fDM( )
where λ = 6.54×10−12, (143Nd/144Nd)CHUR = 0.512638, (147Sm/
144Nd)CHUR = 0.1967, fCC=−0.4, and fDM = 0.08592.

4.2 General characteristics

The data that were collected and recalculated are listed in
Supplementary Table S1. The age-corrected initial Sr isotopic
ratios showed large variations from 0.700899 to 0.760444
(Figure 3A), but most were between 0.703 and 0.715
(Figure 3B). The εNd(t) values varied from −14.56 to 5.94, and

FIGURE 3
εNd(t) vs. (87Sr/86Sr)i diagram of the SOB.
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most were <0 and >−10 (Figure 3). Positive εNd(t) values from the
EQST and SCC terranes were observed to a large extent in mafic
rocks, followed by felsic dikes.

Additionally, most samples had one-stage model ages (TDM)
between 0.5 and 3.2 Ga, with fSm/Nd values ranging from −0.68 to
0.75, and most rocks had fSm/Nd values between −0.2 and −0.6
(except 55 samples) (Figure 4). The model ages generally become
older with increasing fSm/Nd, which shows a linear correlation.
Notably, the TDM of the rocks from the syn-collisional stage was

usually younger than that from the pre-collisional stage. As
shown in Figure 5, TDM2 was applied only to samples with
values of fSm/Nd > −0.2 and < −0.6 (Wang et al., 2009). The
model age increased with decreasing εNd(t) values, which
suggests a linear correlation.

4.3 Nd isotopic contour mapping

Since the dataset was small, it was reasonable to apply the inverse
distance weighted interpolation method, which uses the 12 nearest
neighbors at a “power” (Mole et al., 2014; Hou et al., 2015), in
ArcGIS to contour the εNd(t) and TDM maps (Wang et al., 2009;
Mole et al., 2014; Wang et al., 2016). During the data processing, we
attempted to minimize the subjective influence caused by manual
screening to show the original distribution of the data as much as
possible. All Nd isotope data were classified by the geometric interval
method in ArcMap to ensure that the variation between intervals
was fairly consistent and that the amount of data in each class range
was approximately the same. Particularly, regarding the samples
with different Nd isotope values in the same geographical
coordinates, the arithmetic mean values were used as the points
for mapping to avoid the bias caused by random selection in ArcGIS.
As a result, 199 Nd isotopic values were used for mapping. The
εNd(t) values of rocks in the SOBwere mostly negative, while positive
values were observed in the southern, northern, and central parts of
the EQST. The most negative values of εNd(t) occurred in the BT and
SCC, and the other areas contained εNd(t) values
between −9.3 and −1.9 (Figure 6). Similarly, the youngest Nd
model ages (0.58–0.87 Ga) occurred in the same position as the
εNd(t) values in the EQST, and the oldest (2.29–3.03 Ga) was found

FIGURE 4
fSm/Nd

−vs. TDM1 diagram of the SOB.

FIGURE 5
εNd(t) vs. the Nd model age; TDM2 is used only for samples when
fSm/Nd > −0.2 and < −0.6.
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in the SCC and BT, while the other Nd model ages were mostly
between 2.29 and 1.17 Ga (Figure 7).

5 Discussion

5.1 Distribution and formation of crustal
components

Hf–Nd isotopic data were used to distinguish between juvenile
and old crustal components (Wang et al., 2009; Mole et al., 2013;
Wang et al., 2016; Granseth et al., 2021; Xu et al., 2021). Juvenile
crust, with isotopic values that plot on or close to the depleted
mantle evolution line, is regarded as crustal material that is
generated directly from the depleted mantle or remelted from
material recently extracted from the depleted mantle. In contrast,
the old or reworked crust refers to the preexisting crust that was
remobilized by partial melting and/or erosion with sedimentation
(Belousova et al., 2010; Hawkesworth et al., 2010; Hou et al., 2015).
The parent and daughter elements of the Sm-Nd isotope system are
both rare earth elements (REEs) and generally behave similarly,
which can be used to effectively suggest crustal processes and the
source of the rocks in question (DePaolo, 1988; Champion, 2013).
During the formation of juvenile crust, the Earth’s crust is more
enriched in Nd and Sm and has lower Sm/Nd ratios than the
complementary depleted mantle reservoir as a result of

lanthanide contraction. In other words, εNd(t) values vary over
time because of the different Sm/Nd ratios of mantle and crustal
reservoirs (Champion, 2013). The values of εNd(t) and Nd model
ages are tools for distinguishing the possible sources of magma and
the formation age of crustal source rocks separately (Hou andWang,
2018) (Figure 8). A comparison of Hf isotopic mapping from
previous studies (Figure 9) and Nd isotopes are discussed below.

FIGURE 6
Contour map of εNd(t) in the SOB. The unspecific legends are the
same as those in Figure 1.

FIGURE 7
Contour map of Nd model ages in the SOB. The unspecific
legends are the same as those in Figure 1.

FIGURE 8
εNd(t) vs. time, modified after Champion. (2013) Figure 8 εNd(t) vs.
age(a) and Nd model age vs. age(b).
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5.1.1 The juvenile component
The Nd isotopic system has become an important tool for

constraining the age and mechanism of continental formation
(Champion and Huston, 2016). For the SOB, high εNd(t) values
(>−1.9) occur mostly in three domains, as observed through Hf
isotopic mapping (Figure 9), while low εNd(t) values (<−1.9) are
observed over the whole horizon (Figure 6).

In the northernmost part of the EQST, high εNd(t) values with
low Nd model ages (Figures 6, 7) occur near the Jinshajiang
Suture in the east and the Bangong-Nujiang Suture. The ages of
samples with high εNd(t) values were between 43 and 37 Ma
(Figure 2), while the ages of the other samples around the area
varied from 220 to 75 Ma. This indicates either that the juvenile
component resulting from the pre-collisional stage shrank or
even partially disappeared since the collision transformed the
original juvenile crust or that no crust-derived magmatic activity
occurred near the Bangonghu-Nujiang suture due to a lack of
remelting during the collisional period (Hou et al., 2020). This
shows that subduction and collision might have resulted in a
continuous accretion of the juvenile component.

In the accretionary orogenic belt, juvenile materials are either
collaged in the orogenic belt as a residual oceanic crust or injected
into the crust as mantle-derived arc magma, resulting in the
formation and growth of continental crust (Hawkesworth et al.,
2010). With the subduction of the oceanic lithosphere, the upper
continental lithosphere often experiences transformation and
destruction; as a result, the old crust might have been subducted

and eroded when the juvenile lower crust was formed (Collins et al.,
2011). These geological processes could also have occurred in the
Tethys subduction accretionary orogenic stage before the formation
of the Tibetan Plateau. During this period, mantle arc magma
injection led to vertical crustal growth, and the juvenile crust was
preserved in the continental collision orogenic belt as a magma arc
and arc root (Zhang et al., 2020).

Similarly, in the center of the EQST, high εNd(t) values occupy a
small space where the ages of the samples are approximately 35 Ma
(Lu et al., 2013; Liu et al., 2017; Zhou et al., 2019), which is a part of
the post-collisional stage. The rock type of these samples includes
adakite-like monzogranite, potassic igneous rock, and barren
porphyrite, and these felsic rocks were likely formed through
crystal fractionation because 1) the felsic rocks have Sr-Nd
isotopic components similar to the coeval mafic rocks
(shoshonitic rocks) exposed in the western Yangtze (Liu et al.,
2017); 2) the mafic rocks have been interpreted to be products of
the partial melting of an enriched lithospheric mantle (Guo et al.,
2005); and 3) the occurrence of mantle xenoliths (pyroxenite) within
the Jianchuan and Xiaoqiaotou intrusions indicates that the source
of the rocks should be in the lower thickened crust (approximately
55 km) and that they were derived from an enriched lithospheric
mantle source (Zhao et al., 2004). In summary, the coeval
shoshonitic and potassic rocks appear to be associated with
partial melting of the residual metasomatized lithospheric mantle
as well as with the thickened lower crust in the Eocene, which means
that continental growth occurred in the post-collisional stage.

In contrast, the εNd(t) values of granites in the BT, which have
ages between 53 and 65 Ma, are very positive (−13.9~−9.3) (Chen
et al., 2007; Chen et al., 2015), while the Nd model ages of the rocks
are old (>1.53 Ga). The source region of these granites, which is
different from that cited above, might be the continental crust; in
other words, they mainly originated from intracrustal reworking
during tectonic events, since almost all isotopic characteristics, such
as the old Nd model ages (Figure 8), low εHf(t) values (−24 ~ −4)
(Chen et al., 2007; Chen et al., 2015) and low δ18O values (6.6–8.3‰)
(Chen et al., 2015), suggest this possibility.

In the southeasternmost part of the EQST, the highest εNd(t)
values correspond to the Ailaoshan Suture and the Yaxuanqiao
Arc, and the samples used in this study can be divided into two
groups by formation age: ~230 Ma (Liu et al., 2014) and ~35 Ma
(Xin et al., 2020). The former does not contain coeval or earlier
mafic-intermediate rocks, which indicates that these granites
originated from a basic lower crust (Liu et al., 2014). The
latter is similar to the former and lacks the coeval basic
components and geochemical characteristics of the thickened
lower crust (Xin et al., 2020). The Ailaoshan high-grade
metamorphic belt is a complex derived from various
petrographic compositions and formation ages. It includes
granodiorite dikes (761–829 Ma) (Qi et al., 2012) and
mylonitic porphyritic monzogranite (30.95 Ma) (Cao et al.,
2012). This belt was intensively deformed by the left-lateral
shearing of the Ailaoshan-Red River between 30 and 17 Ma
(Tang et al., 2013). However, high εNd(t) values and young Nd
model ages do exist in the area, which suggests that some of the
materials are from the mantle.

In summary, the juvenile component is relatively dispersed in
the SOB and is mainly derived from the post-collisional stage.

FIGURE 9
Contour map of εHf(t) in the SOB, data from Xu et al. (2021).
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5.1.2 Old Nd model ages in the SOB
The Nd model ages (TDM) of the sample rocks increase from

the east (<1.24 Ga) to the west in the northern part (>1.24 Ga) of
the SOB (Figure 6). Although the overall Nd model ages are older
than those of the Chinese Altai (Wang et al., 2009), the difference
is not great in the north because of the lack of crust-derived
magmatic activity in the EQST, which is not discussed below.
This pattern also suggests that juvenile material was increasingly
added in the eastward direction, which might be evidence of an
episodic eastward extrusion of the Tibetan Plateau (Mo et al.,
2007). It is worth mentioning that TDM increases with
crystallization age in the pre-collisional stage, while it shows
fluctuations in the post-collisional stage (Figure 6).

The old Nd model ages boundary corresponds with the
results of the contour map of the zircon Hf crustal model
ages, which suggests that the Changning-Menglian sutures
mark an important boundary that divides the region into an
old, reworked crustal block and a juvenile crustal block (Wang
et al., 2016). The Changning-Menglian Suture is seen as the
boundary between Gondwana to the east and Cathaysia to the
west (Kapp et al., 2003; Wang et al., 2016). The distribution of Nd
model ages in this study provides additional evidence to support
this interpretation.

The ages of the peraluminous samples with old Nd model
ages are concentrated in the Ordovician (502–470 Ma) within the
BT (Figure 8) (Chen et al., 2007; Liu et al., 2009; Wang et al.,
2013), which corresponds with Cambrian-Ordovician magmatic
activity along the northern margin of East Gondwana and
represents magmatism during the post-Pan-African movement
(Yin, 2006; Wang et al., 2012; Zhu et al., 2012; Wang et al., 2015).
The source of the rocks with old model ages is the upper crust
with contributions from metasedimentary material (Chen et al.,
2007; Liu et al., 2009; Wang et al., 2013).

5.2 Nd isotopic mapping and relationships
with mineralization

Mo et al. (1993) stressed that the Zhongzan block,
sandwiched between the Ganzi-Litang Suture and Jinshajiang
Suture, was a breakaway part of the SCC. The old Nd model ages

of granites occurred in the ZYC, which is connected to the upper
middle part of the EQST through the Jinshajiang Suture
(Figure 7); these granites are mostly near the Yidun Arc, with
intrusion ages of 103.7 Ma to 75.2 Ma from the north to the south
(Qu et al., 2002), and older granites, such as the Daocheng
granite, have an age of 216 Ma (He et al., 2013). The samples
from the EQST also have an age of ca. 245 Ma (Wang et al., 2014).
The old Nd model age and low εNd(t) values may suggest that
these felsic rocks originated from the same ancient crust of the
SCC basement.

Many metal deposits occur in the SOB to form several metallogenic
belts. Figures 6–8 show a strong empirical correlation between the
different lithospheric architectures and the locations of distinct ore
deposits. All porphyry Cu deposits are confined to juvenile crustal
blocks, whereas skarn and hydrothermal vein-type W–Sn deposits are
located in the low-εNd(t) area, while skarn and hydrothermal vein-type
Pb‒Zn–Cu–Ag deposits occur between the two types of deposits
(Figure 6).

The Cenozoic porphyry-skarn Cu–Mo–(Au) deposits (Wang
et al., 2005; Hou et al., 2006; Lu et al., 2013) occur in the juvenile
crust within the EQST or along the suture with high εNd(t)
(−3.3–0) and young TDM ages (0.58–1.17 Ga). Representative
porphyry Cu–Mo–(Au) deposits in the SOB are the
Machangqing deposit [39 Mt ore, with 0.64% Cu and 56 Mt
with 0.08% Mo (Lu et al., 2013)], the Beiya Au deposit [26 Mt
ore, with 2.26 g/t Au, (Lu et al., 2013)], and many smaller
deposits, such as the Changan, Tongchang, and Yao’an
deposits. These deposits are generally associated with potassic-
enriched intrusions that were formed in the post-collisional stage
(Lu et al., 2013; Lu et al., 2013; Lu et al., 2015). However, no
significant porphyry Cu deposits were found in regions with low
εNd(t) values and old TDM ages. This distribution pattern also
occurs in Lhasa Terrane, as revealed by Hf isotopic mapping
(Hou et al., 2015). This comparison indicates that the juvenile
lower crust might have exerted first-order control on the
formation of the porphyry Cu deposits. In the SOB, the
juvenile component is mainly derived from the post-collisional
stage and characterized by high-K calc-alkaline signatures with
high Sr/Y values and εNd(t) values (e.g., Lu et al., 2013). Arc
magma interacted with the crust in an open environment; then,
the fO2 of magma decreased, which led to the accumulation of

FIGURE 10
Schematic illustration of different deposits, modified after Hou and Zhang. (2015).
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sulfides in the juvenile lower crust. At the post-collision stage, an
upwelling of the asthenosphere triggered the melting of metal
sulfide-rich crust, which resulted in the release of Cu into the
magmatic system as the material source of Cu deposits (Hou
et al., 2015). Furthermore, as representatives of the cumulates or
residuals of Neoproterozoic arc magmas, the amphibolite
xenoliths hosted by the Cenozoic stocks are enriched in Cu
and Au (Hou et al., 2017), which reinforces the conclusion
that the Cu–Au-enriched low-crustal cumulates might be the
metal source of the deposits, so the Cu–Mo–(Au) deposits
typically occur at the cratonic edges or sutures.

The W–Sn deposits are mainly located in the BT areas, with
negative εNd(t) (−13~−6) and εHf(t) values, and form the
Tengchong-Lianghe Sn metallogenic zone. Previous studies have
shown that the occurrence of these deposits tends to occur in the
Late Cretaceous to early Eocene (Jiang et al., 2012; Chen et al., 2014; Cao
et al., 2017; Sun et al., 2017), which is in concordancewith the collisional
timeline. A representative deposit, the Lailishan deposit, with an Ar-Ar
age of hydrothermal muscovite of 50.4 Ma (Cao et al., 2017), is a large
tin deposit located in the midwestern region of Tengchong. The tin
orebodies occur in the lower contact zones and the surrounding
fractured zones of the granitic intrusion, with a weighted mean
U–Pb age of 50.6 Ma (Hou et al., 2007; Cao et al., 2017). The
Lailishan granite is characterized by high K, F, and S contents and a
high initial 87Sr/87Sr ratio (Lu and Wang, 1993), and it is rich in Al
(Al2O3= 14.70%–15.27%), alkalis, Ca, REEs, and Ba (Sun et al., 2017),
which suggests that the granites are S-type and related to the crustal
anatexis. The εNd(t) values are most negative when the TDM ages are the
oldest. Both the geochemical characteristics and the results of Nd
isotopic mapping suggest that the related igneous rocks are likely
derived from the partial melting of predominantly ancient crustal
material, which is consistent with the conclusion that S-type
magmas are geographically related to W–Sn mineralization (Wang
et al., 2014). Correspondingly, the enrichment and mineralization of
W–Sn are not only related to the high differentiation of granitic magma
but also restricted by the composition of the source area. The origin of
W–Sn deposits is the partial melting of the sedimentary rocks, which
enriched the metal composition in the muscovite and biotite (Romer
and Kroner, 2015). The age of the intrusion is within the syn-collision
stage, which means the continental collision and subsequent crustal
thickening in the BT resulted in the formation of S-type granites (Zhu
et al., 2018) and related W-Sn deposits in the region (Sun et al., 2017).

Skarn and hydrothermal vein-type Pb‒Zn‒Cu‒Ag deposits,
such as the enormous Jinding Pb‒Zn deposit (200 Mt ore with
6.1% Zn and 1.3% Pb) (Xue et al., 2003; Leach et al., 2017) and the
Baiyangping Pb‒Zn‒Cu‒Ag deposit (Xue et al., 2000; Zou et al.,
2015), occur within the EQST with relatively low εNd(t) and old
TDM ages. The 40Ar–39Ar plateau age of silicification quartz in the
Baiyangping deposit is 62.7 Ma (Xue et al., 2003), and different
age dating methods and samples provide varied ages for the
Jinding deposit between 129 and 21 Ma (e.g., Yalikun et al., 2018;
Wang et al., 2022). However, almost all the Pb‒Zn–Cu–Ag
deposits that occur in the area have the Nd isotopic
characteristics of old crust, which indicates that the metal
source was likely to be crustal materials. Similarly,
geochemical and other isotopic characteristics, such as Pb
isotope results (Hao et al., 2017), also support this conclusion.

It is worth noting that the formation of the Pb‒Zn‒Cu‒Ag
deposits is controlled by trust-nappe structures (Hou et al., 2008).

In summary, the continent-continent collision of India and
Asia resulted in the formation of distinct metal deposits based on
the different locations and sources of partial melting. The
juvenile crust was the base of porphyry-skarn Cu–Mo–(Au)
deposits, and the melting of old crust or upper crust
contributed to the occurrence of W–Sn deposits and skarn
and hydrothermal vein-type Pb‒Zn‒Cu‒Ag deposits
controlled by trust-nappe structures (Figure 10).

6 Conclusion

Nd isotopic mapping of the Sanjiang Orogenic Belt reveals that
the εNd(t) values in this area are relatively low, but three domains
with relatively high εNd(t) values and young Nd model ages occur
within the Eastern Qiangtang-Simao Terrane, and the juvenile
component in the SOB is mainly derived from the post-
collisional stage, which could indicate continental growth.
Porphyry-skarn Au–Cu–(Mo) and orogenic deposits are clustered
in the relatively juvenile crust. W–Sn and Pb‒Zn‒Cu‒Ag deposits
are related to the old crust or upper crust.
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