AUTHOR=An Peng , Wang Wenfeng , Chen Xi , Zhuang Zhikai , Cui Lujie TITLE=Machine learning brings new insights for reducing salinization disaster JOURNAL=Frontiers in Earth Science VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2023.1130070 DOI=10.3389/feart.2023.1130070 ISSN=2296-6463 ABSTRACT=

This study constructs a machine learning system to examine the predictors of soil salinity in deserts. We conclude that soil humidity and subterranean CO2 concentration are two leading controls of soil salinity—respectively explain 71.33%, 13.83% in the data. The (R2, root-mean-square error, RPD) values at the training stage, validation stage and testing stage are (0.9924, 0.0123, and 8.282), (0.9931, 0.0872, and 7.0918), (0.9826, 0.1079, and 6.0418), respectively. Based on the underlining mechanisms, we conjecture that subterranean CO2 sequestration could reduce salinization disaster in deserts.