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This study constructs a machine learning system to examine the predictors of soil
salinity in deserts. We conclude that soil humidity and subterranean CO2

concentration are two leading controls of soil salinity—respectively explain
71.33%, 13.83% in the data. The (R2, root-mean-square error, RPD) values at the
training stage, validation stage and testing stage are (0.9924, 0.0123, and 8.282),
(0.9931, 0.0872, and 7.0918), (0.9826, 0.1079, and 6.0418), respectively. Based on the
underlining mechanisms, we conjecture that subterranean CO2 sequestration could
reduce salinization disaster in deserts.
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1 Introduction

Soil salinization is one major type of land desertification and degradation in the world,
which is a disaster to global resources and ecology (Dehaan and Taylor, 2002; Metternicht and
Zinck, 2008; Li et al., 2014; Singh, 2015; Savich et al., 2021). Such disaster not only brought great
impact and serious losses to food production, but also hindered the sustainable development of
agriculture (Kotb et al., 2000; Amezketa, 2006; Rengasamy, 2016; Okur and Örçen, 2020;
Hassani et al., 2021). The influences of soil salinization disaster to other aspects of society and
economy are also inevitable (Schofield et al., 2001; Ghollarata and Raiesi, 2007; Ding et al., 2011;
Wang and Li, 2013; Nachshon, 2018; Yang et al., 2020). The disaster leads to a low rate of soil
utilization and a sharp decline of forests (De Pascale et al., 2005; Li-Xian et al., 2007; Xiaohou
et al., 2008; Bouksila et al., 2013; Wu et al., 2014; Teh and Koh, 2016; Zhou et al., 2017; Li et al.,
2018; Zhuang et al., 2022). Ecologists have made great efforts to develop theory and
methodology for reducing soil salinization disaster (Lavado and Taboada, 1987; El Harti
et al., 2016; Wang et al., 2019). But until now, the degree of global soil salinization is still
increasing (Tian and Zhou, 2000; Aragüés et al., 2015; Jesus et al., 2015).

Considering its threats to the earth environments, any theory and methodology for
reducing soil salinization disaster is worthy to be discussed (Welle and Mauter, 2017). In
the era of artificial intelligence, machine learning has been introduced in the frontier of earth
science (Jiang et al., 2018; Huang et al., 2020a; Huang et al., 2020b; Chang et al., 2020; Huang
et al., 2020c). The machine learning system is mainly composed of input layer, output layer and
hidden layers (Chahal and Gulia, 2019). After obtaining a training set, the learning system can
extract effective features (LeCun et al., 2015). These features are connected by artificial neurons
(Hao et al., 2016). The neurons receive data from the input layer, make computation with
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assigned weights—passed through the activation function in the
hidden layers, and finally work out the results in the output layer
(Coşkun et al., 2017). By testing the trained network, we can assess the
errors between the outputs and correct results (Kato et al., 2016). Some
latest researches constructed 3-stages learning systems (the training
stage, validation stage and testing stage) to improve the generalization
capability (Gatos et al., 2019; Skrede et al., 2020; Zhuang et al., 2021).

Our objectives of this study are 1) to construct a machine learning
system and examine the predictors of soil salinity in a desert by this
learning system, 2) to evaluate the most interpretable proportion of the
leading predictors, which will highlight the unneglectable contribution
of the subterranean CO2 concentration to soil salinity, and 3) to
analyze the underlining mechanisms for such contribution and
according to these mechanisms, to present new insights for
reducing salinization disaster in deserts. The organization of the
whole paper is as follows. In Section 2, we will construct the
machine learning system for examining the predictors, along with
some preliminaries and the driven data. Principal components
analysis (PCA) is integrated with the artificial neural network
(ANN) and long-short term memory (LSTM). Performance of
PCA-ANN-LSTM will be presented and the leading predictors will
be determined in Section 3. We will also assess the largest proportion
of two leading predictors in explaining soil salinity and further clarify
their leading roles. Based on the results from PCA-ANN-LSTM
calibrations, in Section 4, some new insights will be expanded for
reducing soil salinization disaster and the underlining mechanisms

will be theoretically analyzed. The conclusions and next research
priorities are presented in Section 5.

2 The machine learning system

2.1 The learning mechanisms

The learning mechanisms depend on not only the problem itself
but also the components of the data. As stated in Section 1, the
considered problem is to construct a machine learning system for
examining the potential predictors of soil salinity in a desert by this
learning system. That is, the input data of the system is environmental
variables (meteorological, soil, and subterranean factors), while the
output data is soil salinity. These data were collected from the Manas
River Basin of Xinjiang Uygur autonomous region, which is located at
the southern periphery of the Gubantonggut Desert, China, as shown
in Figure 1. We established five stations by integrating 13 sensors to
collect the meteorological, soil and subterranean data, including the
CO2 concentration 3 m beneath the soil (Cs) and 10 cm above the soil
(Ca), the soil temperature (Ts), humidity (Hs), alkalinity (pH) and
salinity (Y) at 10 cm depth, the atmospheric temperature (Ta),
humidity (Ha), air pressure (AP), wind speed (WS), wind direction
(WD), rainfall (R), and groundwater level (WL). In order to develop a
novel deep neural network to detect the potential environmental
controls of soil salinity, Y is employed as the dependent variable of

FIGURE 1
Spatial distribution of the five automatic monitoring stations where the meteorological, soil and subterranean data are collected for the present study.
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the network and the other 12 environmental factors are naturally
employed as independent variables. The basic learning mechanisms of
a neural network can be described as follows. The neuron input x was
calculated from the model established in (Zhuang et al., 2021).

Alternatively, we integrated the principal component analysis
(PCA) and the artificial neural network (ANN) to examine the
potential control of Cs, where PCA was improved by the singular
value decomposition (SVD) (Van Loan, 1976; Klema and Laub, 1980;
Paige and Saunders, 1981; Mandel, 1982; Stewart, 1993). SupposeΘi is
the weight matrix and g(x) is the activation function. Let z(j) be the
pulses to the jth layer, which results in a(j). Let hθ(x) be the result in
the output layer.

That is,

z j( ) � Θ j( )a j−1( ), a j( ) � g z j( )( ) (1)

Hence the learning mechanisms can be formulated as
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where the backpropagation process is monitored by the loss function

J Θ( ) � − 1
m
∑ (YT.plog (hθ x( )).p 1 − YT( ) (4)

2.2 The learning processes

Differing from (Zhuang et al., 2021), we further introduce a brain-
inspired mechanism in the learning processes. That is, we further
improve SVD-PCA-ANN by long-short-memory neural network
(LSTM) (Salman et al., 2018; Ali et al., 2020; Ahmad and Zhang,
2022; Gao, 2022; Rusnac and Grigore, 2022) and proposed a novel
deep neural network PCA-ANN-LSTM to detect the potential
environmental controls of soil salinity in the desert. The output of
the SVD-PCA-ANN will not be directly input into LSTM. Instead, we
utilize the errors data of the SVD-PCA-ANN model as the input data
of LSTM. That is, we employ LSTM for learning and reducing the
errors to improve the robustness when detecting the potential
environmental controls of soil salinity and analyzing the
contributions of the subterranean CO2 concentration to the soil
salinity.

The necessity to further integrate with LSTM in the learning
processes can be explained as follows. In ANN, it is assumed that the
output only depends on the current input, which is not true in the real
world (Gu et al., 2019). LSTM allows us to infer the potential
relationships among the content of the context, because it is a
recurrent neural network (RNN)—the output depends on the
current input and memory (Klimov et al., 2020; Huang et al., 2021;
Li et al., 2022; Gorgij et al., 2023). The basic idea of RNN is to build a
hidden state for acquiring the information at the previous time point

and the global parameters are calculated from the current time and all
previous memories. Each cell in RNN shares these parameters to
reduce the amount of calculation. For LSTM, the current input is
linked with the state of the hidden layers in the previous time through
three gates—the input gate (information adding), forgetting gate
(information discarding) and output gate (Robinson and Zaffaroni,
1997).

A sketch of the learning processes is shown in Figure 2, which
construct cells in the machine brain (O’Doherty et al., 2011; Wang
et al., 2020; Wang et al., 2021; Wang et al., 2022). We can understand
the LSTM learning process with the cells’ states. For a cell state Ct−1
with the input xt and hidden state ht−1, let σ be the sigmoid function.
The retaining or discarding ratio is

ft � σ Wf ht−1, xt[ ] + bf( ) (5)

where bf is the bias at the current cell state.
Define the trained cell it and the corresponding cell state ~Ct as

it � σ Wi ht−1, xt[ ] + bi( ), ~Ct � tanh WC ht−1, xt[ ] + bC( ). (6)
Then updates of the cell state can be formulated as

Ct � ftpCt−1 + itp~Ct (7)
and the calculation formula for the next hidden state is

ht � σ Wo ht−1, xt[ ] + bo( )ptanh Ct( ). (8)
The pseudocode of the whole learning processes based on the

PCA-ANN-LSTM algorithm is shown in Figure 3, where the detailed
steps to detect environmental controls of soil salinity in the desert are
carried out through the machine learning framework characterized in
Figure 2. In order to exclude the interactions among the 12 factors, we
employ partial least squares regression (PLSR) and will compare the
performance of PLSR-ANN and PCA-ANN with the proposed
method.

The following three indices are calculated to quantify the
robustness of PCA-ANN-LSTM in previewing the possible
environmental controls of soil salinity, which are also utilized in
the comparison with PCA-ANN and PLSR-ANN. For a reliable
comparison, the input data was uniformly divided into three
subsets for all the learning processes—one for the training stage
(half of the data), one for the validation stage (one-quarter of the
data), and one for the testing stage (one-quarter of the data).

(1) The coefficient of determination:

RMSE �
∑i yi − y′

i( )2
N

√
(9)

(2) The root-mean-square error:

R2 � 1 − ∑i yi − y′
i( )2∑i yi − �y( )2 (10)

(3) The ratio of prediction to deviation:

RPD �
∑y′2

i − ∑y′2i
n[ ]/ N − 1( )( )1/2

∑i yi − y′
i( )2 − ∑ yi − y′

i( )[ ]2/N{ }/N − 1( )1/2 (11)

where yi is the true value, y′
i is the predicted value, �y is the average of

the true value, and N is the number of environmental variables.
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3 Performance of the system

3.1 Efficiency of the learning processes

The contributions of twelve potential predictors to soil salinity in
linear (PCA) and non-linear (ANN) relationships were determined
together within a minute, implying a high efficiency of the main
learning processes (LSTM only learned the errors from PCA-ANN).
The learning results indicate that all the considered factors
(i.e., environmental variables) can potentially influence the
variation in the data of soil salinity in deserts, as shown in
Figure 4. The first leading contributor is Hs and the contribution
of Hs to soil salinity is 71.33%. The underlining mechanisms are easy
to be understood. The status of soil salinization in deserts is restricted
by the law of soil water and salt movements. Salt in soil moves with soil
water—salt is transported to the surface with water in the evaporation
process, and after evaporation, salt accumulates in the surface soil. The
water infiltrated by rainfall in deserts can also bring salt to the deep soil
layers. For a long time, there is no rainfall in the desert, the salt brought
to the surface by evaporation is muchmore than the salt brought to the
deep soils by infiltration leaching, the soil is in a salt accumulation
state and salinization is aggravated.

To our surprise, Cs is the second leading contributor and its
contributions to soil salinity is 13.83%. The possible mechanisms
could be linked with the soil CO2 absorption processes. Such
absorption was frequently observed in deserts ecosystems and has
been attributed to abiotic processes. One conjecture of these abiotic

processes is that CO2 reacts with moisture in the soil to form carbonic
acid and dissolve calcium carbonate. But such reaction is not enough
to explain the absorption intensity. Another conjecture is that the
absorbed CO2 has gone into deep cycles. If these conjectures were true,
then soil salinity and subterranean CO2 concentration will be linked in
the reaction and deep cycles. The learning results indicated that the
contribution of Cs to soil salinity is approximated to a sum of the
contributions the other ten potential predictors (the sum value is
14.84%). It is also worthy to note that Ca (with a contribution=3.56%)
and WS (contribution=3.77%) are also leading factors. Their
contributions are almost equal and the total contribution of them
two (7.33%) is approximated to the total contribution of the rest eight
factors (7.51%). But some of the rest eight factors (e.g., pH) have been
thought to be closely related to soil salinity. Hence, it is quite necessary
to prove the robustness of the learning system, which will be done in
Section 3.2.

3.2 Robustness of the learning system

The coefficient of determination (R2), the root-mean-square error
(RMSE) and the ratio of prediction to deviation (RPD) of the learning
system at the training, validation, and testing stages with 200 epochs
are respectively shown in Figures 5–7, and the optimized values are
shown in Table 1.

The lower R2 values of PCA-ANN at the training stage (R2 =
0.9891), the validation stage (R2 = 0.9844) and the testing stage (R2 =

FIGURE 2
The structure diagram for detecting the potential controls.
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0.9764) means accurate predictions. Epochs in Figure 5 has displayed
the learning processes. The learning system not only indicates a high
prediction accuracy, but also indicates small errors. The RMSE values
of the learning system at the training, validation, and testing stages are
0.0849, 0.1086, 0.1198, respectively. This is a degree of dispersion (not
an absolute error), which further demonstrated the effectiveness of the
learning system. Epochs in Figure 6 also reflect the stability of the
learning system. In order to further confirm the prediction ability of
the learning system, RPD is introduced to build a new emergency
response process in decision-making and make up for the
disadvantages of R2 and RMSE. The RPD values of the learning
system at the training, validation, and testing stages are 1.4568,
1.1042, 0.9703, respectively. This finally demonstrated the
robustness of the learning system. Epochs in Figure 7 also confirm
the stability of the learning system.

As a cross validation, the R2, RMSE, RPD values were also
calculated when PCA is replaced by PLSR. PLSR is also based on a
linear relationship and differing from PCA, PLSR excludes the
interactions among the twelve environmental factors. Performance
of PLSR-ANN at the training stage (R2 = 0.9952, RMSE = 0.0522,
RPD = 2.3451), the validation stage (R2 = 0.9922, RMSE = 0.0787,
RPD = 1.4763) and the testing stage (R2 = 0.9868, RMSE = 0.0688,

RPD = 1.7906) indicate more accurate predictions. These results are a
little better than the performance of PCA-ANN. The final
performance of the whole system PCA-ANN-LSTM is better than
both PCA-ANN and PLSR-ANN. The R2 values of PCA-ANN-LSTM
at the training, validation, and testing stages are 0.9924, 0.9931, 0.9826,
respectively. The RMSE values of PCA-ANN-LSTM at the training,
validation, and testing stages are 0.0123, 0.0872, 0.1079, respectively.
The RPD values of PCA-ANN-LSTM at the training, validation, and
testing stages are 8.282, 7.918, 6.0418, respectively. Therefore, the
learning system PCA-ANN-LSTM is recommended for subsequent
studies when examining potential predictors of soil salinity in deserts.

4 Discussions

Soil salinity has been widely used to describe the degree of soil
salination, but in the previous studies, the dynamics of soil salinity are
few linked with the CO2 concentration above or under the ground
(Singh, 2016). A series of latest studies have demonstrated abiotic soil
CO2 absorption in the alkaline land, which is closely related with salts
in the soil (Chen et al., 2013). Until now, the mechanisms of such CO2

absorption have not been fully understood. Results from the present

FIGURE 3
Pseudocode of the learning processes based on PCA-ANN-LSTM.
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study indicate that subterranean CO2 concentration and the
atmospheric CO2 concentration around the soil can both influence
soil salinity in deserts. These results also present further evidences for
the conjecture that the abiotic CO2 absorption by saline-alkali soils
were resulted from subterranean CO2 sequestration in reaction of soil
salts, CO2, and moisture.

We hence further hypothesize that the soil salination processes in
deserts could be affected by such a subterranean CO2 sequestration,
since based on this new hypothesis, the underlining reaction of salts,
CO2, and moisture in the soil would further link the dynamics of
subterranean CO2 concentration with soil salinity. Alternatively, we

further hypothesize that the abiotic soil CO2 absorption in deserts
could influence the subterranean CO2 concentration. If this hypothesis
were true, the results from the learning system would be well-
explained. During the reaction of salts, CO2, and moisture in
different soil layers, soil salinity is changing (Wang et al., 2016a),
where both subterranean CO2 concentration and the atmospheric CO2

sequestration can play significant roles. This brings new insights for
reducing salination disaster. Hypothesizing that we can reduce
salinization disaster through the new insights, we can mediate the
subterranean CO2 concentration through the CO2 storage and
sequestration technologies. In response to the global climate

FIGURE 4
The determined contributions of twelve factors to soil salinity.

FIGURE 5
The coefficient of determination of the learning system at the training, validation, and testing stages with 200 epochs.
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change, the world has made commitments on the peak of CO2

emissions and the targets to achieve carbon neutrality (Chapin
et al., 2006; Wang et al., 2015a). Under this goal, as an important
technological approach to achieve large-scale low-carbon utilization of
fossil energy, CO2 capture, utilization and storage technology has
become a hot research topic (Tapia et al., 2018). It was recognized that
the geological storage potential of CO2 is great, and the deep soil layers
present the main space for CO2 storage (Orr, 2018). Collaborating this
technology with the above hypothesis, subterranean CO2 capture,
utilization and storage not only can help us to achieve carbon
neutrality, but also can help us to influence the soil salinization
processes.

Soil salinization and desertification are both disasters resulted
from surface environmental changes, which not only depend on
climate conditions, but also closely related to the role of
groundwater (Amezketa, 2006). This study further links soil

FIGURE 6
The root-mean-square error of the learning system at the training, validation, and testing stages with 200 epochs.

FIGURE 7
The ratio of prediction to deviation of the learning system at the training, validation, and testing stages with 200 epochs.

TABLE 1 Comparison of the SVD-PCA-ANN model with SAE, SVM, and LSTM.

Accuracy evaluation index R2 RMSE RPD

Training PLSR-ANN 0.9952 0.0522 2.3451

PCA-ANN 0.9891 0.0849 1.4568

PCA-ANN-LSTM 0.9924 0.0123 8.282

Validation PLSR-ANN 0.9922 0.0787 1.4763

PCA-ANN 0.9844 0.1086 1.1042

PCA-ANN-LSTM 0.9931 0.0872 7.0918

Testing PLSR-ANN 0.9868 0.0688 1.7906

PCA-ANN 0.9764 0.1198 0.9703

PCA-ANN-LSTM 0.9826 0.1079 6.0418
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salinization in deserts with subterranean CO2 concentration and
advances a new hypothesis (Sunda and Cai, 2012). Since
subterranean CO2 sequestration and soil salinization process can
both be influenced by the reaction of salts, CO2, and moisture in
the soil (Schlesinger, 2001), our hypothesis sounds reasonable.
Nevertheless, we still need some direct evidences from isotopic
analysis to further demonstrate that the soil salination processes in
deserts could be affected by such a subterranean CO2 sequestration
(Inglima et al., 2009). Deserts are extremely arid areas and occupy
more than 20% of the earth’s land area (Chen et al., 2014). Due to high
temperature, drying and strong evaporation, upwelling is the
dominant process of soil water in the deserts, while the leaching
and desalination processes are weak (Kowalski et al., 2008; Serrano-
Ortiz et al., 2010; Sanchez-Cañete et al., 2011). These processes formed
a large area of saline-alkali land in deserts and in deep soil layers
around the groundwater, there are good conditions for reaction of
salts, CO2, and moisture (Stone, 2008). But there are still some
outstanding questions for subsequent studies. How to assess the
intensity of such reaction? How to quantify the contribution of
changing processes in subterranean CO2 concentration to the
reaction? How much these processes can affect the soil salinization
processes? Are these coupled processes enough to explain the apparent
CO2 absorption? If not, where has the missing CO2 gone? Can it be
attributed to some capnophiles in the deep soil layers? If these
questions were appropriately addressed, then our hypothesis would
be verified and make a real contribution to reduce salinization disaster
in deserts.

Benefitting from the rapid development of various kinds of
sensors, the subterranean processes can be further explored by
different kinds of signals or images (Wang et al., 2016b). These
sensors present a good base to obtain enough data for machine
learning. But the mechanisms of the abiotic CO2 absorption are
still poorly understood and the soil salinity might be influenced by
many other factors (Wang et al., 2015b). It is still quite necessary to
integrate a series of sensors for acquiring other meteorological, soil
and subterranean data. The additional data not only can present a
better understanding of the whole story about soil salinization, but also
canmotivate researches on the effects of various environmental factors
on the subterranean CO2 concentration in other arid ecosystems and
researches on the mechanisms for the abiotic soil CO2 absorption (Rey
et al., 2012; Rey, 2014; Wang et al., 2016c). Physically-based modelling
(Guo et al., 2020; Medina et al., 2021) is also a next research priority.

5 Conclusion

Subterranean CO2 concentration and the atmospheric CO2

concentration around the soil surface can both influence soil
salinity in deserts, which presents further evidence for a conjecture
in the previous studies—the abiotic CO2 absorption by saline-alkali
soils in deserts were resulted from subterranean CO2 sequestration in
reaction of soil salts, CO2, and moisture. Based on this conjecture, we

advance a new hypothesis—the soil salination processes in deserts
could be affected by such a subterranean CO2 sequestration. Since the
underlining reaction of salts, CO2, and moisture in the soil would
further link the dynamics of subterranean CO2 concentration with soil
salinity. Due to strong water-salt processes in deserts, the water in the
deep soil layers move upward [resp. downward] in the dry season
[resp. the rainy season], and then react with salts and CO2 in the
capillary. The story sounds well. But we need further evidences. A
better understanding of the whole story is still quite necessary.
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