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Both tectonism and erosion are presumed to have influenced the landscape
evolution of the Xiaojiang Region, SE Tibetan Plateau. However, it remains unclear
which of these broad processes has played the dominant role in determining
landscape form and evolution. To establish the relative importance of these two
processes, we measured river longitudinal profiles and spatial variation in selected
geomorphic indices within the region. We measured longitudinal profiles along
four large rivers from north to south through the region and also measured
drainage basin asymmetry, basin shape index, hypsometric integral, normalized
stream-length gradient index, and the ratio of valley-floor width to valley height of
77 drainage basins in this region. The four longitudinal profiles reveal that tectonic
activity decreases from north to south. Spatial variation in geomorphic indices
reflects that the topography in the Xiaojiang Regionmay be primarily influenced by
three major faults: the Xiaojiang fault, the Shiping fault, and the Qujiang fault,
rather than influenced by precipitation, lithology, and drainage reorganization. The
tectonic activity in different parts of the region shows that the northern part is the
most active, the central part is the least active, and the southern part is moderately
active. It is concluded that the spatial variation in landscape form and evolution of
the Xiaojiang Region has been influenced more strongly by tectonics than by
erosion.
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1 Introduction

Different models have been proposed for explaining the evolution of the southeastern
Tibetan Plateau. The oblique shortening and extrusion model suggests a stepwise
southeastward migration of tectonic rock uplift and surface uplift, with major fault
zones accommodating large-scale crustal extrusion and/or shortening and the intensity
of tectonic activity in the region gradually decreases from north to south (Tapponnier et al.,
1982; Wang et al., 1998; Tapponnier, 2001; Jun et al., 2003; Tian et al., 2014; Wang H. et al.,
2017; Wang et al., 2021; Zhu et al., 2021; Wang H. et al., 2022). The lower crustal flow model
suggests a different deformation pattern (Clark et al., 2005; Royden et al., 2008; Yuan et al.,
2022), and the entire SE Tibetan Plateau experienced uniform southeastward tilting from
north to south. The progressive deformation model suggests the deformation changing from
localized shortening and thickening along major pre-existing fault zones to lower crustal
expansion out of the fault zones (Zhang et al., 2022). Erosionally driven denudation model
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predicts that the greatest amounts of denudation, and therefore
isostatic response, occurred in areas with the greatest precipitation
(Champagnac et al., 2012; Olen et al., 2016; Adams et al., 2020; Tao
et al., 2020). These hypothesized mechanisms should account for the
anomalous topography in the southeastern Tibetan Plateau. In order
to test these models and determine which one is most accurate,
geomorphic studies are needed to examine the geomorphic variation
of the southeastern Tibetan Plateau.

In this study, we aim to assess the geomorphic variation for the
southeastern Tibetan Plateau using the example of the Xiaojiang
Region, which is located in the southeastern Tibetan Plateau and lies
within the East Asian summer monsoon precipitation area
(Figure 1A) (Wang et al., 1998; Tapponnier, 2001; Deng et al.,
2003; Nie et al., 2018; Li et al., 2019; Wu et al., 2020; Wang H. et al.,
2022; Yu et al., 2022). Geomorphic indices are quantitative methods
that can be used to measure information about landscape form and
evolution and thus infer the controls on landscape evolution
(Strahler, 1952; El Hamdouni et al., 2008; Figueroa and Knott,
2010; Perron and Royden, 2013; Wang et al., 2017b; Cheng et al.,

2018; He et al., 2019; Shi et al., 2020; Róycka andMigoń, 2021; Wang
D. et al., 2022). In this study, we use geomorphic indices based on the
analysis of digital elevation models (DEMs) to evaluate the variation
in the landscape evolution of the Xiaojiang Region. We measure
longitudinal profiles along four large rivers from north to south
across the Xiaojiang Region and measure five geomorphic indices
for 77 drainage basins in this region (Figure 1B). The ability to
discriminate between tectonics and erosion concerning their
influences on the geomorphology of the Xiaojiang Region should
help our understanding of the nature of landscape evolution in this
tectonically active, high-precipitation region. Our finds may provide
a geomorphological basis for the understanding the evolution of the
southeastern Tibetan Plateau.

2 Geological setting

The Xiaojiang Region is situated in eastern Yunnan on the
southeastern margin of the Tibetan Plateau, which is ~400-km-long,
~200-km-wide, which developed along the Xiaojiang fault
(Figure 1B). The Xiaojiang Region has been tectonically active
throughout the late Quaternary, including the occurrence of
some strong earthquakes in historical times, including the
1725 Wanshoushan (Ms = 6.8), 1733 Dongchuan (Ms = 7.8),
1833 Songming (Ms = 8.0), 1927 Xundian (Ms = 6), and

FIGURE 1
(A) Structural sketchmap of the Xiaojiang region and surrounding
area, showing the location of the study area. (B) Shaded relief map
showing the analyzed drainage basins in the Xiaojiang region.
Numbers indicate the basins within which geomorphic indices
were measured (see Table 1 for detailed information about the
drainage basins). KLF, Kunlun fault; XSF, Xianshuihe fault; XJF, Xiaojiang
fault; RRF, Red River fault.

FIGURE 2
Simplified geological map of the Xiaojiang region.
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1970 Tonghai (Ms = 7.3) earthquakes (Jun et al., 2003;
Paradisopoulou et al., 2007; Wen et al., 2011; Ren, 2013).

The neotectonics of the Xiaojiang Region are dominated by
three active faults: the Xiaojiang, Qujiang, and Shiping faults. Of
these, the N-S-trending Xiaojiang fault is the main fault and cuts
through the entire region, whereas theWNW-ESE-trending Qujiang
and Shiping faults occur in the southern part of the region (Wang
et al., 1998). Since ~2–4 Ma, a total displacement of ~60 km has been
estimated for the northern part of the Xiaojiang fault, but to the
south, the displacement vanishes rapidly (Wang et al., 1998). The
average slip rate of the Xiaojiang fault in the north is ~10 mm/yr and
~3.5 mm/yr in the south (King et al., 1997; Xu and Wen, 2003; Li
et al., 2019). Qujiang and Shiping faults show a slip rate of 4.5 mm/yr
(Wen et al., 2011). The lithology is mainly sandstone, and the strata
in this region include extensively distributed Proterozoic and
Paleozoic rocks, with local Upper Cretaceous and Cenozoic
deposits (Figure 2) (Wang et al., 1998). Several basins containing
widespread Quaternary sedimentary strata have been formed in this
region (Figure 2) (Wang et al., 1998; Wen et al., 2011).

The Xiaojiang Region has a mean annual precipitation of
781.1–1,054.7 mm/yr (period 1970–2019, data downloaded from
http://data.cma.cn). Previous research has suggested that spatial
variation in erosion caused by spatial variation in monsoon
precipitation controls surface processes in this region (Nie et al.,
2018; Adams et al., 2020; Tao et al., 2020). The areas of high

precipitation are in the central (from Xundian to Yiliang) and
southernmost parts of the Xiaojiang Region (Figure 3), whereas
the areas of low precipitation are in the northern (north of Xundian)
and southern (south of Yiliang) parts of the region.

3 Materials and methods

Geomorphic indices measured at the drainage basin scale were
used to capture variation in landscape form (El Hamdouni et al.,
2008). Several geomorphic indices including river channel profile
form and drainage basin shape were used to measure erosion and
deposition processes and to detect anomalies caused by local
changes in surface variation and tectonic activity (Strahler, 1952;
El Hamdouni et al., 2008; Gao et al., 2013; Tsimi and Ganas, 2015;
Cheng et al., 2016; Faghih et al., 2016; Cheng et al., 2018; He et al.,
2019; Shi et al., 2020; Róycka and Migoń, 2021; Wang et al., 2021;
Wang H. et al., 2022). Monthly precipitation data from the China
Meteorological Data Network (period 1970–2019, data downloaded
from http://data.cma.cn) were used to calculate the mean annual
precipitation by Kriging interpolation for basins in the Xiaojiang
Region (Figure 3).

In this study, we selected 77 drainage basins (Nos 1 to 77 from
north to south through the Xiaojiang Region; Figure 1) from 3 arc-
second global (30 m pixel resolution) Shuttle Radar Topography
Mission (SRTM) DEMs (http://www.gscloud.cn/) and used these
DEMs in ArcGIS (version 10.2) and MATLAB (version R2015b)
software to extract values of five geomorphic indices. The five indices
measured were drainage basin asymmetry (AF), basin shape index
(BS), hypsometric integral (HI), normalized stream-length gradient
index (SLK), and the ratio of valley-floor width to valley height (VF)
(Table 1; Figure 4). Furthermore, considering the variation in values
of the five geomorphological indices (Figure 4), each index was
divided into three classes (Classes 1–3: strong, moderate, and weak)
in the study area. Then, based on El Hamdouni et al. (2008), we
obtained values of the index of relative active tectonics (IAT) by
integrating the five classification values from the primary indices
and dividing this composite index into four classes. We also
compared the longitudinal profiles of four large rivers and many
small basins in the Xiaojiang Region.

3.1 Asymmetric factor

The Asymmetric factor index (AF; Figure 4A; Table 1) is a
measure of basin asymmetry and can be used to assess geometry
tilting at the scale of a drainage basin (El Hamdouni et al., 2008). AF
is defined as follows:

AF � Ar/At
( ) × 100 (1)

where At is the total area of the drainage basin, and Ar is the area of
the drainage basin to the right of the entire stream (viewed from
upstream). The AF values deviate from 50 as the impact of tilting
increases, and the absolute values of ǀAF-50ǀ are often used to
evaluate the asymmetry of drainage basins (El Hamdouni et al.,
2008; Cheng et al., 2018). AF values were grouped into three classes:
(1) ǀAF-50ǀ ≥ 15, (2) 15 > ǀAF-50ǀ ≥ 7, and (3) ǀAF-50ǀ < 7.

FIGURE 3
Annual precipitation data (period 1970 to 2019; data downloaded
from http://data.cma.cn) for the Xiaojiang region.
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TABLE 1 Summary and explanation ofmorphometric parameters used tomeasure landscape form in the present study (based on El Hamdoun et al., 2008; Figueroa
and Knott, 2010; Cheng et al., 2018).

Morphometric index Mathematical derivation Measurement procedure

asymmetric factor (AF) AF=100(Ar/At)

drainage basin shape (BS) BS=Bl/Bw

hypsometric integral (HI) HI=(HAver-HMin)/(HMax-HMin)

stream-length gradient (SLK) SL=(ΔH/ΔL) L

K=Htotal/Ln(Ltotal)

SLK=SL/K

ratio of valley floor width to valley height (VF) VF=2Vfw/[(Eld-Esc)+(Erd-Esc)]
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3.2 Drainage basin shape

The drainage basin shape index (BS; Figure 4B; Table 1) is the
ratio of the straight-line distance from the source to the outlet of the
basin to the maximum width perpendicular to the straight line (Bull
and Mcfadden, 1977). The BS index is defined as follows:

BS � Bl/Bw
(2)

where Bl is the length of a basin measured from the highest point to
the outlet (lowest point) and Bw is the maximum width of a basin
measured perpendicular to Bl (Figure 4B; Table 1) (El Hamdouni
et al., 2008; Cheng et al., 2018). In regions of active tectonic activity,
relatively young drainage basins often have elongated drainage

basins on a mountain’s topographic slope. Higher values of BS
reflect more elongated drainage basins which commonly correlated
with stronger tectonic activity (El Hamdouni et al., 2008; Cheng
et al., 2018). BS values were divided into three classes: (1) BS ≥ 4, (2)
4 > BS ≥ 3, and (3) BS < 3 (El Hamdouni et al., 2008; Cheng et al.,
2018).

3.3 Hypsometric integral

The hypsometric integral (HI) is an index that describes the
distribution of elevation in a given area of a landscape. The integral,
which is an index independent of basin area, is typically derived for a
specific drainage basin. The area below the hypsometric curve,

FIGURE 4
Spatial distribution of classes of the five measured geomorphic indices for drainage basins (A–E) and classes of the composite index IAT (F).
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which is the definition of the index, expresses the volume of an
undisturbed basin. TheHImeasures the relative volume of the basin
that has not been eroded. In a given drainage basin, theHI describes
the relative distribution of elevation. A high value of the index
usually means that less of the uplands have been eroded, which may
indicate a younger landscape, perhaps produced by active tectonic
movements. The high value of Hi may also be due to the deposition
of recent cuts in the young geomorphic surface (Strahler, 1952; El
Hamdouni et al., 2008). The HI index is defined as follows
(Figure 4C; Table 1):

HI � HAver −HMin/HMax −HMin
( ) (3)

where HAver is the mean elevation of the drainage basin, HMax is the
maximum elevation, and HMin is the minimum elevation. The HI
value is divided into three classes: (1)HI > 0.5, (2) 0.4 ≤HI ≤ 0.5, and
(3) HI < 0.4 (El Hamdouni et al., 2008).

3.4 Normalized stream-length gradient

The stream-length gradient index (SL; Figure 4D; Table 1) was
first defined by Hack (1973) as follows:

SL � ΔH/ΔL( ) × L (4)

where ΔH is the local difference in elevation of the evaluated
channel segment, ΔL is the local length of the evaluated channel
segment, ΔH/ΔL is the gradient of the evaluated channel segment,
and L is the length from the divide to its midpoint. The SL index is
used to evaluate the relative intensity of tectonic activity. In general,
higher SL values represent more intense tectonic activity, whereas
lower SL values signify weaker/inactive tectonics (Hack, 1973; Azor
et al., 2002). SL is highly dependent on channel length, so the graded
river gradient (K) is usually used to standardize the SL value for
capturing tectonic activity or lithologic variations (Cheng et al.,
2018). SLK is calculated as follows:

SLK � SL/K (5)
K � Htotal/ln Ltotal( ) (6)

where Htotal and Ltotal are the altitude difference and length of the
entire channel, respectively (Azor et al., 2002). Following a
similar study (El Hamdouni et al., 2008), we grouped the SLK
values into three classes: (1) SLK ≥ 3.7, (2) 3.7 > SLK ≥ 2.5, and (3)
SLK < 2.5.

3.5 Ratio of valley-floor width to valley
height

The ratio of valley-floor width to valley height (VF; Figure 4E;
Table 1) can be applied to evaluate regional uplift rates and river
incision rates (Bull and Mcfadden, 1977; Keller, 1986; Cheng et al.,
2018; Shi et al., 2020). VF is defined as follows (Bull and Mcfadden,
1977):

VF � 2Vfw/ Eld − Esc( ) + Erd − Esc( )[ ]( ) (7)

where Vfw is the valley-floor width; Eld and Erd are left and right
valley shoulder elevations, respectively; and Esc is the valley-floor
elevation. In the range of 0.5–2.0 km from the stream outlet, the
valley cross section was established and theVF value of the basin was
calculated. Three classes were defined to reflect the intensity of
denudation in valleys: (1) VF < 0.5, (2) 0.5 ≤ VF < 1.0, and (3)
VF ≥ 1.0.

3.6 Index of relative active tectonics

A single geomorphic index provides a specific measure and
captures particular geomorphological information and associated
process signals. Practically, because of the complexity of lithology
and structure in many draining basins, a single index inevitably has
its limitations and cannot fully reflect patterns of regional
geomorphological evolution. A combination of multiple indices
to form a composite index can avoid the shortcomings of a
single index. El Hamdouni et al. (2008) proposed such a
composite index (the IAT) to comprehensively evaluate landscape
form and evolution (Figure 4F; Table 1). In this study, five
geomorphic indices (AF, BS, HI, SLK, and VF) were combined to
form the IAT using Eq. 8:

IAT � S /

N (8)
where S represents the integration of each class level of the indices;
and N is the amount of the geomorphic indices. Thus, the tectonic
activity is reversely proportional to IAT (Cheng et al., 2018). Four
classes were defined to reflect the intensity of denudation in valleys:
(1) 1.0 ≤ IAT < 1.5, (2) 1.5 ≤ IAT < 2.0, (3) 2.0 ≤ IAT < 2.5, (4) 2.5 ≤
IAT < 3.0.

3.7 River longitudinal profiles

Interpretation of tectonic history and the documentation of long-
term system changes in drainage basins frequently utilize longitudinal
river profiles. When rivers are in equilibrium, they typically have an
upward-concave shape. However, until erosion restores balance to the
river profile, tectonic uplift may lead to a state of disequilibrium and a
convex-upward riverbed form. Active faults can also change the
concave-upward shape of river longitudinal profiles into a convex-
upward shape (El Hamdouni et al., 2008; Figueroa and Knott, 2010;
Haviv et al., 2010; Perron and Royden, 2013; Bagha et al., 2014; Wang
et al., 2019). The associated knickpoint will move headward through
the river profile to allow equilibrium to be regained. The parts of the
river profile downstream of the knickpoint become severely degraded,
whereas the upstream segments above the knickpoint maintain their
previous equilibrium state (Figueroa and Knott, 2010). The intensity
of tectonic activity and the amount of uplift can be determined by
examining the knickpoints of longitudinal profiles.

4 Results

In this study, five landform morphometric indices plus a
composite index, as well as four longitudinal river profiles, were
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examined to assess the spatial variations in landscape form and
evolution in the Xiaojiang Region.

4.1 Asymmetric factor

The measured values of |AF-50| range from 0.76 to 47.95.
(Figure 4A; Supplementary Table S1). Drainage basins in the
Xiaojiang Region tend to have high AF values, showing high
degrees of tectonic tilting.

4.2 Drainage basin shape

Values of BS were calculated for the streams and range from
0.33 to 4.99 (Figure 4B; Supplementary Table S1). The values of BS
are highest from Xundian to Tonghai and lowest to the north of
Xundian and south of Tonghai (Figure 4B).

4.3 Hypsometric integral

In the study area, HI values were calculated for all streams and
range from 0.21 to 0.64 (Figure 4C; Supplementary Table S1). In the
Xiaojiang Region, HI values are high to the north of Xundian,
moderate in the area near and south of Tonghai, and low from
Xundian to Tonghai (Figure 4C). Drainage basins with high HI
values are found to the north of Xundian, where the Tangdan thrust
block and its surrounding area have been uplifted during the late
Quaternary (Wang et al., 1998; Wang and Wang, 2005). The
drainage basins from Xundian to Tonghai have low HI values,
which may reflect older landscapes and weak erosion. High HI
values are found in drainage basins 53, 65, 68, 75, and 76, which are
located in the southern part of the Xiaojiang Region in the vicinity of
the Qujiang and Shiping faults (Wen et al., 2011).

4.4 Normalized stream-length gradient

Values of SLK range from 0.97 to 6.12 (Figure 4D;
Supplementary Table S1) and are high to both the north and
south of Yiliang and low from Xundian to Yiliang. There is an
SLK value anomaly to the north of Xundian near the Tangdan thrust
block and surrounding areas, which have been uplifted during the
Quaternary (Wang et al., 1998; Wang and Wang, 2005). The high
SLK values of drainage basins to the south of Yiliang are attributed to
regional rapid uplift caused by strike-slip and thrust movement on
the Qujiang and Shiping faults (Wen et al., 2011).

4.5 Ratio of valley-floor width to valley
height

In the study area, values of VF range from 0.17 to 5.66
(Figure 4E; Supplementary Table S1) and are low to the north of
Xundian and from Yiliang to Tonghai, and high from Xundian to
Yiliang and south of Tonghai. Drainage basins with values in VF
classes 1 and 2 are found to the north of Xundian and from Yiliang

to Tonghai, where fluvial downcutting is pronounced, and most
river valleys are V-shaped (Figure 4E).

4.6 Index of relative active tectonics

In this study, IAT values are computed as a composite of values
of the five measured geomorphic indices. The map of IAT values
(Figure 4F) reveals that 4.2% of the area of the studied region is class
1, 20.5% is class 2, 56.3% is class 3, and 18.9% is class 4 (Figure 4F;
Supplementary Table S1). The IAT results show that the level of
tectonic activity in the Xiaojiang Region is strong to the north of
Xundian, weak from Xundian to Yiliang, and moderate near and to
the south of Tonghai.

4.7 River longitudinal profiles

River longitudinal profiles can be interpreted in terms of height
difference, knickpoints, and topographic parameters. Knickpoints
demarcate the abrupt change between the steeper downstream
channel and the lower-gradient upstream channel (Figure 5) (El
Hamdouni et al., 2008; Figueroa and Knott, 2010; Haviv et al., 2010;
Perron and Royden, 2013; Bagha et al., 2014; Wang et al., 2019). We
chose four large rivers (the Xiaojiang, Niulanjiang, Qujiang, and
Lujiang rivers) in the Xiaojiang Region and analyzed their
longitudinal channel profiles (Figure 5). Of these, only the
Xiaojiang River shows an obvious knickpoint (Figure 5A), and
dams or karst caves are located on the other three rivers,
meaning that knickpoints can be examined only for the Xiaojiang
River. The channel of the Niulan River is smooth (Figure 5B), and
the ~800–1,000 m height difference between the Qujiang and
Lujiang rivers is large, which may have been caused by
differential movements across the Qujiang and Shiping faults
(Figures 5C, D) (Wen et al., 2011). We also measured
topographic parameters (maximum, mean, and minimum
elevations and local relief) for 10-km-wide sections centered on
the four analyzed rivers (Figure 6). The Xiaojiang River, which is
developed along the eastern branch of the Xiaojiang fault, is highly
erosive and has resulted in a height difference of more than 1700 m
from the maximum height to the minimum at the same place
(Figure 6A). The height difference of the Niulanjiang River cut
by the western branch of the Xiaojiang fault is larger than that of the
two sides (Figure 6B), while the river cut by the east branch of
Xiaojiang fault has little change, possibly reflecting weak tectonic
activity during the Quaternary (Wang et al., 1998). The height
difference between the Qujiang and Lujiang rivers cut by the
Xiaojiang fault barely changes and the two rivers flow along the
Qujiang and Shiping faults, respectively, showing fault control of the
river location (Figures 6C, D) (Wen et al., 2011).

5 Discussion

Erosion and tectonics are the most important roles in landscape
evolution (Champagnac et al., 2012; Wang et al., 2014a; Wang et al.,
2017c; Nie et al., 2018; Tao et al., 2020; He et al., 2021). In what
follows, we discuss the influences of the two factors respectively.
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5.1 Erosion implications

Erosional processes are affected by lithology, precipitation, and
drainage reorganization. We exclude these as significant controlling
factors for the following reasons. First, lithologic resistance
influences the erosion rate of channel bedrock (Strahler, 1952;
Palumbo et al., 2009; Wang et al., 2014b; Pan et al., 2015; Wang

et al., 2019). Variation in lithology controls the shape of stream
profiles and thus the overall topography of the landscape (Tucker
and Slingerland, 1996; Gallen and Wegmann, 2017). Because weak
rocks are more easily eroded than strong rocks, lithology may have a
measurable effect on the geomorphic indices. To examine the
distribution of knickpoints and determine whether lithology may
have an impact on geomorphological characteristics, more than half

FIGURE 5
Channel longitudinal profile analysis of the Xiaojiang (A), Niulanjiang (B), Qujiang (C), and Lujiang (D) rivers. River locations are shown in Figure 1.

FIGURE 6
Topographic parameters measured over 10-km-wide sections centered on the four main channels of the Xiaojiang (A), Niulanjiang (B), Qujiang (C),
and Lujiang (D) rivers. River locations are shown in Figure 1.

Frontiers in Earth Science frontiersin.org08

Wang et al. 10.3389/feart.2023.1129217

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1129217


of the channel profiles (41 basins) along-profile lithologies were
randomly selected (Supplementary Table S2). Three of the
tributaries have no knickpoints, and the remaining 38 tributaries
have 45 knickpoints, but only 4 knickpoints appear near lithologic
boundaries, with the remaining 41 knickpoints being unrelated to
lithologic boundaries. Hence, the strong control of IAT by
lithology in the Xiaojiang Region is excluded (Supplementary
Table S2).

Second, precipitation has a marked effect on landscape form
and geomorphic processes in southeast Asia (Verstappen, 1997;
Olen et al., 2016; Nie et al., 2018). Higher precipitation
generally leads to increased river flow, which in turn
increases the potential for erosion of the channel base and
thus for the transformation of landscapes (Kirby et al., 2003;
Wang et al., 2017). If variation in the composite geomorphic
index IAT is to be attributed to precipitation or tectonic activity,
the influence of each factor should be considered separately.

More than half of the basins were randomly selected to quantify
the relationship between precipitation and geomorphic indices
(the precipitation map is above a DEM, Figure 3). Weak
correlations were found between them: AF (R2 = 0.0047:
Figure 7A), BS (R2 = 0.0559: Figure 7B), HI (R2 = 0.2342:
Figure 7C), SLK (R2 = 0.0079: Figure 7D), VF (R2 = 0.2526:
Figure 7E), and IAT (R2 = 0.1589: Figure 7F). In addition, spatial
variation in mean annual precipitation within the Xiaojiang
Region was calculated. Precipitation is shown to be stronger
from Xundian to Yiliang and south of Kaiyuan but weaker to the
north of Xundian and from Yiliang to Kaiyuan. However,
variation in the geomorphic indices differs from this
distribution, implying that mean annual precipitation is not
the main control on the landscape evolution of the Xiaojiang
Region.

Third, some of the larger rivers downstream of the Xiaojiang
Region have been reorganized in the Cenozoic, like the paleo-

FIGURE 7
Comparison of geomorphic indices with annual precipitation in the Xiaojiang region. (A) AF. (B) BS. (C) HI. (D) SLK. (E) VF. (F) Relative active
tectonics (IAT).
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Yangtze River and the Red River (Wang H. et al., 2017; Deng et al.,
2020; Yang et al., 2020; Zhao et al., 2021), but this has had little
influence on the Xiaojiang Region. Although river recombination
may occur randomly throughout the drainage basins, the study area
is dominated by sandstone, and there are few areas with large
lithology changes, so it will not have a systemic influence on the
Xiaojiang Region.

5.2 Tectonics implications

The measured AF values in this study are high in the analyzed
drainage basins throughout the entire Xiaojiang Region,
demonstrating pervasive tectonic tilting through the region,
probably as a result of regional-scale fault movements
(Figure 4A; Supplementary Table S1). High values of SLK are
clustered to the north of Xundian and south of Yiliang
(Figure 4D; Supplementary Table S1). The indices of HI, VF, and
IAT show values in classes 1 or 2 to the north of Xundian and in
classes 3 (or 4 for IAT) from Xundian to Yiliang, and in classes 2 or
3 near and to the south of Tonghai (Figures 4C, E, F; Supplementary
Table S1). The longitudinal profiles of the four studied large rivers
show that tectonic activity is higher in the north than in the south of
the Xiaojiang Region (Figures 5, 6).

The N-S-trending Xiaojiang fault extending through the
Xiaojiang Region is a slip boundary for the southeastward
translation of the Sichuan-Yunnan Block of the Tibetan
Plateau (Tapponnier et al., 1982; Wang et al., 1998;
Tapponnier, 2001; Jun et al., 2003; Li et al., 2019; Wang D.
et al., 2022). From north to south, this fault changes from strike-
slip to extensional and has produced a series of Quaternary
basins (Tapponnier et al., 1982; Wang et al., 1998; Tapponnier,
2001). The Xiaojiang fault shows a horizontal reduction in the
amount of fault displacement, of ~60 km has been estimated for
the northern part and vanishes in the south (Wang et al., 1998).
The Xiaojiang fault consists of two N-S-trending main strands:
the western and eastern strands (Li et al., 2019). The western
strand terminates near the Qujiang fault, and the eastern strand
ceases near the Red River fault (Wang et al., 1998). The
Xiaojiang fault was initiated from at least the Late Pliocene,
and movement along the Xiaojiang fault zone has accelerated
since the beginning of the Middle Pleistocene (Wang et al., 1998;
Jun et al., 2003). The average slip rate of the Xiaojiang fault is
higher in the north (~10 mm/yr) than in the south (~3.5 mm/yr)
(King et al., 1997; Deng et al., 2003; Xu and Wen, 2003; Wen
et al., 2011; Li et al., 2019). These slip rates are consistent with
GPS data (Zhang, 2004; Liang et al., 2013). The spatial variations
in geomorphic indices of the Xiaojiang Region measured here
show that the tectonic activity is strong in the northern part and
weak in the central part, which may be related to the strike-slip
rate being fast in the north and slow in the south. However, the
geomorphic indices show higher variation for basins near and to
the south of Tonghai, near the Qujiang and Shiping faults. These
basins could be strongly influenced by movement on these two
faults, each of which shows a slip rate of 4.5 mm/yr (Figures 5, 6)
(Wen et al., 2011).

Therefore, the hypotheses that predict the entire Xiaojiang
Region experienced uniform southeastward tilting from north to

south, and the deformation changing from localized shortening and
thickening along major pre-existing fault zones to lower crustal
expansion out of the fault zones do not fit the observed
geomorphology. Erosionally driven denudation model explains
the higher tectonic activity in the central part of the Xiaojiang
Region, but do not fit the observation that the greatest tectonic
activity is found in the northern part of the Xiaojiang Region. We
hypothesize that spatial variation in geomorphic indices reflects that
the landscape in the Xiaojiang Region may be primarily influenced
by three major faults: the Xiaojiang fault, the Shiping fault, and the
Qujiang fault, rather than influenced by precipitation, lithology, and
drainage reorganization. The geomorphological evolution of the
southeastern Tibetan Plateau appears to be guided by the strike-slip
faults, which appears more in agreement with ‘the oblique
shortening and extrusion model’.

6 Conclusion

This study examined spatial variation in geomorphic
indices of drainage basins, as well as river longitudinal
profiles, for the Xiaojiang Region of eastern Yunnan, SE
Tibetan Plateau, to determine the main controls on
landscape form and evolution. The variation in geomorphic
indices corresponds far more closely to variation in tectonic
activity than to variation in erosion within the region. It is
concluded that tectonics have played a more important role
than erosion in the landscape evolution of the Xiaojiang Region.
The geomorphological evolution of the southeastern Tibetan
Plateau appears to be guided by the strike-slip faults, which
appears more in agreement with ‘the oblique shortening and
extrusion model’.
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