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Understanding the drought characteristics of mountainous areas in northwest
China with sparse rainfall stations requires high precision, as well as high-
resolution precipitation data. Considering the spatial relationship of
precipitation and environmental factors, this study downscales Global
Precipitation Measurement (GPM) and Multi-Source Weighted-Ensemble
Precipitation (MSWEP) based on the geographically weighted regression (GWR)
and multi-scale geographically weighted regression (MGWR) models integrated
with interpolation. A high-resolution (1 km×1 km) precipitation dataset during
1979–2020 is reconstructed in the Tianshan Mountains, and the drought
characteristics are analyzed by using the optimal dataset. The results show
that: 1) Compared with GWR, MGWR model has higher downscaling accuracy;
2) The optimal MSWEP downscaling dataset (CC = 0.93, |BIAS| = 0.48%) compared
to GPM (CC = 0.81, |BIAS| = 1.87%) is closer to the observed precipitation; 3) In the
past 40 years, 71% and 9% of the Tianshan Mountains show significant wetting and
drying trends respectively, and 16 drought events are identified. 4) The West
subregion of the Tianshan Mountains is characterized by low frequency, long
duration and high severity of drought events. The characteristics of the East are
opposite to those of the West. Occasional extreme drought events occur in the
North and South. This paper provides data support and method reference for the
study of water-vapor balance and regional ecohydrological process in the arid
area of Northwest China.
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1 Introduction

Under the trend of global warming, extreme disasters occur frequently all over the world,
and the spatiotemporal distribution of precipitation becomes more and more unstable (Fan
et al., 2022). In particular, the Northwest mountainous areas of China far away from the
ocean are characterized by drought and water shortage (Chen et al., 2015). In the context of
global warming, the northwest mountain areas of China have also experienced significant
warming, and the continuous warming has intensified the interannual fluctuation of
precipitation (Yue et al., 2020), resulting in frequent drought disasters (Wang et al.,
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2017), ecological environment destruction (Chen et al., 2015), and
economic and social development losses and disasters (Wen et al.,
2017). Therefore, it is urgent to realize the monitoring of temporal
and spatial changes of precipitation and study regional drought,
which has important practical significance (Qin et al., 2014).

At present, regional drought monitoring is often achieved
through spatial interpolation of rainfall station data and remote
sensing precipitation estimation (Chung et al., 2014; Qin et al.,
2014). Traditional drought monitoring is realized through the
precipitation observation data obtained from meteorological
stations, but for the high-altitude mountainous areas in
northwest China, which are located in the inland arid areas,
there are often problems of insufficient point density and
unequal distribution (Chung et al., 2014). Although interpolation
can obtain spatiotemporal continuous precipitation data, its
accuracy is also limited by the number of stations. The obtained
precipitation interpolation results have limited retrieval ability for
spatial precipitation, and they are prone to ignore extreme
precipitation (Nashwan et al., 2019), which is difficult to reflect
the spatiotemporal details of drought (Chen et al., 2018). With the
continuous development of remote sensing technology, multi-
source satellite precipitation products have been widely used in
hydrological research (Chen et al., 2014; Zhou et al., 2017),
effectively making up for the problems of traditional monitoring,
such as time consuming and power consumption and insufficient
site observation data, etc., with the advantages of wide coverage,
good space-time continuity, and strong timeliness of data
acquisition. Yu et al. (2022) used GPM data to complete the
spatiotemporal monitoring of drought in mainland China.
Alijanian et al. (2022) combined MSWEP data to realize drought
monitoring in the Zayandehrood Basin, a key area of the Iranian
plateau, showing that remote sensing data can more accurately
represent the temporal and spatial distribution of drought in the
absence of site data. Although the accuracy and drought monitoring
potential of satellite products have been independently assessed at
home and abroad (Tan et al., 2018; Yan et al., 2018; Wei et al., 2021),
there are few studies comprehensively comparing the quality of
quantitative precipitation product estimation data from different
sources and the applicability of drought monitoring in the same
region.

However, no matter GPM or MSWEP, most evaluation studies
on them are carried out at national or larger scale (Li et al., 2022; Qi
et al., 2022), because the spatial resolution of precipitation products
(0.1°) cannot meet the research needs of medium and small scale
(Wang et al., 2018), which may ignore the difference of drought
monitoring potential caused by complex terrain in medium and
small scale regions. In order to realize more accurate drought
monitoring at a small regional scale, it is necessary to conduct
spatial downscaling of satellite products. Therefore, various attempts
have been made to develop downscaling models for precipitation
products. Common spatial downscaling methods include partial
least square method (Campozano et al., 2016; Zhang et al., 2018),
multiple linear regression (Zhang and Yan, 2015), random forest
algorithm (Jing et al., 2016) and artificial neural network (Mendes
et al., 2010; Sharifi et al., 2019). Among them, the Geographically
Weighted Regression (GWR) model was the best (Xu et al., 2015;
Zhao et al., 2018; Lu et al., 2020). Based on the spatial non-stationary
characteristics of surface parameters, GWR and its extended models

have largely solved the spatial heterogeneity problem ignored by
traditional regression models in the implementation of precipitation
downscaling (Chen et al., 2020; Fu et al., 2020). However, the latest
research points out that GWR often uses a single bandwidth to
calculate the weight, which will result in the same scale
characteristics for the spatial variation of all parameter estimates
(Chen et al., 2021). For high-altitude mountainous areas with
complex and changeable topographic features (Frei and Schär,
1998), the effects of various surface physical parameters on the
spatial and temporal distribution of precipitation are often
significantly different in different spatial ranges (Bhutiyani et al.,
2010; Zhu et al., 2018). On this basis, Fotheringham et al.
(Fotheringham et al., 2017) first proposed Multi-scale
Geographically Weighted Regression (MGWR) model in October
2017. Different from GWR, this model applies different bandwidths
to solve different parameters (Oshan et al., 2019), which allows the
conditional relationship between response variables and different
prediction variables to change at different spatial scales, and more
comprehensively present the scale characteristics corresponding to
different parameter estimates. In this study, MGWR2.0 (Li and
Fotheringham, 2020), the latest version of this application software
released in March 2020, is selected, which further increases the
confidence interval of bandwidth.

To sum up, current studies on the use of satellite products to
estimate precipitation in mountainous areas and to monitor
temporal and spatial changes of regional drought events often
have the following shortcomings: 1) Most of the hydroclimatic
analysis of the study area is based on a single satellite product,
and the topographic effects of precipitation and drought
characteristics (Anjum et al., 2019; Lakew, 2020) in high-altitude
mountainous areas are ignored; 2) Focusing on the spatial
distribution of precipitation change and drought events, ignoring
their spatial heterogeneity, mainly due to the low resolution of
satellite products, which cannot reflect the detailed texture of
precipitation change and drought characteristics (Golian et al.,
2019; Wei et al., 2021); 3) Most of them lack comparative
analysis of precipitation estimation by different satellite products
(Zhang et al., 2018; Wang et al., 2019), which cannot provide
reference for the application of precipitation products in other
research fields. Therefore, these assessments are not always
available or reliable. Based on these deficiencies, this study
comprehensively considered the responses of different
environmental variables (topographic factors and climate factors)
to precipitation in mountainous areas by means of geographic
variability test (GVT), and fully considered the spatial
heterogeneity of the effects of different surface parameters on
precipitation in mountainous areas; The GWR and MGWR
downscaling models were improved by interpolation method, and
the spatial resolution (from 0.1° × 0.1° to 1km × 1 km) and accuracy
of precipitation products were improved; The comparison of the
applicability of the downscaling results of multi-source precipitation
products provides data support and method reference for the
application of high resolution precipitation dataset to the spatio-
temporal monitoring of drought characteristics in the northwest
mountainous areas.

As the largest ecosystem in the arid region of Central Asia
(Liang-Liang et al., 2022), the Tianshan Mountains is particularly
sensitive to global warming (Domrös and Peng, 2012) and play an

Frontiers in Earth Science frontiersin.org02

Li et al. 10.3389/feart.2023.1128990

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1128990


important decisive role in the climatic process of Central Asia and
the regional climate system (Xu et al., 2018; Chen et al., 2022). Most
previous studies on the climate of Tianshan Mountains were based
on observational data (Sakai et al., 2010; Yao et al., 2018a; Yue et al.,
2020). However, stations in the TianshanMountains are very sparse.
70% of meteorological stations are located in the low mountain belt
and piedmont plain (Hu et al., 2016), and there is a lack of stations
above the middle and high mountains, so it is difficult to understand
the precipitation distribution in this region in depth. At the same
time, high-altitude mountains intercept a large amount of water
vapor, making the Tianshan Mountains the source of most rivers in
the arid northwest region (Cai et al., 2019). Therefore, obtaining the
precipitation distribution with high spatial and temporal resolution
in this region is not only a prerequisite for understanding the
drought trend in the Tianshan Mountains (Zhang et al., 2015),
but also plays a crucial role in maintaining the water-climate balance
and ecosystem in the arid area of Northwest China (Zhang et al.,
2018; Yu et al., 2021). Therefore, this study takes Tianshan
Mountains as the research area, proposing a spatial downscaling
model based on GWR and MGWR models to correct multi-source
precipitation products by integrating ground data and
meteorological data with interpolation method. Based on slope,
aspect, DEM, wind speed, temperature, sunshine duration, and
relative humidity, this paper combined GWR and
MGWR2.2 models with Kriging interpolation to conduct spatial
downscaling of GPM and MSWEP, and compared the downscaling
results with measured data. Finally, the optimal high-resolution
precipitation dataset is used to analyze the drought conditions in the
last 40 years in detail, which provides scientific support for spatial
precipitation inversion and drought early warning system in
mountainous areas.

2 Materials and methods

2.1 Study area

Tianshan Mountains (39°30′-45°45′N, 74°10′-96°15′E) straddle
the border between China and Kyrgyzstan and are the largest
mountain system in Central Asia (Xu et al., 2010). Considering
the availability of stations, this study focuses on the Tianshan
Mountains in China (Figure 1A), which is geographically located
in Xinjiang Province, China. The altitude of the study area varies
greatly (321 m–7426 m), the complex topography of intersecting
mountains and basins insulates the region from ocean currents,
resulting in a distinctly temperate continental arid climate
characterized by extreme temperature differences and uneven
precipitation in winter and summer, ranging from 100 mm/year
in the low mountain desert to 900 mm/year in the high windward
slope (Hu et al., 2016). In order to facilitate the study of precipitation
differences under complex terrain conditions in the Tianshan
Mountains, the K-nearest neighbor method (Zhengyong et al.,
2015) was adopted in this study to divide the Tianshan
Mountains into four subregions, as shown in Figure 1B.
According to Gu (Yang et al., 2015), dry and wet conditions in
the Tianshan Mountains were roughly divided (Figure 1B): the
whole Tianshan Mountains are dominated by arid areas (52%)
and semi-arid areas (31%), and some extreme dry and dry areas

(15%) are mainly distributed in the low rainfall area of Turpan Hami
basin in the Eastern Tianshan Mountains (203 mm/a), a few semi-
humid areas (2%) are mainly distributed in the northern part of
Tianshan Mountains (424 mm/a), including the Ili Valley and the
main peak area of precipitation in the middle of Tianshan
Mountains, which is basically consistent with the zoning results
of Wei et al.(2022).

2.2 Data collection and processing

2.2.1 Remote sensing data
GPM is a new generation of global satellite precipitation product

after TRMM (Tropical Rainfall Measuring Mission), which has the
advantages of wide coverage and sophisticated inversion algorithm.
It is widely used in the study of climate change and hydrological
processes (Hou et al., 2014; Tang et al., 2016). This research chooses
version is GPM-IMERG (Integrated Multi-satellite Retrievals for
GPM) V6 Final-Run (https://gpm.nasa.gov/data/directory). It
provides global daily precipitation data of 0.1°×0.1° from June
2000 to the present (February 2023).

MSWEP is a multi-source integrated precipitation product
derived from the advantages of station data, remote sensing data
and reanalysis data, characterized by a long time scale and high
spatial resolution (Alijanian et al., 2017; Beck et al., 2019). Compared
with MSWEP V1, MSWEP V2.2 used in this study improved the
spatial resolution from 0.25° to 0.1°, and the time series also
improved from 1979 to 2015 to 1979-2020, providing 3°h gridded
precipitation data (http://www.gloh2o.org/).

In this paper, the overlapping period from 2000 to 2020, which
can be obtained from multi-source data, is selected for research
during downscaling. The projection, rotation, format conversion
and unit standardization of GPM and MSWEP data were carried
out, and the corresponding monthly, seasonal and annual
precipitation data were combined by raster calculator for
downscaling.

2.2.2 Environmental variables
Tianshan Mountains are characterized by complex terrain with

large elevation changes (321–7426 m) and a temperate continental
climate with obvious fluctuations (Domrös and Peng, 2012). The
extreme temperature in winter and summer leads to uneven
precipitation in Tianshan Mountains (Domrös and Peng, 2012;
Chen et al., 2016). Therefore, considering the selection of
environmental variables from the aspects of terrain factor and
climate factor, it provides a necessary basis for the change trend
of precipitation downscaling model in the study area. DEM is
derived from SRTM data with a spatial resolution of 90 m
(http://gscloud.cn/), and slope and aspect are extracted by
ArcGIS as topographic factors. Climate factors come from China
Meteorological Data Network (http://data.cma.cn/), including
temperature (TEM), relative humidity (RHU), wind speed
(WIN), sunshine duration (SSD), maximum temperature (MAX)
and minimum temperature (MIN). Factors strongly correlated with
precipitation were selected as explanatory variables by correlation
test, and grid data were formed by Kriging interpolation (Seo et al.,
2015). In order to facilitate downscaling, explanatory variables need
to maintain the same resolution as precipitation products. The
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convolution method (Kumar et al., 2017) was used to resampling
raster data of altitude, slope, aspect and climate factors to 0.1° and
1 km. Compared with the nearest neighbor method and bilinear
method, the convolution method takes into account both the
resolution and fidelity of the data, and generally achieves better
resampling effect (Awada et al., 2019).

2.2.3 Ground observations data
The ground observation data were obtained from the daily scale

sites of the National Meteorological Information Network (http://
www.nmic.gov.cn/). Quality control was carried out on all the
station data (Li et al., 2017), and the missing data was obtained
by linear interpolation using the latest available data. Limited by the
complex terrain and inconvenient transportation in mountainous
areas, the available meteorological stations in Tianshan Mountains
are very sparse. The spatial distribution of stations is shown in
Figure 1A. A total of 36 stations are used in this study, and the
available time series is from 1951 to 2020.

2.2.4 Spatial downscaling process of GPM and
MSWEP data

In this study, a combination of geographically weighted
regression and Kriging interpolation method is proposed to
downscale GPM and MSWEP (spatial resolution is 0.1°×0.1°),
and through precision test to generate a high resolution
(1 km×1 km) precipitation dataset, which is applied to the
spatiotemporal monitoring of drought characteristics in the study
area. The realization of downscaling is based on two basic
assumptions: first, there is a correlation between precipitation
and the selected environmental variable factors, and it can be
explained by the established model; Secondly, the model

established at a lower spatial resolution consistent with the
precipitation product can also use the interpolation results of
environmental variables to predict the precipitation at a higher
resolution, which is also called the “relational scale invariant”
hypothesis (Duan and Li, 2016). The downscaling model
construction and data processing process is shown in Figure 2.
Specific steps are as follows:

1. At the time scale, the daily precipitation data of GPM and
MSWEP and environmental variables were unified into the
monthly scale, and the factors with strong correlation with
precipitation were selected as explanatory variables through
correlation test.

2. Explanatory variables with spatial resolution of 1°km×1°km and
0.1°×0.1° were prepared by Kriging interpolation and resamping
tools in ArcGIS, wherein the latter was used to match spatial
resolution of GPM and MSWEP products (0.1°×0.1°).

3. The relationship between the explanatory variables and the two
precipitation products were established by the test of geographic
variability (GVT), and the explanatory variables were screened
into two types: spatially variable local variables and spatially fixed
global variables.

4. Local variables and global variables with coarse resolution
(0.1°×0.1°), as well as GPM and MSWEP, were introduced
into GWR and MGWR models, and the corresponding
intercepts, residuals, and coefficients of each variable with
coarse resolution (0.1°×0.1°) were calculated.

5. The intercept, residual and coefficient were interpolated by
Kriging interpolation method, and the 1°km×1 km raster data
were obtained. As a represent of geostatistical interpolation
method, Kriging interpolation has the ability to measure the

FIGURE 1
(A) Geographical location, topography and distribution of meteorological stations in the Tianshan Mountains; (B) Zoning boundary and drought
conditions in the Tianshan Mountains.
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prediction accuracy and is suitable for interpolating uniformly
distributed grid points (Seo et al., 2015).

6. Xiaolong Li, Xiaolong Li, The interpolation results of
interceptions, residuals and coefficients were calculated with
the explanatory variables of the spatial resolution of
1°km×1 km to obtain the high-resolution monthly
precipitation data of GPM and MSWEP. The corresponding
seasonal and annual precipitation grids were obtained by
using the grid calculator in ArcGIS for addition.

7. Five statistical indicators, CC, BIAS, NSCE, RMSE, and SDR,
were used to test the accuracy of the downscaling results at time
and space scales.

8. According to the comprehensive evaluation results, a set of high-
resolution precipitation products with the highest accuracy was
selected and applied to the spatiotemporal monitoring of drought
characteristics in the Tianshan Mountains.

2.2.5 GWR and MGWR regression models
As an extension of the traditional least squares regression

method, GWR was first proposed by Brunsdon (Brunsdon et al.,
1998), which described the dynamic relationship between the causal

variables and explanatory variables in the geographic space, rather
than the single regression that took the study area as a whole (Lu
et al., 2022). Therefore, it has been widely applied in the study of
complex scale-dependent characteristics between meteorological
elements and topographic elements in high-altitude mountainous
areas (Chu, 2012; Kumari et al., 2017). The mathematical expression
of GWR model is as follows:

Yj � β0(uj, vj) +∑p

i�1βi uj, vj( )Xi,j + εj i � 1, 2, 3,/, n (1)

In the formula, Yj represents the j th observed value of the
dependent variable, andXi,j represents the j th observed value of the
i th independent variable. (uj, vj), β0(uj, vj), βk(uj, vj) and εj are
the geographical coordinates, intercept, slope (regression
coefficient) and regression residuals at the j th point,
respectively. p is the number of environment variables. This
formula is based on the regression coefficient established by the
nearby observation point j. The basic idea of the weight matrix is to
assume that the closer the distance to the point j, the higher the
weight affected. The weight matrix can be expressed as the following
formula:

FIGURE 2
A comprehensive flow chart for data processing and downscaling model construction based on an improved geographical weighted regression
model (GWR and MGWR).
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β̂(uj, vj) � XTW(uj, vj)X( )−1 XTW(uj, vj)P( ) (2)

Among them, β̂(uj, vj) represents the j th point near data partial
least-squares regression model is set up, X and P respectively the
independent variable and dependent variable; W(uj, vj) is the
weight matrix. In this study, the weight matrix can be expressed
as the following formula:

wi,j �
1 − d2

ij

θi k( )
( )2

, dij < θi k( )

0, dij > θi k( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (3)

Where, wi,j is the observation weight of the j th point, used to
observe the coefficient at the position of the i th point. dij represents
the Euclidean distance between point j and point i; θi(k) represents
the adaptive bandwidth size defined as the k th nearest neighbor
distance.

MGWR is an extended form of GWR, which deals with mixed
coefficients with spatial variation (local variables) and fixed or
constant coefficients (global variables) in calculation
(Fotheringham et al., 2017). Generally speaking, MGWR is a
generalized GWR model, which introduces additional global
variables to better represent the spatial heterogeneity of
precipitation in the regression model. In this study, GVT was
used to identify spatial variation (local) and fixed (global)
environmental variables in the study area. Diff of Criterion (DIF)
is adopted as the index to judge the fixed and variable terms in the
model (Mei et al., 2006). A positive value of DIF indicates that the
factor is specified as a local variable in the GWR model and as a
global variable otherwise. In the GWR model, we repeated GVT for
all environment variables to determine fixed and varying variables,
so as to facilitate the construction of MGWR model. The
mathematical expression of MGWR model is as follows:

Rj � ∑n

k�1αkXj,k +∑m

k�n+1βk uj, vj( )Xj,k + εj, j, k � 1, 2, 3,/, n

(4)
Where, Rj is the value of the dependent variable;Xj,k is the value

of the explanatory variable; (uj, vj) is the coordinate of the j th
sampling point; k is the number of independent variables; αk is the
regression coefficient of the global variable; βk is the regression
coefficient of local variable. εj is a random error.

2.2.6 Accuracy evaluation
The accuracy verification of the datasets includes the

performance comparison of the two downscaling models and the
accuracy assessment of the spatial-temporal correlation between the
downscaling results and the measured precipitation, which is
divided into the following two steps:

1. Performance comparison of the two models. Through Akaike
information criterion correction (AICc) and residual sum of
squares, the downscaling results of two commonly used spatial
weight functions (Chao et al., 2018) (adaptive bivariate weight
function and fixed Gaussian weight function) under two different
models (GWR andMGWR) were respectively compared with the
original satellite precipitation data. It is believed that smaller

AICc and residual sum of squares are more favorable
(Abdollahipour et al., 2021).

2. Accuracy evaluation of temporal and spatial correlation between
the downscaling results and the measured precipitation. As for
the comparison of spatial correlation, the grid data with the same
resolution as the downscaling results was obtained by
interpolating the measured data, and the grid data was used as
real spatial precipitation to evaluate the data accuracy of the
downscaling results. As for the accuracy of data in time series,
based on the comparison of point data, this study compared and
analyzed the correlation and deviation between the measured
precipitation at the station and the nearest downscaling grid data
from different scales of year, seasonal and month. In this study,
five statistical indexes including correlation coefficient (CC),
relative bias (BIAS), Nash coefficient (NSE), root mean square
error (RMSE) and standard deviation ratio (SDR) were selected
to reflect the degree of consistency between downscaling results
and the measured data. The calculation formula is as follows:

CC � ∑n
i�1 Si − �S( ) Gi − �G( )�����������∑n

i�1 Si − �S( )2√ ������������∑n
i�1 Gi − �G( )2√ (5)

BIAS � ∑n
i�1 Si − Gi( )∑n

i�1Gi
*100% (6)

NSE � 1 − ∑n
i�1 Gi − Si( )2∑n
i�1 Gi − �G( )2 (7)

RMSE �
������������∑n

i�1 Si − Gi( )2
n

√
(8)

SDR �
�����������∑n

i�1 Si − �S( )2√������������∑n
i�1 Gi − �G( )2√ (9)

Where: n is the length of precipitation series; Si and Gi are grid
precipitation data and site measured precipitation data, respectively.
S and G correspond to the average time series of the two
precipitation data.

2.3 Application of downscaling results to
drought monitoring

2.3.1 Theil-Sen median (Sen) trend and Mann-
Kendall (M-K) significance test

The variation of drought trend is an important index of drought
monitoring. This study analyzed the variation of dry and wet trends
in different subregions of Tianshan Mountains based on Sen trend
and Mann-Kendall (MK) significance test. M-K non-parametric test
method can judge the mutation points of the sequence and the trend
of each interval, so as to realize the significance test of the trend
analysis results (Huang et al., 2015).

2.3.2 Standardized precipitation index (SPI)
The Standardized Precipitation Index (SPI) was proposed by

McKee (McKee et al., 1993) in 1993, which only relies on
precipitation data to quantitatively describe regional drought
conditions. Research (Chang et al., 2018; Adarsh and Janga
Reddy, 2019) showed that SPI(SPI3) on a 3-month time scale
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can better reflect soil water deficit in the underlying surface of arid
northwest China. Therefore, SPI3 is selected as the drought research
index in this study, and its range is [-3,3], the value represents the
degree of dry and wet with positive values representing humidity
and negative values representing drought, and the larger the value is,
the wetter it is. Supplementary Table S1 is the drought grade table of
standardized precipitation index SPI3 obtained according to the
national standard of Meteorological Drought Grade GB/T20481-
2006.

2.3.3 Identification and quantitative
characterization of drought events

Based on the run course theory (Yevjevich, 1967), this study
identified drought events and quantitatively analyzed the drought
characteristics of drought events, as shown in Figure 3. The paper
only focuses on drought events with a long duration and a high
drought peak: drought (SPI<0) for 3 consecutive months or more
and the peak value less than −1.0 (Guo et al., 2022). The time when
SPI starts to be negative and recovers to be positive are defined as the
beginning and end time of drought event respectively, and the
period is the duration of drought (Formula 10). Drought severity
is defined as the cumulative value of SPI during drought (Formula
11). Drought intensity is defined as the ratio of drought severity to
drought duration (Formula 12). Peak value of drought is the
minimum value reached by SPI during drought, and the
corresponding month is the peak drought time (Formula 13).

MDT � ∑N

i�1DTi

N
(10)

MDS �
∑N

j�1DSj

N
,DS � ∑DT

i�1 SPIi| | (11)

MDI �
∑N

j�1DIj

N
,DI � ∑DT

i�1 SPIi| |
DT

(12)

MDP �
∑N

j�1DPj

N
,DP � max 1≪ i≪DD SPIi| | (13)

Where, DT、 DS、 DI and DP are the duration, severity,
intensity and peak value of the drought event respectively. MDT、
MDS、MDI andMDP are the average duration, average severity,
average intensity and average peak value of all drought events during
the study period. i is the dry month. SPIi is the SPI value of the
month i; N is the total number of drought events identified during
the study period; j is a single drought event.

3 Results

3.1 Precipitation response to environmental
variables in the Tianshan Mountains

Correlation analysis was conducted between the monthly
precipitation mean extracted from two kinds of satellite products
GPM and MSWEP and various environmental variable factors
(Figure 4). Draw a conclusion: GPM monthly precipitation was
extremely significant positively correlated with DEM and RHU
(p<0.001), extremely significant negatively and significant
negatively correlated with TEM, WIN and SSD (p<0.01),
respectively (also see Supplementary Figure S1). There were
positive correlation (p<0.05) and negative correlation (p<0.05)
with ASPECT, SLOPE and MIN, respectively. MSWEP was
extremely significant positively correlated with DEM, ASPECT,
SLOPE and RHU (p<0.001), extremely significant negatively and
significant negatively correlated with SSD, TEM and WIN (p<0.01),
respectively. And negatively correlated with MIN (p<0.05).
Meanwhile, the monthly precipitation of GPM and MSWEP had
no correlation with MAX. Therefore, DEM, WIN, RHU, SSD, TEM,
and DEM, ASPECT, SLOPE, WIN, RHU, SSD, TEM were selected

FIGURE 3
Schematic diagram of drought events and their basic characteristics.
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as explanatory variables of GPM and MSWEP respectively. In order
to avoid the deviation caused by multicollinearity of explanatory
variables, variance inflation factor and variance Inflation factor
(VIF) are selected as indicators to determine whether collinearity
exists between factors (Supplementary Table S2), and explanatory
variables with collinearity are eliminated.

In addition, we also conducted a geographic variability test to
evaluate the responses of selected explanatory variables to spatial
varying (local) and fixed (global) variables across the study area.
Variables with positive standard variance values (DIFF) were taken
as fixed variables. Table 1 respectively describes the GVT statistics
corresponding to the environment variables of the DIFF-based GPM

and MSWEP. It can be seen that, the DIFF value of GPM is positive
(135.24), which should be specified as fixed variables, and others
should be introduced into the model as varying variations.
Accordingly, DEM (190.58), ASPECT (190.58) and SLOPE
(31.42) are specified as global variables of MSWEP, while others
are local variables.

3.2 Comparison of GWR and MGWR models

The establishment of the regression relationship between remote
sensing products and explanatory variables is a key step for

FIGURE 4
Correlation analysis between precipitation and environmental factors (A). GPM; (B). MSWEP).

TABLE 1 Geographical Variability Test (GVT) of Environmental Variables based on Standard DIFF.

Variables Estimate Min Max Range DIFF of criterion

Intercept 986.23 2589.12 5641.25 9885.12 −3561.39

DEM-G −3.52 −14.58 8.61 22.92 135.24

WIN-G 5.55 58.86 −26.3 −85.24 −92.34

RHU-G 48.69 1634.38 1277.7 2792.35 −28.43

SSD-G 75.93 1268.83 1176 2325.05 −168.28

TEM-G −571.45 8167.65 5193.3 3241.2 −1860.05

Intercept 856.46 3660.15 4674.40 8334.64 −4239.98

DEM-M −1.52 −12.96 4.90 17.92 190.58

ASPECT-M 0.47 −0.17 0.67 0.50 30.74

SLOPE-M −5.36 −59.86 28.50 88.46 31.42

WIN-M 0.19 −1.00 2.20 3.22 −59.08

RHU-M 43.33 1574.52 1306.20 2880.81 −9.17

SSD-M 70.57 1208.97 1204.50 2413.51 −156.02

TEM-M −576.81 8107.79 5221.80 3329.66 −1909.79
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downscaling. In this section, GWR and MGWR were modeled with
the filtered environmental factors of GPM and MSWEP as
independent variables and the measured precipitation as
dependent variables. The prediction performance of two different
spatial weight functions (adaptive double square weight function
and fixed Gaussian weight function) was compared respectively
(Table 2). The optimal model is the one with the highest correlation
coefficient (R2) and adjusted correlation coefficient (Adj.R2) and the
lowest Akaike information criterion correction (AICc) and sum of
residual squares. The results show that compared with GWR, the
MGWR model has a smaller AICc value due to the consideration of
the bandwidth number of different factors, which indicates that the
differentiation of environmental variables into local and global
variables may reduce the AICc value, thus improving the
prediction accuracy of the model and avoiding overfitting.

Compared with the two weight functions, BI corresponds to the
larger R2 and Adj. R2, the smallest AICc and the sum of residual
squares, while the GU is the opposite. Therefore, we chose BI for the
downscaling process.

Supplementary Figure S2 further reveals the accuracy difference
of the downscaling results of GWR (Supplementary Figures S2A–D)
and MGWR (Supplementary Figures S2E–H) according to R2 and
residual. For the two precipitation products, both models showed
consistent R2 variation range (0.2–1.0) when estimating
precipitation across the study area. The difference was that
MGWR (R2>0.9) showed higher R2 than GWR in most areas.
Compared with GWR (Supplementary Figures S2A, C), MGWR
model results of the two products (Supplementary Figures S2E, G)
significantly improved the lower R2 in the east of the South
Tianshan. Compared with GPM, the phenomenon of abnormally

TABLE 2 Compares the performance of GWR and MGWR models using two different weight functions (GU and BI).

Products Models Sub-models R2 Adj.R2 AICc Residuals sum of squares

GPM GWR Bi-square 0.75 0.74 147.80 80.96

Gaussian 0.67 0.66 152.63 91.25

MGWR Bi-square 0.88 0.86 122.32 72.33

Gaussian 0.81 0.85 133.63 79.63

MSWEP GWR Bi-square 0.66 0.63 141.48 72.84

Gaussian 0.62 0.61 146.31 83.13

MGWR Bi-square 0.92 0.92 116.22 64.21

Gaussian 0.89 0.88 127.31 71.51

TABLE 3 Typical drought events and their basic characteristics in the Tianshan Mountains.

Typical event Starting time Ending time Peak time Duration Intensity Peak value Severity

1 198201 198204 198201 4 0.85 1.88 4.52

198301 198603 198509 39 1.05 2.61 27.11

2 198901 198908 198902 8 0.87 1.12 8.60

199111 199201 199112 3 1.22 1.79 8.04

199504 199508 199508 5 0.87 1.37 5.96

3 199702 199705 199705 4 0.84 1.00 4.95

199707 199712 199708 6 1.60 1.24 6.60

200105 200108 200108 8 0.85 1.82 5.01

4 200404 200507 200407 16 0.46 1.00 4.23

5 200608 200704 200612 9 0.84 1.15 9.12

200711 200802 200802 4 0.81 1.25 4.84

200805 200808 200805 4 0.89 1.28 5.18

200906 200908 200907 3 0.57 2.08 3.54

201311 201405 201402 7 0.62 1.00 5.95

201711 201802 201802 4 0.66 1.14 4.24

201811 201903 201812 5 0.82 1.15 5.71
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low correlation between MSWEP and measured precipitation in the
middle Tianshan Mountains has a lower probability of occurrence,
which is because the central Tianshan Mountains’ fluctuation
changes obviously and are located on the windward slope of the
westerly air flow, which usually forms strong topographic rain (Xu
et al., 2018). It greatly interferes with GPM products based on
microwave detection. However, MSWEP products are revised with
multi-source data (Liu et al., 2019), which weakens the occurrence of
outliers. Although the spatial distribution regularity of residuals of
the two products under GWR (Supplementary Figures S2B, D) and
MGWR (Supplementary Figures S2F, H) models is not obvious, for
GPM, the latter significantly improves the overestimation
phenomenon within the residuals range of the former
(1 mm<residuals<5 mm). For MSWEP, MGWR downscaling
results also have a better performance than GWR in improving
the underestimated precipitation phenomena
(-5 mm<residuals<−1 mm) Therefore, in terms of the spatial
distribution of R2 and residuals, MGWR model outperforms GWR.

3.3 Accuracy evaluation of GPM and MSWEP
downscaling results

GWR andMGWRmodels with BI weight function were selected
to downscale GPM and MSWEP respectively (from the spatial
resolution of 0.1°×0.1°, also approximate to 10km×10km, to
1km×1 km), which were denoting as gGPM, mGPM, gMSWEP
and mMSWEP respectively. By comparing the correlation and
deviation between the measured interpolation precipitation and
descending scale results of different time scales (such as month,
season and year) and spatial scales, the dataset with the highest
accuracy was selected for monitoring the drought characteristics of
the Tianshan Mountains.

3.3.1 Accuracy evaluation of time series
To analyse the accuracy of downscaling results of different

products in different time series, the precipitation data of
measured stations in Tianshan Mountains and the raster data of
corresponding grid points were included into the same series, and
the downscaling data were analysed on monthly, seasonal and
annual scales, respectively. Figure 6 shows the scatter density of
measured monthly precipitation at rainfall stations and GPM,
gGPM, mGPM, MSWEP, gMSWEP, and mMSWEP precipitation
at corresponding locations during 2000–2020, respectively. It can be
seen from Figures 5A, D that both the GPM (BIASGPM=−6.21%) and
MSWEP (BIASMSWEP=−4.83%) underestimated the monthly
precipitation in the Tianshan Mountains, and MSWEP
(CC=0.63) had a higher correlation with the measured
precipitation than GPM (CC=0.51). For GPM, the GWR model
can significantly improve the underestimation (BIASGPM=−6.21%;
BIASgGPM=−2.65%) and the degree of aggregation of scatter points
(Figure 5B), while mGPM (Figure 5C) is better than gGPM, but the
difference is very small. The downscaling comparison results of
MSWEP are different from those of GPM. Compared with GWR,
the correlation coefficient of MGWR model results
(CCgMSWEP=0.77; CCmMSWEP=0.93) and Nash coefficient
(NSEgMSWEP =0.70; NSEmMSWEP =0.88) is further improved, and
quantitative error (RMSEgMSWEP =7.5; RMSEmMSWEP =1.3)

decreases significantly, which has stronger variance interpretation
ability for rainfall at stations (RgMSWEP

2=0.77; RmMSWEP
2 = 0.96).

This may be because compared with GWR, which uses a single
kernel function to calculate the weight of impact factors, MGWR can
capture the difference of impact scales of different variables, so that
the impact of terrain and climate factors fitted by the model on
precipitation is more in line with reality. For MSWEP, which is itself
the result of multi-source data fusion, the data can be revised twice
(Sun et al., 2022). However, GPM, based on multi-satellite global
observation system, does not consider the influence of local
topography on precipitation in the study area (Nwachukwu et al.,
2020). The introduction of ground data through GWR model can
effectively improve the fitting degree of gGPM and measured
precipitation, but whether to consider the different scales of
impact factors (MGWR) does not have much positive impact on
the improvement of data accuracy. It may introduce more biases.

To further refine the accuracy differences of different
downscaling results in each month of the year, the time series of
the correlation between GPM (Figure 6A), MSWEP (Figure 6B),
their downscaling results and the measured monthly precipitation
during the study period are drawn in Figure 6. The correlation of six
kinds of data presents regular changes of volatility during the year.
The original grid data of GPM showed a weak correlation with the
measured data (CC>0.2). The results of GWR andMGWR showed a
similar improvement to the original data, especially a very strong
correlation with the measured precipitation around June of each
year (CC>0.8). MSWEP and the measured data basically showed a
moderate correlation (CC>0.4), except for some months, gMSWEP
and mMSWEP realized a strong correlation (CC>0.6) and a very
strong correlation (CC>0.8) with the measured data, respectively.
The six kinds of data show a similar law in each month of the year:
they all reach the maximum of annual correlation in June-August
when measured precipitation is abundant, and they reach the
minimum in December-February of the next year when
precipitation is scarce. To further verify the seasonal
characteristics of the correlation, the accuracy differences of six
kinds of data are compared and verified in different seasons and
annual average precipitation scales in Figure 9.

Based on the ground site data and the corresponding grid data
extracted fromGPM andMSWEP and their two downscaling results
respectively, this section analyses the applicability of six kinds of
data at the annual scale. The Taylor diagram (Supplementary Figure
S3) is used to draw the SDR, CC and RMSE of six kinds of
precipitation datasets. The position of each point on the Taylor
diagram represents the matching degree between the dataset and the
measured data. The closer the distance between the dot of the dataset
and the dot of the site, the stronger the correlation and the smaller
the error. The results of the six datasets have strong correlation with
the observed precipitation data of summer (Supplementary Figure
S3C) and autumn (Supplementary Figure S3D) in the Tianshan
Mountains. The applicability of the annual scale (Supplementary
Figure S3A) ranks the second, and the correlation of spring
(Supplementary Figure S3B) and winter (Supplementary Figure
S3E) is the worst. This verifies the discussion result of the month
series correlation in Figure 6: whether satellite products or their
downscaling results, their similarity to the measured data in
different seasons is positively correlated with the precipitation
abundance, which may be related to the causes of seasonal
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FIGURE 5
Scatter density of GPM and MSWEP and their downscaling results with measured monthly precipitation (A) GPM; (B) GPM-GWR; (C) GPM-MGWR;
(D) MSWEP; (E) MSWEP-GWR; (F) MSWEP-MGWR.

FIGURE 6
Time series changes of the measured precipitation and the correlation (CC) of GPM, MSWEP, the downscaling results and the measured
precipitation (A) GPM and its downscaling results; (B) MSWEP and its downscaling results.
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precipitation in the study area: In winter and early spring, the
Tianshan Mountains are affected by the Siberian air mass (Zhang
et al., 2012), and the weather is dry and cold, resulting in trace
precipitation with very low intensity and perennial snow cover in the
high altitude area, which greatly interferes with the precipitation
detection of remote sensing products (Zhang et al., 2018). However,
in summer and autumn (especially in summer), the precipitation
mainly comes from the air mass with water vapor in the Atlantic
(Zhang et al., 2016). When they pass through the Tianshan
Mountains with complex terrain, they form convective rain with
high intensity. Meanwhile, there is less snow and ice cover in
summer, which brings higher accuracy for satellite remote
sensing monitoring precipitation. As can be seen from
Supplementary Figure S3, in most cases, the order of six data
dots and observation stations from near to far is: mMSWEP,
mGPM, gMSWEP, gGPM, MSWEP, GPM, which is also the
precision order of the six to identify the annual precipitation in
the Tianshan Mountains. In general, the correlation between the
mMSWEP dataset and the measured data at different time scales is
more than 0.8, indicating that MGWR has the best scaling effect on
MSWEP, and can achieve high-precision precipitation inversion in
mountainous areas with high spatial resolution.

3.3.2 Accuracy evaluation of spatial scale
Figures 7A–G shows the spatial distribution of satellite products,

downscaling results and interpolated monthly mean precipitation at
stations in the Tianshan Mountains during 2000–2020. Both the
satellite products and the downscaling results can basically capture
the spatial precipitation pattern of more precipitation in the West

and less in the East, more in the North and less in the South of the
Tianshan Mountains. However, both GPM (Figure 7A) and
MSWEP (Figure 7B) seem to have missed the high precipitation
in the Tianshan Mountains. Especially, it is difficult for GPM to
continuously capture the differences in the spatial distribution of
precipitation caused by the mountainous terrain. The downscaling
models of GWR and MGWR can significantly improve the
phenomenon that GPM and MSWEP satellite products
underestimate the high value of measured precipitation
(Figure 7G). The difference is that although MGWR-GPM
(Figure 7C) can better improve the spatial discontinuities of
GWR-GPM (Figure 7B) (such as the aggregation of high
precipitation values in the West subregion of Tianshan
Mountains), the former can significantly weaken the impact of
the geographically weighted regression method on precipitation
results by integrating background fields of different explanatory
variables to achieve downscaling. However, it cannot be completely
eliminated and even magnified in local areas (such as the “ox’s eye”
phenomenon at the junction peak of the North and South Tianshan
Mountains). For MSWEP (Figures 7D–F), compared with the
downscaling results of GWR (Figure 7E) and MGWR
(Figure 7F), the “ox’s eye” phenomenon was overcome, and the
phenomenon of low overestimation and high underestimation of the
measured precipitation by satellite products was more significantly
improved (Figure 7G).

To further quantify the spatial distribution difference of
downscaling results’ error, box charts of the accuracy statistical
indicators of GPM and MSWEP and their downscaling results in
different subregions are shown in Figure 8. The correlation

FIGURE 7
Spatial distribution of satellite products, downscaling results and interpolation of monthly precipitation in Tianshan Mountains (A) GPM; (B) GWR-
GPM; (C) MGWR-GPM; (D) MSWEP; (E) GWR-MSWEP; (F) MGWR-MSWEP; (G) Measured Stations.
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coefficient and the mean relative deviation between monthly
precipitation and measured precipitation of the 6 datasets
analysed in Section 3.3.1 (Figure 5) (marked successively on the
right axis of Figure 8) were used as the measurement standard for the
regional differences. All kinds of products and their downscaling
results showed a relatively consistent rule: the correlation with the
measured precipitation showed a downward trend from Northwest
to Southeast, which was basically consistent with the spatial
distribution trend of precipitation in the Tianshan Mountains
with more precipitation in the West and less precipitation in the
East, more precipitation in the North and less precipitation in the
South (Figure 7G). The correlation coefficient is used to reflect the
consistency between data, so it is also necessary to discuss the
accuracy change of the overall data in different subregions
through the spatial distribution of the relative deviation: different
data all showed a small underestimation of the precipitation in the
West (−6.21%<BIAS<0), and the precipitation in the West
subregion near the Ili Valley is stable with little topographic
fluctuation and obvious regularity of precipitation (Figure 7G).
Satellite remote sensing products can well detect the distribution
characteristics of precipitation. The low estimation of precipitation
in the South is greater than that in the North, and the GWR and
MGWR models effectively narrow the deviation range between the
North and South. GPM and MSWEP and their downscaling results
show the phenomenon of underestimated and overestimated
precipitation in the East subregion respectively, and the relative
maximum deviation range in the four subregions. The East

Tianshan Mountains are mainly distributed in the Turpan-Ha
Basin (Domrös and Peng, 2012), which is far away from the
ocean and the terrain is closed. Moreover, under the influence of
the hot and dry subtropical continental air mass, it is difficult for the
water vapor at the top of the atmosphere to fall to the ground
completely (Hu et al., 2016). This results in the monitoring error of
precipitation products.

In particular, there are some outliers in the correlation and relative
deviation between gGPM and measured precipitation in different sub-
regions, and the grid locations of these outliers basically appear at the
aggregation of outliers in Figure 7B, which further indicates that GWR
has a certain applicability limitation to the downscaling effect of GPM,
and there is still a large room for improvement In summary, mMSWEP
has the highest fitting degree with the spatial distribution of measured
precipitation in Tianshan Mountains, and can reflect the precipitation
differentiation characteristics in different subregions with a high
resolution (1 km×1 km).

3.3.3 Temporal and spatial analysis of drought
characteristics in Tianshan Mountains

According to the research results in Section 3.3, compared with
GPM, the mMSWEP dataset obtained through the downscaling of
MGWR model has higher accuracy in different time series and
spatial scales, and its correlation of monthly precipitation is basically
above 0.7, meeting the basic requirements of drought detection
using remote sensing data (Tan et al., 2018). Therefore, in this
section, high-resolution (1km×1 km) and long-time series

FIGURE 8
Accuracy evaluation of GPM, MSWEP and their downscaling results in different sub-regions (In the box diagram, the solid line represents themedian,
the black triangle represents themean, the four horizontal lines from top to bottom are the top edge, the top quartile, the bottomquartile and the bottom
edge respectively, and the round dot represents the outlier).
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(1979–2020) mMSWEP dataset will be used to invert the spatial and
temporal distribution of drought characteristics in the Tianshan
Mountains and provide technical support for drought monitoring,
early warning and drought relief in the northwest mountainous
areas of China.

3.3.3 Analysis of drought trend
Based on the 3-month SPI index (SPI3), this section uses the Sen

slope coupledMK testmethod to analyse the spatiotemporal variation of
dry and wet conditions in the Tianshan Mountains during 1979–2020,
pixel by pixel. The pixels that passed theMK test accounted for 94.5% of
the whole TianshanMountains. According to the calculation results, the
slope estimation results were divided into five grades (Figure 9). Among
them, 71% of the areas showed a significant trend of wetting, 15% were
slightly wet areas, only 9% showed a significant trend of drying, mainly
concentrated in the East Tianshan Mountains, but a small part near the
Alatao Mountain in the west of North and the west of the South
subregion. The variation trend of dryness and wetness shown in Figure 9
is basically consistent with the distribution pattern of average drought
zones reflected in Figure 2 according to the station data over the years --
the North subregion is wetter than the South and theWest is wetter than
the East, but it shows a richer and clearer spatial texture, andmore details
of drought are also monitored.

At the subregional scale, SPI3 drought index was calculated based
on regional mean precipitation data and time series of Tianshan
Mountains and its four subregions were analysed (Figure 10). During
1979-2020, the overall wetting trend of Tianshan Mountains was
obvious, with a slope of 0.0016 (Figure 10E), and passed the
significance level test of 0.05. In the past 40 years, the basic order
of the wetting trend of different regions in Tianshan Mountains is as
follows: North (Figure 10B)>West (Figure 10A)> East (Figure 10D) >
South (Figure 10C), which is basically consistent with the spatial
distribution of Figure 9. Among them, the North and South regions
passed the significance level test of 0.05, and the change trend of the
West and East only passed the significance level test of 0.1. Since 2000,
the overall wetting trend has been intensified, whichmay be due to the
enhanced water vapor transport from high latitudes in the northern
Hemisphere with the global warming since the 21st century, and the
“three-stage water vapor relay transport” from the tropical Indian
Ocean and Arabian Sea to the Central Asian mountains through the

western Indian Ocean, the southern Arabian Peninsula and Central
Asia (Guo et al., 2022).

3.3.4 Analysis of spatial characteristics of drought
events

To explore the drought events and their characteristics in the
Tianshan Mountains, drought events were extracted pixel by pixel
based on SPI3 and range-length theory, and the number of drought
events and the average of their characteristics (severity, intensity,
and peak value) were calculated based on the pixel by pixel. The
results are shown in Figure 11.

Figure 11A shows the frequency of drought events identified
during 1979–2020. As can be seen from the figure, droughts have
occurred more than 30 times in most areas of the East Tianshan
Mountains in the past 40 years. In the North andWest, the frequency
of drought is low, and the frequency is less than 10 times. As can be
seen from Figure 11B, the drought in the north slope of the North
Tianshan Mountains and the area near Halkatawu Mountain in the
West Tianshan Mountains has a longer duration, with an average
duration of 10 months Figure 11C shows the spatial distribution of the
average severity of all drought events over the past 40 years. It is not
difficult to see that most regions with a longer duration of drought also
have a higher severity, such as the junction of theWest region and the
Northern slope of Kunlun Mountains and the vicinity of Yilian
Habirga Mountain in the North region, indicating that the drought
severity in these areas is mainly affected by the longer duration of
drought. The difference is that parts of high severity also occur in the
North region of the Tianshan Mountains and the western part of the
South region of the Tianshan Mountains, and the drought severity in
these areas is mainly affected by the high intensity (Figure 11D).

3.3.5 Typical drought events
Based on the SPI index calculated by the average precipitation in

the study area, the drought events in the TianshanMountains during
1979–2020 were identified in combination with the run theory
method, and the duration, intensity, severity, peak value, and
other basic characteristics were quantified. Based on the three-
month SPI drought index, 16 drought events can be classified by
consensus, and the basic characteristics of drought events are shown
in Table 3.

FIGURE 9
Spatial distribution of SPI3 during 1979–2020.
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Five typical drought events were selected and analysed one by
one according to the duration, severity and intensity of drought, the
underlined contents in Table 3 were the five typical drought events
and their drought characteristics. Figure 12 shows the spatial
distribution of peak drought in the five drought events.

Typical drought event one is the drought event with the longest
duration and the highest severity. The drought began in January
1983 and lasted for 39 months. It reached its peak in September
1985 with the absolute value of SPI reaching 2.61, which was in an
extreme drought state. In March 1986, the drought condition of this
drought event returned to the normal level. Figure 12A shows the

spatial distribution of drought in the Tianshan Mountains in
September 1985. As can be seen from the figure, 96% of the
Tianshan Mountain area is in the state of drought, especially the
West, North and South of the TianshanMountain, and the west of the
East region near the Turpan-Hami Basin show SPI value <-2, which is
in the state of extreme drought. The area of extreme drought accounts
for 30% of the total area of the Tianshan Mountain area. Mahmood
(Mahmood et al., 2010) obtained a similar conclusion in related
studies that extreme drought events occurred in the Tianshan
Mountains during 1983–1986, and the drought was mainly
concentrated in the western part of the Tianshan Mountains.

FIGURE 10
Variation trend of SPI(SPI3) time series in the Tianshan Mountains and its subregions (A) West Region; (B) North Region; (C) South Region; (D) East
Region; (E) Tianshan Mountains).

FIGURE 11
Spatial distribution of drought characteristics (A) Frequency of drought;(B) Duration of drought; (C) Severity of drought; (D) Intensity of drought.
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Typical drought event two began in November 1991 and ended in
January 1992. As can be seen fromTable 3, the drought event lasted only
3 months, with a high drought intensity of 1.22 and a drought severity of
8.04. This drought event is a typical type of short-time high-intensity
drought. Figure 12B shows the spatial distribution of SPI drought level in
December 1991. It can be seen from the figure that drought covered
more than 98% of the TianshanMountains in that month, and the areas
of severe and extreme drought accounted for 15% and 27%. The North
and South Tianshan Mountains were affected by severe and extreme
drought levels. The Western and Eastern sections of the East region
showed extreme drought and slight drought, respectively. The opposite
of this drought event is typical drought event 5 (Figure 12E), which
belongs to the typical short-time low-intensity drought type. In addition
to the severe and extreme drought in the West of the Tianshan
Mountains and the eastern part of the South region, the East region,
and the North region the of Tianshan Mountains mainly have mild
drought and no drought, respectively. When studying the drought in
Xinjiang, Yao et al. (Yao et al., 2018b) proposed that the drought in
2009was a low-intensity and low-impact drought event, mainly affecting
parts of the southern slope of the Tianshan Mountains. According to
statistics of XinjiangWater ResourcesDepartment (Communique, 2009)
in 2009, drought affected 49.9×104hm2 of crops in the whole region,
including 1.83×104hm2 of no harvest area and 597×104hm2 of severe
drought grassland. The drinking water of 165 ×104 million people and
37.8×104 million livestock were seriously affected. Among them, Aksu,
Baicheng andKumish areas are suffering from severe drought (which are
located near theWest of the TianshanMountains and the Eastern part of
the South).

Typical drought event 3 was the most intense drought event
among all the drought events, and its intensity value reached 1.60. It
occurred from July 1997 to December 1997 and lasted for 6 months
with a severity of 6.60. Such short duration but high intensity drought
events often have a greater impact on ecosystems and vegetation than
long time, low intensity drought events. Figure 12C shows the SPI
classification distribution in August, the most severe month of
drought. As can be seen from the figure, about 86% of the area is

in a state of drought, and about 25% of the area is in an extreme state
of drought. These areas are mainly distributed in theWest andmiddle
part of the East Tianshan Mountains.

Typical drought event four belongs to the drought event with
long duration but lowest drought intensity. The drought event began
in April 2004 and ended in July 2005. The intensity of drought was
only 0.46, the duration was 16 months, and the severity was only
4.23. Li et al.(2016) pointed out that 2004 was a typical drought year
in Xinjiang, and most regions of Xinjiang were affected by drought
to some extent, including the Tianshan Mountains. In July 2004, the
drought event was the most severe month. 70% of the Tianshan
Mountain area was in the state of drought, but the intensity was not
high, and the drought was mainly slight (Figure 12D). Only a small
part of the East Tianshan Mountains was in extreme drought.
According to statistics of Xinjiang Water Resources Department
(Communique, 2009), the drought in 2004 was the longest in
15 years, compared with 1990–2004.

Based on the spatial analysis of drought characteristics (Figure 11)
and typical drought events (Figure 12), the West region has drought
characteristics of low frequency, long duration, and high severity,
while the East region has completely opposite drought characteristics:
high frequency, short duration, and low severity. Occasional short -
term high - severity drought events occur in North and South regions.

4 Discussion

4.1 Demonstration of the “relational scale
invariant” hypothesis

In this study, whether GWR or MGWR models, the downscaling
of satellite products as a geographically weighted regression model is
based on the hypothesis of “relational scale invariant”, which is also
the case in previous studies (Fotheringham et al., 2017; Oshan et al.,
2019). Different statistical regressionmodels were introduced to apply
the relationship between precipitation and surface physical

FIGURE 12
Spatial distribution of drought peak in five typical drought events (A) September, 1985; (B)December, 1991; (C) August, 1997; (D) July, 2004; (E) July,
2009).
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parameters at low spatial resolution to high spatial resolution, to
improve the detailed texture of low-resolution precipitation
product images (Xu et al., 2015; Zhao et al., 2018). This method
has strong operability and high accuracy. By considering the physical
mechanism affecting the formation and distribution characteristics of
precipitation, the consistency of spectral information of precipitation
products before and after downscaling is ensured. However, since the
land cover types and topographic characteristics of the mountain
surface are more complex and variable than those of the plain
area, some studies have shown that the " relational scale invariant
" hypothesis can be successfully applied to areas with uniform terrain
and land cover (Lu et al., 2020), but there may be some applicable
conditions and limitations for mountain areas with geomorphic
changes and undulating elevations.

Therefore, in this section, the downscaling result images of GPM
and MSWEP monthly precipitation in Tianshan Mountains with a
resolution of 1 km (Figures 9B,C,E,F) and topographic factor (mainly
DEM) images with a resolution of 1 km are spatially aggregated to 2km,
5km, 10 km (0.1°) and 25 km (0.25°). In this paper, the effective raster
image element value is used to verify the variation rule of statistical
relationship between downscaling results and topographic factors at
different resolution scales. As can be seen fromSupplementary Table S2,
as the difference between image resolution increases, the difference
between regression coefficient and intercept between precipitation and
elevation relationship also increases, especially the regression coefficient
has obvious changes. However, when the difference between the two
resolutions is 2–5 times, the relationship between precipitation and
elevation changes little, basically satisfying the assumption that the
relationship scale is unchanged. When the difference is more than
10 times, the change of the relationship between precipitation and
elevation can no longer be ignored, which indicates that the " relational
scale invariant " hypothesis based on the geographical weighted
regression model for downscaling still has certain limitations. In this
study, the downscaling within a small-scale range (from 0.1°×0.1° to
1km×1 km) is acceptable. Moreover, the improved MGWR model not
only increases the spatial resolution, but also significantly improves the
monitoring accuracy of MSWEP, showing better performance
compared with other downscaling methods (Figure 7; Figure 8).
However, for other precipitation products with lower resolution
(such as 0.25°×0.25° TRMM), a large-scale reduction in the study
area with non-uniform topography needs to be achieved gradually
by classification, and the hypothesis of " relational scale invariant " is not
universally applicable.

4.2 Advantages of the improved
downscaling model

The downscaling results based on the improvedMGWRmodel not
only show more abundant and clear spatial texture caused by
precipitation of different typographs in mountainous areas, but also
show more accurate prediction accuracy than satellite product source
data and other downscaling models (GWR, OLS (Yue et al., 2016)). On
the one hand, considering the functional relationship between
precipitation and scale factors is the key factor to determine the
downscaling effect, which mainly comes from the important
influence of statistical regression model. For the study area with
complex terrain and large climate change (such as the Tianshan

Mountains), there are obvious spatial heterogeneity scale differences
in the effects of multiple factors on the distribution of precipitation. It is
difficult for the classical GWRmodel and general linear regression OLS
model to reveal the spatial heterogeneity scale effect between
precipitation and scale factors in mountainous areas. MGWR model
improves the classical statistical regression model by allowing each
covariate factor to have different bandwidth Settings (Fotheringham
et al., 2017), and it gives the influence scale range of different variables.
MGWRmodel can better explain the effects of different environmental
variables on the spatial variation of precipitation in mountainous areas
by providing a more real and effective spatial process description.

On the other hand, for the two selected satellite data, the improved
MGWR algorithm can obviously capture the detailed texture inside the
original precipitation product image grid (0.1°), which degrades the
“broken spot” effect in the results of other downscaling models to a
certain extent (Figures 7B,E), especially in the mid belt of the Tianshan
Mountains with large precipitation changes and severe topographic relief
(Hu et al., 2016). This is mainly derived from the integrated Kriging
interpolationmethod (Sharifi et al., 2019), which holds that the properties
of environmental factors changing continuously in space are very
irregular and cannot be simulated by a simple smoothing function. In
this study, the method of dynamically determining the variable value
(Zhang et al., 2010) according to the optimization criterion function is
applied to the spatial interpolation of the regression relationship between
precipitation and explanatory variables by Kriging, to make the
interpolation function in the best state and facilitate the smoothing of
spatial data. The error distribution results of different spatiotemporal
scales also show the advantages of this fusion model: the downscaling
results of MGWR, mMSWEP is highly correlated with the measured
precipitation atmonthly (Figures 5F, Figure 6B), quarterly (Figures 9B–E)
and annual (Figure 9A) scales (CC>0.8). Higher precision spatial
differentiation characteristics (Figure 7F) and very small (|BIAS| ≤
0.48%) deviation distribution (Figure 8), which are also displayed in
different subregions. This further confirms the feasibility and applicability
of the improved MGWR algorithm in the process of spatial downscaling
of remote sensing precipitation products.

4.3 Limitations and future directions

In this paper, based on the improved MGWR algorithm of
Kriging interpolation, the spatial downscaling of satellite products in
the Tianshan Mountains has been realized. While ensuring the high
resolution and high accuracy of precipitation estimation results,
drought monitoring in the northwest mountains of China has been
realized. Although there are many advantages, there are still some
shortcomings and limitations.

On the one hand, the MGWR applied in this paper mainly uses
three topographic factors (elevation, slope, and aspect) which are
closely related to precipitation in mountainous areas, and four
meteorological elements (temperature, relative humidity, wind
speed and sunshine duration). However, for the conversion
function construction of GPM and MSWEP, there may be some
insufficient characterization (the improved MGWR model in this
study has different scaling effects on GPM and MSWEP). The
construction of relational model and the selection of scale factor
are directly related to whether the precipitation inversion with high
spatial resolution and accuracy can be obtained. However, the
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selection of scale factors is not the same in many current downscaling
studies on precipitation products, it is mainly affected by the
comprehensive influence of surface environment characteristics
(Zhang et al., 2019), acquisition time limit and availability of
auxiliary variables (Chen et al., 2019) and other factors. For
example, in this study, the downscaling model constructed has
good applicability for MSWEP, but still has great room for
improvement for GPM. On the other hand, due to the complex
land cover and special climate environment in the study area, the
downscaling relationship of precipitation products constructed by
using MGWR does not have obvious universality in different zones.
The reason may be that MGWR considers the spatial variation scale
relationship between precipitation and scale factors. Although there is
heterogeneity in geographical location and features in different
subregions, the regression models constructed still have similar
forms, which may ignore the spatial non-stationary relationship in
local regions. At the same time, when constructing the downscaling
transformation relationship for precipitation, the assumed “relational
scale invariant” is most satisfied when the resolution scale difference is
small (Supplementary Table S3). Therefore, it is expected that the
spatial sharpening processing of satellite precipitation products by
gradually downscaling will be achieved with higher accuracy in future
research.

In order to obtain year-round and all-weather spatial precipitation
data, in recent years, a large number of researchers have proposed a
variety of schemes in terms of cloud descending water monitoring
reconstruction with multi-source auxiliary information (Zhao and
Duan, 2020) and precipitation fusion of multiple elements of
collaborative thermal infrared, ground factors, meteorological
environment variables and microwave remote sensing data (Duan
et al., 2017). Whether these methods can be applied to the subsequent
spatial downscaling of precipitation products will also be a key issue to
be discussed and solved in future studies.

5 Conclusion

This paper used improved GWR and MGWR models with
Kriging interpolation, and statistical relationships between
satellite products (GPM and MSWEP) and environmental factors
to generate high-resolution (1 km×1 km) grid precipitation data.
The spatial-temporal characteristics of drought in the Tianshan
Mountains during 1979–2020 were analyzed using the downscaling
results. Overall findings of the current study are:

(1) Based on GVT, DEM, DEM, SLOPE, and ASPECT were
respectively screened as fixed variables in the downscaling
process of GPM and MSWEP, while WIN, RHU, SSD and
TEM were variable variables.

(2) Taking the original data of satellite products as reference, the
downscaling results of MGWR model based on the Bi-square
weight function had higher correlation and smaller residuals
with the measured values.

(3) The downscaling results of MGWR onMSWEP showed the best
performance in different time scales (CC>0.8, |BIAS|≤0.48), and
showed a richer and clearer spatial texture of topographic
precipitation.

(4) The Tianshan Mountains had a wet trend in recent 40 years. The
West TianshanMountains had the characteristics of low frequency,
long time and high severity of drought events, while the East
showed high frequency, short time and low severity. Occasional
short-term high-severity drought events occur in North and South.
A total of 16 severe drought events were identified.
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