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Human activities strongly influenced the present-day environment of the Tibetan
Plateau, especially in the northeastern area. The questions over when and to what
extent humans began to utilize the plateau environment have been long investigated,
but there are still gaps in our understanding, such as the relationship between forest
dynamics and anthropogenic activities. Here, we simulate the potential Holocene
geographical distribution of the three dominant coniferous species in the Northeast
Tibetan Plateau in response to climate/environment and analyze pollen records and
multi-proxies for anthropogenic activities to explore human impact on natural forest
dynamics. Simulation results show marked expansion of Picea and Pinus coniferous
forests in the Early Holocene (11.5–8.3 ka BP), continuing into the Mid Holocene
(8.3–4.0 ka BP). However, there was a slight contraction of forest in the Late
Holocene (4.0–2.6 ka BP) in the western part of the region, and near
disappearance in the eastern Qaidam Basin, although both Pinus and Picea
slightly increased in Hehuang Valley. Pollen analysis confirms the patterns, with
an increase in arboreal pollen mainly comprising Pinus and Picea from Early to Early
Mid Holocene (11.5–5.3 ka BP), followed by a decrease. Proxies of anthropogenic
activities, including carbon concentration, archeological sites, and, synanthropic
plants, increased significantly after 5.3 ka BP, with archeological evidence for
intensive exploitation of forest and turnover of natural vegetation. We argue that
forest retreat at 5.3–4.0 ka BP was due to the expansion of cropland and increasing
demand for wood. Significant coniferous forest retreat and degradation from 4.0 to
2.6 ka BP, with forest succession in Hehuang Valley, was driven by the booming
population, extensive grazing, and forest exploitation; the drying cooling climatemay
have aggravated the pace of deforestation at higher elevations. This study presents
new insights into the deforestation on the Northeast Tibetan Plateau in the
Holocene.
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Introduction

A capacity to alter the natural environment is one of the hallmarks of human civilization,
and the process of human development and adaptation to the environment is one of modifying
the natural environment and rearranging the natural biota (McNeill, 1986; Ellis and
Ramankutty, 2008; Harari, 2015; Boivin et al., 2016; Goldewijk et al., 2017; Woodbridge
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et al., 2020). This mostly has been true since the Holocene, with an
increased rate of species turnover (Mottl et al., 2021), rapid
extinction of wildlife (Pimm et al., 2014; Teng et al., 2022), and
alteration of the terrestrial vegetation (Pongratz et al., 2008; Qin
et al., 2010; Yu et al., 2010). Consequently, the composition and
carbon sequestration of the biosphere has been profoundly
influenced by the legacies of human activities in the past few
thousand years (Broecker and Stocker, 2006; Olofsson and
Hicker, 2007; Zhang et al., 2012; McMichael, 2021). Natural
forests are essential in carbon cycling, biodiversity conservation,
and world climate, organic matter production, water conservation,
and soil erosion prevention (Foley and Kutzbach, 1994; IGBP, 1994;
Whitney, 1994; Vitousek et al., 1997; Wan, 2017; Tuo et al., 2020).
Forest degradation was one of the most apparent land cover changes
through the Holocene (McNeill, 1986; Ren, 2000; Kaplan et al., 2009;
Kaal et al., 2011; Hou et al., 2013a; Cheng et al., 2018), primarily due
to cultivation and grazing, and in some areas may attributing to use
of fire for hunting (Ren, 2000; Zhou, 2003; Kirch, 2005; Steffen et al.,
2007; Hou et al., 2012; Hou et al., 2013a; Leal et al., 2019; Castilla-
Beltrán et al., 2021; Miehe et al., 2021). In the mid and lower reaches
of the Yangtze River, anthropogenic disturbance induced
deforestation started since Mid Holocene (Ren, 2000; Hou et al.,
2012). In Longdong Basin, anthropogenic activities, predominantly
agriculture production, caused a decrease in the abundance of shrubs
and grassland. In river valleys, the original vegetation has turned into
coniferous and broadleaf mixed forests (Zhou et al., 2011). Owing to
the human disturbance, the coniferous and broadleaf mixed forests
cover decreased markedly after 4.6 cal ka BP in the southeast of
Gansu (Li et al., 2012). However, the ways humans may have affected
the natural forest on the Tibetan Plateau yet remains to be further
studied.

Termed the third pole of the Earth, the Tibetan Plateau is one of the
least populated regions in the world. The harsh environment of hypoxia,
high altitude, and low temperature, as well as scarce resources have
largely constrained mass settlement of people in the area even at the
present day (Hou, 2016; Liu et al., 2018; Feng and Li, 2020). Thus there is
a knowledge gap in understanding the anthropogenic impact on
terrestrial vegetation and especially on the role of humans in natural
forest dynamics. The ananlysis of fossile pollen records illustrates past
vegetation succession, and the Holocene pollen record is generally well-
established. However, whether, when, and towhat extent human activity
influenced spatial and temporal changes in vegetation and forests on the
Tibetan Plateau remains unclear. Some studies suggest that substantial
anthropogenic modification of Tibetan landscapes began as early as
~8,000 cal yr BP, with the presence of hunting and possibly grazing and,
later, the development of agriculture (Brantingham et al., 2007; Miehe
et al., 2014). Supporting evidence includes records of carbon
concentration, analysis of wood charcoal, records of grazing related
spore pollen and synanthropic plants, expansion of cropland, and
human population boom (Miehe et al., 2014; Huang et al., 2017;
Miao et al., 2017; Chen F. H et al., 2020; Wei et al., 2020; Wende
et al., 2021; Liu et al., 2022). However, other studies argue the plateau, as
central Asia’s high-altitude heart, was not occupied by the mass human
population until the Late Holocene. Therefore, turnover of terrestrial
vegetation, including forest retreat in prehistorical time, was mostly
driven by climate change (Herzschuh, 2006; Herzschuh et al., 2010;
Kramer et al., 2010; Zhou and Li, 2012). However, charcoal records from
soils and archeological evidence illustrated utilization of woods in the
areas where they believe to be disappeared. More over, the persistence of

isolated trees above the current tree line lead to continued speculation of
widespread early human-induced forest clearance.

The human footprint on the Tibetan Plateau has steadily grown
since the Epipleistocene and followed by the amelioration of climate
after the Late Glacial Maximum (LGM), hunters begin to alter the
landscape for food, energy, and other resources (Brantingham et al.,
2007; 2013; Rhode et al., 2007; Miehe et al., 2014; Miehe et al., 2021).
These alterations were especially pronounced on the Northeast
Tibetan Plateau, which was at a relatively lower elevation, and
occupied by both herders and farmers. Moreover, the area is one
of the regions where there was intensive interaction between plateau
people and farming communities from lowland China. In this region,
use of fire for wild hunting started as early as 8.0 ka BP, when hunters
and gatherers made their first sustained use of the plateau
(Brantingham et al., 2007; Brantingham et al., 2013). Low intensity
but extensive agriculture began at 5 ka BP during the Majiayao
Culture, and intensive agricultural land use expanded around
4.3 ka BP during the late Majiayao Culture (Wende et al., 2021).
Evidence shows mass grazing began around 3.6 ka BP and grassland
degradation around 3.5 ka BP (Huang et al., 2017). As such, the studies
on the human dimensions of environmental change are vitally
important to explain the current environmental conditions, and to
understand and interpret past human-land interactions.

Here, we investigate changes in the distribution of natural coniferous
forests in the Holocene on the Northeast Tibetan Plateau and its
relationship with human activities. Our objectives are twofold: 1) to
map the potential distribution area of the two dominant families of
coniferous forest, Picea and Pinus; and 2) to analyze the anthropogenic
role in the dynamic change of forest during the Holocene. We use species
distribution modeling (SDM) to simulate the fundamental niche of Picea
and Pinus, and to map its potential geographic extent through the
Holocene. The modeling results are then compared to evidence from
archeological sites, carbon concentration, and fossil pollen records to assess
actual and potential forest distribution and the role of human disturbance.

Scope of the study

Environmental setting

This study focuses on the northeastern Tibetan Plateau (Figure 1),
including the eastern part of the Qinghai Plateau and the southern part of
the Gannan Plateau (He et al., 2005), including geographical units of
Hehuang Valley, Qinghai Lake area, and Gonghe Basin, between
99°19′–103°12′E and 35°32′–37°47′N, at an elevation of 1700–5,200 m
with a west to east decrease in terrain elevations and bounded by the
QilianMountains in the north and the Loess Plateau in the east. It is at the
intersection of the Tibetan alpine region, the northwest arid region, and
the eastern monsoon region, which makes it highly sensitive to climate
change due to the interaction between the plateau monsoon, the westerly
circulation, and the East Asia summer Monsoon.

Hehuang Valley is situated at the eastern margin of the Qinghai
Plateau, with a mean annual temperature range of 2.2°C–9.0°C, a mean
annual precipitation range of 252–535 mm, and forest-grassland
vegetation (Jia et al., 2019). Forests are mainly coniferous,
comprising Picea and Pinus; and mixed coniferous and broadleaf,
comprising Poplar, Betula, and Salix. Poplar and Salix are mainly
secondary forest species (CFEC, 1997). The region is also the most
suitable for agricultural production in the Northeast Tibetan Plateau.
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The Qinghai Lake-Gonghe Basin has an average elevation of over
3,000 m and a transitional climate between temperate and sub-frigid,
characterized by cold and dry winters, cool and humid summers; mean
annual temperature ranges from −0.8°C–0.6°C and mean annual
precipitation ranges from 324 to 412 mm. The mode of production
is semi-pastrolism, and vegetation includes temperate grassland,
alpine meadow, and swamp meadow. The surrounding mountains
are mostly covered with alpine shrubs and coniferous forests (Chen
and Peng, 1993). Drainage areas of the Yellow River at altitudes below
3,600 m, even in the Gonghe Basin, are occupied by forest-shrubs
vegetation (Wu and Wu, 2016).

Cultural sequence

This study focuses on the period from 11.5 to 2.6 ka BP,
encompassing the Early Holocene (EH) from 11.5 to 8.3 ka BP, the
Mid Holocene (MH) from 8.3 to 4.2 ka BP, and the Late Holocene
(LH) from 4.2 to 2.6 ka BP. Early hunter-gatherers were active between
8.3 and 5.3 ka BP, which is referred to as Early Mid Holocene (EMH).
The Majiayao Culture was formed between 5.3 and 4.0 ka BP, referred
to as Late Mid Holocene (LMH), during this period millet agriculture
and pottery production were quite common in the Northeast Tibetan
Plateau. In fact, the Majiayao Culture was known for its delicacy in
pottery. Three different cultures characterized the LH, the Qijia
Culture (4.2–3.6 ka BP), Kayue Culture (3.6–2.7 ka BP), and
Xindian Culture (3.6–2.6 ka BP). The Qijia Culture was mainly
characterized by agriculture and bronze production. The Xindian
and Kayue Cultures occupied this region during the same period,
while Xindian Culture mostly lived on farming and partially practiced
grazing, the Kayue Culture mainly lived on grazing and practiced
agriculture as an alternative source of livelihood.

Materials and methods

Species presence data

Due to the high altitude and harsh environment, coniferous forest,
comprising Picea crassifolia. Kom. (hereafter referred to as Picea), and

Pinus armandii Franch. and Pinus tabulaeformis Carr. (hereafter
referred to as Pinus) accounts for 64.2% of the forested areas on
the Northeast Tibetan Plateau (CFEC, 1997; Zhang, 2004; Tang et al.,
2019). Thus, the geographical distribution of Picea and Pinus should
provide a good indicator of forested land in the Northeast Tibetan
Plateau. Both species are cold resistant and tolerate to barren soil
conditions, with Picea preferring a cool and humid environment, and
Pinus a slightly warmer climate.

In this study, we collated 131 presence localities for Picea and
235 for Pinus, mostly from field research in 2021–2022, and some
from the literature and online search engines including the Global
Biodiversity Information Facility (http://www.gbif.cn), the Chinese
Vitual Herbarium (http://www.cvh.ac.cn), the Teaching Specimen
Resource Net (http://mnh.scu.edu.cn), National Specimen
Information Infrastructure (www.nsii.org.cn). Samples with unclear
localities and artificially planted records were removed. The
coordinates of the geographic position of the sampling places were
obtained through Baidu coordinate pickup system and the accuracy of
the information was checked by Google satellite map. To minimize
overfitting of the modeling result and spatial auto-correlation caused
by sampling bias, the occurrence data were trimmed using EMtools
software so that only a single presence was retained in each 2.5x2.5 km
grid cell. This gave a final total of 97 Picea presence samples and
80 Pinus samples (Figure 2).

Climate data

Climate data for the study were obtained from the World
Palaeoclimate Database (www.paleoclim.org), focusing on the
periods: the LGM (21 ka BP), EH (11.7–8.3 ka BP), MH (8.3–4.2 ka
BP), LH (4.2–0.3 ka BP), and present day (1979–2013 AD). The
database uses observations from over 4,000 global sites and Shuttle
Radar Topography Mission (STRM) 90–30 topography data. Climate
data extracted for each period (excluding the LGM) included
19 biological climatic variables (Bios) that were obtained using the
thin plate smooth spline interpolation method integrated with
ANUSPLIN software (Hijmans et al., 2005). Climate data for the
LGM is based on the implementation of the CHELSA algorithm on
PMIP3 data (Karger et al., 2021); this is a well-established ocean-

FIGURE 1
Study area and the location of the pollen sites and carbon sites used in this study.
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atmosphere coupled climate model that has contributed to the last
three Intergovernmental Panel on Climate Change (IPCC)
Assessment Reports and has been used to simulate climate for
nearly 20 years (Fordham et al., 2017).

Climate data were first limited to the boundary of the Tibetan
Plateau (Zhang N. M et al., 2021) and converted into ASC format to
obtain the climatic layer for each period. As there is multi-collinearity
between the 19 Bios, applying all Bios in the calculations may result in
overfitting, causing the simulation result to be limited around the
presence localities, affecting model accuracy and predictive ability
(Warren and Seifert, 2011). To address this, Pearson’s Correlation was
used to analyze the correlation between the 19 Bios; any pairs with
R≥0.80 were considered closely correlated (Kumar and Stohlgren,
2009; Lozier andMills, 2011). Also, a preliminary SDMwas performed
using the 19 Bios and the importance of each variable to the model was
evaluated using the percent contribution and Jacknife result (Ficetola,
2007). For closely correlated variables, the one that provides the most

unique information and the highest contribution to the model was
selected and the others were excluded. Themodel was then rerun using
the selected set of variables in a stepwise fashion until all the required
variables were determined (Table 1; Table 2).

Model calibration

SDMs have been applied in diverse disciplines, yet overfitting or
over parameterize is a major concern, that may lead to severe bias in
modeling. In this study we used maximum entropy modeling
(MaxEnt) of species geographic distribution (Phillips et al., 2006).
We selected MaxEnt over other types of SDM due to its high
performance (Elith et al., 2006; McPherson and Jetz, 2007) and
extensive use in previous studies, which means there is a robust
understanding of its strengths and weaknesses (Elith and Graham,
2009; Phillips et al., 2009; VanDerWal et al., 2009; Veloz 2009; Elith

FIGURE 2
Localities of the sampling data.

TABLE 1 Environmental variables for Picea and percent contribution to the model.

Code Environmental variables Unit Percent contribution

Bio1 Annual mean temperature °C*10 11.6

Bio2 Mean diurnal range (mean of monthly (maxTP-minTP)) °C 6.9

Bio4 Temperature seasonality standard deviation*100 5.2

Bio10 Mean temperature of the warmest month °C*10 12.1

Bio14 Precipitation of the driest season mm/month 5.2

Bio15 Precipitation seasonality coefficient of variation 1.7

Bio18 Precipitation of the warmest season mm/season 18.2

Elev Elevation m 43.7
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et al., 2011). In address to model weaknesses, parameter optimization
is essential for model calibration. Feature types and the regularization
multiplier are the two crucial parameters that need to be considered.
Feature types correspond to environmental variables; these are
mathematically transformed so that MaxEnt can use complex
mathematical relationships to predict the response of species to
various environmental factors. The regularization multiplier is a
constraint added to the model based on element parameters that
adjusts the response curve of the simulation (Phillips et al., 2009).
Here, we used Kuenm, an R package for model calibration. Kuenm
selects the best parameters for modeling based on: 1) statistical
significance; 2) predictive ability; and 3) model complexity (Cobos
et al., 2019). In detail, we used 15 feature types (L, Q, P, H, LQ, LP, LH,
QP, QH, PH, LQP, LQH, LPH, QPH, LQPH), 40 regularization
multipliers (at intervals of 0.1), giving a total of 600 combinations.
Optimal parameters were selected based on omission rates below the
statistical significance threshold and delta akaike information criterion
(AIC) up to 2 (Warren and Seifert, 2011). AIC is a mathematical
method for evaluating how well a model fits the data it was generated
from. The best-fit model according to AIC is the one that explains the
greatest amount of variation using the fewest possible independent
variables. Finally, a combination of feature type and regularization
multiplier with AIC of 0 was determined to be the optimal parameter
(Milanovich et al., 2012; Zhu et al., 2014).

MaxEnt modeling was performed using the optimized parameters,
with 70% of the presence data set as training data for model prediction
and 30% used for testing. To reduce the uncertainty of prediction, the
process was replicated 10 times, and to avoid model transition pooling,
the maximum number of iterations was set to 5,000. Themodeling was
applied to simulate species distribution for the four periods of interest
(LGM, EH, MH, and LH).

Pollen and anthropogenic activity proxies

Nine sites on the Northeast Tibetan Plateau with good palynological
data were selected for arboreal pollen analysis, two from Hehuang
Valley, namely, Changning site (Dong et al., 2012) and Dashuitang site
(Cao et al., 2021), three from Gonghe Basin, namely, Genggahai (Liu,
2016), Dalianhai (Cheng et al., 2010), and Ke section (Miao et al., 2017),
three fromQinghai Lake drainage area, namely, Qinghai Lake (Liu et al.,
2002), Langgeri (Wei et al., 2020), and YWY(Zhang Y. L et al., 2021),
and one along the Qilian Mountains, namely, Luanhaizi (Cao et al.,
2021). The data on total amount of arboreal pollen and coniferous trees
were extracted from all nine sites to analyze dynamic changes in forest
extent and location for comparison with the simulated distributions.
The data on carbon concentration was extracted from four sites in

Northeast Tibetan Plateau, namely, Nankayan Site (Qi, 2022),
Jiangxigou (Jiang et al., 2015) Ke section (Miao et al., 2017), and
Langgeri (Wei et al., 2020), along with the synanthropic plants
(Chen X. L et al., 2020), number of sites on the Northeast Tibetan
Plateau, as indicators of anthropogenic activities in the area. In order to
eliminate statistical magnitude variance due to the different units of the
collected data, the minimum-maximum normalization method was
used in calculations. Finally, archeological evidence for the different
periods and cultures on the Northeast Tibetan Plateau was analyzed to
further explore the human activities and forest changes.

Results

Geographic distribution of Picea and Pinus
since the Late Glacial Maximum

The relative probability of species distribution is expressed on a
logistic scale 0–1, with larger values indicating greater species suitability.
To derive a map of suitable/unsuitable habitats from the continuous
species density distribution, a thresholdmust be applied. Selection of the
optimal threshold is particularly critical because of the binary
distribution of species suitability (suitable or unsuitable); small
changes in the threshold can result in very different maps (Poirazidis
et al., 2019). In previous studies three methods for selecting logistic
thresholds for the division of suitable and unsuitable geographical areas
that are considered to give greater prediction accuracy have been
identified: the minimum training presence (MTP), ten percentile
training presence (10P), and equal test sensitivity and specificity
(ETSS) (Cao et al., 2013). The MTP method assumes that the least
suitable habitat, where the species is known to be present, is the
minimum suitability value for that species. The method is prone to
exaggerate the geographical distribution range of the species and thus is
more suitable for predicting invasive species than native species (Liu
et al., 2005). The ETSS method uses a threshold based on where there is
the same chance of the habitat being suitable and unsuitable. The 10P
method assumes that 10% of the presence localities in the least suitable
area are not present in regions that represent the overall habitat of the
species and thus should be omitted. This is considered more proper for
estimation of native species (Liu et al., 2005; Phillips et al., 2006; Jiménez
and Lobo, 2007) and is the approach adopted in this study. The resulting
10P threshold for the binary distribution of Picea is 0.16 and for Pinus is
0.266. As figure two and three illustrates, after the application of the
threshold, the area identified as suitable habitat is equally divided into
three levels usingArcGIS, namely, low,moderate, and high suitable area.
Areas designatedmoderately and highly suitable are identified as species
stable geographical distribution areas.

TABLE 2 Environmental variables for Pinus and percent contribution to the model.

Code Environmental variables Unit Percent contribution

Bio10 Mean temperature of the warmest quarter °C*10 10

Bio15 Precipitation seasonality coefficient of variation 18.8

Bio13 Precipitation of the wettest month mm/month 21

Bio19 Precipitation of the coldest quarter mm/quarter 8.6

Elev Elevation 41.6
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FIGURE 3
Simulation of Picea’s geographical distribution. (A) Picea’s geographical distribution area during LGM; (B) during Early Holocene; (C) during the Mid
Holocene; (D) during the Late Holocene.

FIGURE 4
Simulation of Pinus’ geographical distribution. (A) Pinus’ geographical distribution area during the LGM; (B) during Early Holocene; (C) during the Mid
Holocene; (D) during the Late Holocene.
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At the LGM, the coldest period of the Last Glacial, Picea is mostly
distributed along the southeast margin of the Tibetan Plateau
(Figure 3A); these areas would have provided ecological refugia for
Picea during LGM. In the EH, the highly suitable areas for Picea has
expanded to the northern part of the Western Sichuan Plateau and
southern Gannan Plateau, along the Taohe and Bailong rivers. The
moderate and low suitable areas extend to the Huangshui and the
Yellow rivers on the Qinghai Plateau and even the eastern margin of
Qaidam Basin (Figure 3B). In the MH, the highly suitable areas for
Picea have further migrated to the north and enlarged on the northeast
Tibetan Plateau, extending along the Yellow and Huangshui rivers and
some of their major tributaries. However, most of the highly suitable
areas were located on the northern Gannan Plateau, and along the
upper reaches of the Dadu River and tributaries on the Western
Sichuan Plateau (Figure 3C). By the LH, the highly and moderately
suitable areas are concentrated in the northeast Tibetan Plateau,
specifically, in the eastern Qinghai Plateau. Low suitable areas
include most higher altitude valleys and basins within the
northeastern plateau (Figure 3D).

The relatively warm valleys along the eastern and southeastern
margins of the plateaumay also have provided ecological sanctuary for
Pinus during the LGM, according to Hao et al. (2018). Our modeling
shows Pinus has very scarcely distributed on the southeastern margin
of the Tibetan Plateau at the LGM (Figure 4A). In the EH, the Pinus
suitability area expanded significantly; it is sparsely distributed in
Hehuang Valley, densely spotted on the Gannan Plateau and the
southeastern part of the Western Sichuan Plateau, and extends
westward to the eastern margin of the Qaidam Basin (Figure 4B).
From EH to MH, Pinus gradually expands to the northern Tibetan
Plateau, with a slight expansion in the northeast, and a dwindling of
suitable area in the Western Sichuan Plateau (Figure 4C). In the LH,
the suitable area contracted in both the Western Sichuan Plateau and
Gannan Plateau, expanded in the Northeast Tibetan Plateau, and
decreased in Qaidam Basin (Figure 4D).

Overall, both Picea and Pinus show a trend of northward
migration and expansion since the LGM. Picea is distributed over a
larger area than Pinus on the northeastern Tibetan Plateau, while
Hehuang Valley and major drainages of the Yellow River present
moderate to high suitability for both families. Therefore, the
simulation results suggest that Picea better represents the forested
land in the area. Most areas in the Northeast Tibetan Plateau were
suitable for coniferous forests in the Holocene. Elevations above
3,000 m could also support sparsely distributed coniferous trees,
especially Picea. In the LH, most of the highly suitable areas for
Picea are concentrated in the Northeast Tibetan Plateau, indicating the
species core distribution area finally reached the Northeast Tibetan
Plateau.

Simulation accuracy

Simulation accuracy was quantified by calculating the area under
the subject operating characteristic (ROC) curve (AUC). This gives a
value range of (0.5–1), and the larger the value, the higher the model
prediction accuracy (Hanley and McNeil, 1982). Generally, AUC
of <0.6 implies the prediction result has failed, AUC of
0.6≤0.7 implies a poor prediction, AUC of 0.7≤0.8 implies a
satisfactory prediction, AUC of 0.8≤0.9 implies a qualified
prediction, and 0.9≤1.0 implies an accurate prediction (Swets,

1988). The AUC for Picea is 0.971 (Figure 5A) and the AUC for
Pinus is 0.94 (Figure 5B), indicating a high accuracy for the simulation.

Accuracy was also determined by comparing the present day
distribution of the Picea and Pinus with the simulation of the
contemporary geographical distribution (Figures 6A,B). In terms of
present day distribution, the Flora Republiacae Popularis Sinicae of
China shows Picea crassifolia Com. is mainly found in Datong,
Huangzhong, Huangyuan, Minhe, Ledu, Huzhu, Menyuan, Qilian,
Haiyan, Tongren, Zeku, Henan, Xinghai, Maqin, Banma, Wulan
(Hehuang Valley of Qinghai Plateau, valleys and basins of the
upper Yellow River and around Qinghai Lake) in eastern Qinghai
Province (ECFC, 1978). Also, in Xiahe, Zhuoni, and Zhouqu on the
Gannan Plateau (Xiahe and its tributaries, Taohe and its tributaries,
Bailong River and its tributaries). Pinus armandii Franch. and Pinus
tabulaeformis Carr. are mainly found in southern Gansu along the
drainage of Taohe and Bailongjiang rivers, Sichuan Province, Yunnan,
and the lower reaches of Yalong Zangbu River. Zhang (2004) also
indicates that Picea crassifolia is mainly found in the eastern Qilian
Mountains and the southern Huangnan Mountains and Pinus in the
Hehuang Valley in Qinghai Province. The close match between the
modern distribution and the simulation for the Picea and Pinus lends
additional weight to the simulation accuracy.

In addition, dossil Pollen record indicates that during the LGM,
the coniferous forests from north of China retreated to the south
(Harrison et al., 2001), and the forests on the plateau mostly retreated
to the southeast of the plateau along the Hengduan Mountains and
Helan Mountains (Shi et al., 1998; Meng et al., 2007). The molecular
phylogeography study of the Picea communities in Qinghai, Gansu
and Ningxia showed a recolonization after the LGM from one
ecological refugia (Yang et al., 2005; Meng et al., 2007). However,
Pinus may had several refugia during the LGM and recolonized to the
Tibetan Plateau (Chen, 2008). These findings perfectly matches with
the simulation results.

Discussion

Dynamic change of forest and climate from
Late Glacial Maximum to Early Mid Holocen
(11.7–5.3 ka BP)

During the LGM, both the annual precipitation and annual average
temperature in the northeastern Tibetan Plateau were much lower than
today, and the region is characterized as dry and cold (Herzschuh,
2006). Following the termination of the LGM, the summer monsoon
strengthened and temperature increased, though with some cold events
(Anklin et al., 1993; Dykoski et al., 2005) (Figures 7A,B). Pollen
concentration in Qinghai Lake Basin gradually increased, and
records succession from desert steppe to alpine meadow/sub-alpine
shrub at the start of the EH (Shen et al., 2004). At this time, the winter
monsoon weakened, but the summermonsoon continued to strengthen
(Yang et al., 2019) and total precipitation significantly increased, driving
the transition from a cold dry to a relatively warm and humid
environment (Chen et al., 2006; Zhao et al., 2006; Chen et al., 2015a;
Zhang, 2018). Both the Gonghe Basin and Qinghai Lake areas recorded
weakening of aeolian sand activity, increasing vegetation coverage, and
enhanced pedogenesis in the EH (Liu et al., 2013). In the MH, solar
radiation continued to strengthen and the summer monsoon from the
Indian and Pacific oceans gradually increased, with temperatures
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peaking about 3°C–4°C higher than present around 6 ka BP (Wang et al.,
2002), and precipitation peaking around 6.8 ka BP (Shen and Tang,
1996; Tang et al., 2021); this is thought to be the warmest and wettest
period of the Holocene (Chen F. H et al., 2020). The warm and wet
conditions are recorded by several proxies, including lake levels at
Luanhaizi and Qinghai Lake that increased gradually from EH to MH
(Mischke et al., 2004), and humidification degree in Hongyuan peat that
shows a gradual increase in the percentage of amorphous humus from
EH to MH (Wang et al., 2003).

The warmer and wetter climate trend promoted vegetation
productivity on the Tibetan Plateau, especially in reforestation. In
Hehuang Valley, coniferous forest with steppe vegetation was
recorded in warm periods of the Last Ice Age, and coniferous
forest gradually increased from the Last Deglaciation into the EH,
while shrubs, herbs, and Artemisia decreased (Zhao et al., 2007). In the
Qinghai Lake drainage basin, increasing Picea and Pinus was recorded
at approximately 16 ka BP, expansion of Picea-dominated coniferous
forest began at approximately 10.8 ka BP, and expanded down slope to
the lake shore by approximately 6 ka BP (Liu et al., 2002; Zhang N. M
et al., 2021). In the upper reaches of the Yellow River, including
Gonghe Basin, pollen records at both Dalianhai and Genggahai show
increasing Picea levels from EH to MH (Cheng et al., 2010; Liu, 2016).
Moreover, both the arboreal and Picea pollen records in the Northeast

Tibetan Plateau showed a gradual increase with the warmer and wetter
climate (Figures 6C,D). These trends are consistent with the
simulation results in this study that show an expanding area of
coniferous forest since the LGM.

A number of archeological sites on the Northeast Tibetan Plateau
date to the period from the Last Deglaciation to the EH, including Site
151 (Wang et al., 2020), Jiangxigou 1 and 2, Heimahe 1 (Rhode et al.,
2007; Gao et al., 2008; Yi, et al., 2011; Hou et al., 2013b), Hudong
Zhongyang Chang (Madsen et al., 2006), Bronze Wire Canyon No. 3,
and Yandongtai site (Brantingham and Gao, 2006; Sun et al., 2012; Yi,
2012; Brantingham et al., 2013). Evidence from these sites indicates the
presence of early microlithic hunters with temporary camps in the
Qinghai Lake Basin since 14 ka BP. It could be judged that increasing
vegetation productivity provided a suitable habitat for the wild game
which attracted nearby hunters. Animal bone finds at the sites are low
at the beginning and gradually increase at around 8–7 ka BP (Hou
et al., 2013b), suggesting increasing in wild hunting. By the EMH,
archeological sites had expanded to the lower reaches of the Yellow
River, as evidenced by early culture layers at the Shalongka (8.5–7.3 ka
BP) (Yi et al., 2020) and Layihai sites (6.7 ka BP) (Gai and Wang,
1983). In this period, prehistoric humans mainly adopted short-term
foraging activities with small groups focused on the procurement and
processing of gazelle-sized ungulates (Brantingham et al., 2007; Wang

FIGURE 5
AUC rate for Picea (A) and Pinus (B).

FIGURE 6
Simulation of Picea and Pinus’ current geographical distribution. (A) Picea and (B) Pinus.
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et al., 2020). Due to the relatively small population and high mobility,
human activities had no discernable impact on the natural forest.

In summary, forest vegetation began to develop slowly in the
northeastern Tibetan Plateau following the LGM, though there was
some short-term fluctuation due to cooling events. Humidity and
temperature increased significantly Since the LGM, which supported
environmental conditions conducive to the growth of forest
vegetation. The coniferous forest gradually recovered from the cold
climate and expanded from EH to EMH. Relatively, sparse and low-
impact human activities in this period did not affect forest growth.
Therefore, it could be stated that during the Eh to EMH climate change
was essential in the dynamic changes of the forests on the Northeast
Tibetan Plateau. It is the warming climate and increasing precipitation
that contributed to the regeneration and expansion of the forests in
this area.

Forest degradation and human activities in
the Late Mid Holocene (5.3–4.2 ka BP)

The East Asia summer Monsoon peaked at around 6 ka BP, and
then it declined gradually, but the climate was still warm and humid
through the LMH and the Holocene optimum climate lasted until 4 ka

BP(Tang et al., 2021). The warm and wet climate conditions
encouraged the westward spread of Yangshao culture, bringing
millet agriculture to the Northeast Tibetan Plateau and the
formation of the Majiayao Culture (Xie, 2002). Both the climate
conditions and simulation results show the potential for
continuous development of coniferous forests in the study area in
the LMH, however, fossil pollen records from archeological sites
indicate a gradual decrease in tree pollen: Qinghai Lake (Liu et al.,
2002), Genggahai (Liu, 2016), Dalianhai (Cheng et al., 2010), Langgeri
(Wei et al., 2020), and Changning (Dong et al., 2012) all show a
continuous decrease from 5 ka BP (Figure 7J). At the same time,
proxies of anthropogenic activity such as carbon content (Figure 7E),
synanthropic plants (Figure 7F), charcoal content (Figure 7G),
number of archeological sites (Figure 7I), and area of cultivated
land (Figure 7H), increased dramatically, indicating a close
relationship between forest degradation and human activities in
the LMH.

Evidence from archeological sites indicates the major human
activities during this period included millet farming and pottery
production. The cultural development of approximately 6.0–5.0 ka
BP promoted the spreading of millet crops, and around 5.2 ka BP,
millet crops spread from Guanzhong Plain and the eastern Gansu
Province to the Hehuang Valley (Jia et al., 2013; Chen et al., 2015b;

FIGURE 7
Relationships between climate change, forest dynamics, and human activities. (A) Greenland ice core oxygen isotope records representing global
temperature changes (Anklin et al., 1993); (B)Oxygen isotope records of stalagmites in Dongge Cave indicating the intensity of Indianmonsoon (Dykoski et al.,
2005); (C)Normalized Pollen record of Picea from the Northeast Tibetan Plateau; (D)Normalized Pollen record of arboreal pollen from the Northeast Tibetan
Plateau; (E) Normalized Carbon concentration record in the Northeast Tibetan Plateau; (F) Record of synanthropic plants through integrative pollen
analysis in Northeast Tibetan Plateau during 5.5–2.0 ka BP (Chen X. L et al., 2020); (G) Charcoal concentration in different archeological sites in Northeast
Tibetan Plateau during Mid-late Holocene (Liu et al., 2022); (H) Changes in cropland during the mid to late Holocene in the NETP (Wende et al., 2021); (I)
Number of archaeological sites in the Northeast Tibetan Plateau. (J) Dynamic changes in arboreal pollen from different sites in Northeast Tibetan Plateau
indicating change in forested area.
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Dong et al., 2017). Millet grains have been recovered from
archeological remains at Lijiatai, Hongya Zhangjia, Shangduoba,
Shalongka, and Gayixianggeng (Jia, 2012). Remains of millet grains
dating to around 5.2 ka BP were also unearthed from Zonggri site
(5.2–4.1 ka BP), in Gonghe Basin in the upper reaches of the Yellow
River. As the agricultural economy developed, the area of millet
farming in Hehuang Valley rapidly increased (Wende et al., 2021).
Many studies have shown that the expansion of farmland strongly
impacts the natural vegetation cover (McNeill, 1986; Pongratz et al.,
2008; Hou et al.,; Zhou et al., 2011; Fang et al., 2019; Wende et al.,
2021); the prevailing slash-and-burn technique is likely to have
greatly contributed to the decrease in forest area in Hehuang
Valley. Furthermore, the development of agriculture promotes
rapid population increase and expansion in settlement areas. In
Hehuang Valley, the number of sites of late Majiayao Culture
(Machang type) increased sharply in the LMH and the
population reached about 39,000 (Wende et al., 2021). The
increasing population inevitably required a great supply of wood
resources for firewood, construction, production tools, and living
utensils. Charcoal remains from archeological dated to this time
comprise 100% Pinus and Picea (Liu et al., 2022), indicating
coniferous species were the preferred wood resource used by
people on the Northeast Tibetan Plateau, and they were
sufficiently abundant to be easily accessed in daily life.

High demand for wood resources in the LMH is evident at many
archeological settlements and burial sites. Charcoal remains from
hearths indicate the daily use of wood for fire, including the firing of
pottery. At Minhe Yangshan site, 96.3% of 218 graves were found to
possess burial pottery (Qinghai Institute of Cultural Relics and
Archaeology, 1990). In Ledu Liuwan cemetery, on the second
level terrace of Huangshui River, 53.3% of 257 mid Majiayao
Culture graves contained burial pottery, and more than
10,000 pieces of burial pottery were excavated from the 872 late
Majiayao Culture graves (Institute of Archaeology CASS, 1984). In
Xunhua Suhusa cemetery, 95.3% of 65 graves excavated contained
pottery, and all 64 graves excavated at Zongri site contained burial
pottery (Li and Xu, 1994). The pervasive usage of pottery indicates
high production rates and a great demand for firewood. The pottery
firing process requires a temperature above 800°C to be maintained
(Papachristodoulou et al., 2006), and early firing kilns used ground
pile burning (Qin and Ju, 2021), which consumes much wood to
maintain the high temperature. It is important to note that charcoal
remains from dead wood contain a large amount of mycelium
(Marguerie and Hunot, 2009; Vidal-Matutano et al., 2017), and
analysis of charcoal remains from this period shows very little
mycelium (Liu, 2019). This suggests that early people obtained
most of their firewood supply through deforestation. In addition,
many stone axes have been unearthed from archeological sites and
graves of this period, which may also provide strong physical
evidence for wood cutting. It is reasonable to assume that the
rapid increase in archeological settlement sites in the area
consumed a great amount of wood for construction. Most of the
settlement buildings at Majiayao are semi-subterranean dwellings
(Xie, 2002), and dwelling sites and pillar holes have been excavated at
Minhe Yangwapo, Hulijia, and Shalongka sites. Finally, most
excavated graves contain wooden coffins (Table 3). In Liuwan
Cemetery, 84% of graves had wooden coffins made from four
slices of complete wood board (no patches), and in Shang
Sunjiazhai, on the west bank of Beichuan River, a tributary of

Huangshui River, all the graves had wooden coffins. In summary,
a wide range of archeological evidence supports the presence of a rich
forest resource in Hehuang Valley in the MH that was heavily
exploited by humans. The simulation results and climate evidence
both support the archeological findings. Forest retreat in the LMH,
indicated by the reduction in arboreal pollen content, was most likely
caused by heavy exploitation of the forest resource and cropland
expansion. Thus, we argue that human activity is the driving force
for forest retreat in the LMH.

Forest retreat and community structure
evolution in the Late Holocene (4.2–2.3 ka BP)

The East Asia summer Monsoon greatly weakened around
4.0 ka BP in the Northeast Tibetan Plateau, with both
temperature and precipitation decreasing in the LH (An et al.,
2012; Chen et al., 2015a; Li et al., 2017). The simulation results
showed a contraction of the low suitability area for coniferous trees
toward the northeast margin of the plateau, while the high suitable
area for Picea and moderate suitable area for Pinus increased
markedly in Hehuang Valley. This indicates that through several
thousand years of recolonization from the LGM refugia, Picea’s
core distribution area has finally reached the Northeast Tibetan
Plateau, which is also the current core distribution area of the Picea.
It also implies that compared to Pinus, Picea is more adapted to the
local environment. It is important to note that Picea is a cold and
dry-tolerant species. Based on the current distribution, Picea
persists with a mean annual temperature of 4.8°C (−4.1–12.3°C)
and a mean temperature of the coldest month with −10°C
(−17.3–1.1°C), annual precipitation of 351 mm (72–700 mm) and
precipitation of the coldest month of 8 mm (1–15 mm) (Fang et al.,
2009). While Pinus prefers a warmer climate compared to Picea.
Thus, we argue that the LH climate shift alone would not have
hindered Picea’s existence/distribution in the area. However, the
climate shift may have slowed down the growth speed of the Picea,
and modern pollen shows that the maximum Picea pollen appears
with temperatures ranging from 0°C–8°C and precipitation ranging
from 400–850 mm (Lu et al., 2004).

Charcoal remains from archaeological sites also support the
distribution of Picea and a climate suitable for Picea. Specifically,
ash pits from Jinchankou site (4.2–3.7 ka BP) contain a large
quantity of Pinus (Wang et al., 2016). This implies that the
climate in Hehuang Valley during the Qijia Culture period must
also have been suitable for Picea since Pinus requires a warmer and
more humid environment. In the charcoal remains of the Kayue
sites in Hehuang Valley, broadleaf trees far exceeded the coniferous
in the LH (Liu et al., 2022). Broadleaf trees mostly grow in
environments with higher cumulative annual temperatures,
while coniferous trees are the dominant species in areas with
lower mean annual temperatures (CFEC, 1997). A large amount
of charcoal remains from broadleaf trees excavated in the Hehuang
Valley indicates that the LH climate was suitable for forest
development. However, fossil pollen records for the area show
continuously decreasing Picea and total arboreal pollen content in
the Northeast Tibetan Plateau (Figures 7C,D). Both the Changning
profile (Dong et al., 2012) and Dashuitang pollen record (Cao et al.,
2021) show a significant reduction of arboreal pollen content, and
pollen records from Qinghai Lake and Gonghe Basin also show a
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consistent trend of decreasing arboreal pollen content (Figure 7J).
Hence, the pollen records show a very different picture to the
results of the simulation and analysis of charcoal remains.

In the LH, there is a significant increase in the proxies
indicating human activities (Figures 7E–I). Around 4 ka BP,
through cultural exchange barley was introduced to the region
from Eurasia (Dodson et al., 2013; Ren and Dong, 2016), which
contributed to a shift in subsistence mode from solely millet-based
agriculture to a wider range of crops at different altitudes (Ma et al.,
2016; Zhang and Dong, 2017). This allowed the expansion of
cropland to higher altitudes including Qinghai Lake and Gonghe
Basin, and forests were transformed into farmland in the high
altitude mountains in Hehuang Valley and middle altitude areas in
the upper reaches of the Yellow River (Wende et al., 2021). By the
time of the Xindian and Kayue Cultures at approximately 3.6 ka BP,
grazing was clearly present in the area. Grazing practices require
forest clearance initially, and continued grazing prevents forest
regeneration. The Xindian Culture is mainly found in Hehuang
Valley, where they practiced farming and livestock herding; the
Kayue Culture is mainly at higher elevations, with grazing as their
major source of livelihood and cultivation as a secondary source.
Grazing seems to have intensified around 3.5 ka BP (Miao et al.,
2017), and evidence of overgrazing is recorded in Qinghai Lake and
Gonghe Basin (Huang et al., 2017; Wei et al., 2020). Hence, it is
likely that the spread of barley and the emergence of grazing
resulted in great transformation of native vegetation on a large
scale at high altitudes. The new agricultural practices also
promoted population development and settlement; by the late
LH, there were more than 1,800 settlement sites in the
northeastern Tibetan Plateau, with an estimated population of
more than 60,000 (Hou et al., 2013a).

Alongside grazing and farming, the production of bronze and
pottery was also prevalent in the LH, with the development of a bronze
industry seen as the greatest achievement of the Qijia Culture (Xie,
2002). Bronze wares have been excavated from many Qijia sites in the
region, including a long bronze spear at Shenna site (Wang et al.,
2022), and the earliest bronze mirror at Gamatai site (Qinghai
Institute of Cultural Relics and Archaeology and Beijing University,

School of Archaeology and Museology, 2015), and the industry
continued into the Kayue and Xindian Culture period. Bronze
casting requires a temperature of over 1,000°C, especially for
producing large wares such as long spears (Mao and Wang, 2019).
The pervasive use of bronze wares implies great the consumption of
firewood. In addition, pottery production had become a specialized,
large scale industry in this period (Xie, 2002), and is likely to have
aggravated consumption of the forest resource. Finally, evidence for
use of wood for houses at Kayue and Qijia sites, and the dramatic
increase in the number of archeological sites, also point to intensive
deforestation for infrastructure construction.

Changes in the wood used for coffins over the LH support the
persistence of coniferous trees and a declining forest resource.
Wooden coffins were used intensively by the Qijia Culture, but
their use decreased in most of the sites during the Kayue and
Xindian Culture periods (Table 3). Also, most of the Qijia Culture
coffins were made from a single log or single plank, but the Kayue
and Xindian Culture coffins comprised patchwork boards with a
wood diameter of only 10 cm. It is evident that wood utilization was
extensive in the early LH and decreased in the late LH, which
implies a marked shrinkage in the forest area. In contrast to that, in
Suhusa site, located far to the south, the use of wood coffin
increased (Xie, 2002). The ample availability of wood at some
sites suggests climate was not a limiting factor on forest growth and
wood supply. Thus, we argue the high exploitation rate of wood
resources in Hehuang Valley and Gonghe Basin since the MH
resulted in an extreme shortage of wood by the late LH. However,
wood resources were still abundant in less populated areas. In
addition, analysis of excavated charcoal shows high rates of
broadleaf trees such as Poplar and Salix in the late LH in
Hehuang Valley (Liu et al., 2022), which means that primitive
coniferous forest in the Northeast Tibetan Plateau was succeeded
by secondary forests. Overall, forest retreat in low elevation areas
was followed by a secondary succession of the broadleaf forest
communities, but intensive grazing and cultivation in higher
elevation areas caused forest degradation that, when coupled
with the drying and cooling climate, meant the fragile forest
ecosystem failed to regenerate.

TABLE 3 Use of wood coffin in the Northeast Tibetan Plateau.

Site Region Cultural type Number of graves Wooden coffin (%)

Liuwan Hehuang Valley Majiayao culture-machang type 872 84%

Liuwa Qijia Culture 366 78.70%

Liuwan Xindian Culture 6 None

Upper Sunjiazhai Majiayao Culture 21 100%

Upper Sunjiazhai Kayue and Xindian Culture 577 Nonea

Hetaozhuang Xindian Culture 367 27.80%

Suhasa Majiayao 65 57%

Suhusa Kayue 22 63%

Zongri Gonghe Basin Zongri Culture 63 100%

Shan Pingtai Kayue Culture 90 35.50%

aSome burial caves were covered with a wooden board.
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Conclusion

This study simulated the potential geographical distribution of
Picea and Pinus since the LGM to determine the changing area of
coniferous forests on the Northeast Tibetan Plateau. Pollen records,
carbon concentration, charcoal analysis, archeological evidence, and
other proxies for human activities were analyzed to explore human
impact on natural forest dynamics. The key results are outlined below.

(1) The simulation shows that climate/environment conditions were
suitable for the expansion of coniferous forest on the Northeast
Tibetan Plateau from the beginning of the Holocene to the MH.
Despite the climate shift in the LH, conditions were still suitable for
the pervasive growth of Picea- and Pinus-dominated coniferous
forests in Hehuang Valley, as well as the major drainage areas of
the Yellow River. Picea showed a strong adaptation to the local
environment in the Northeast Tibetan Plateau in the LH.

(2) The pollen record shows rapid forest expansion with optimal
climate from EH to EMH, however, this is followed by forest
retreat in the LMH, with the formation of the Majiayao Culture,
which continued to the LH.

(3) We argue that low population numbers and the low impact of
human activities, including short-term encampments for hunting
and high mobility wild game, were not sufficient to affect the
natural forest in the EH and EMH. However, a demographic
boom, extensive cultivation, grazing, and heavy exploitation of the
wood resources in the LMH and LH meant that human activities
had a stronger influence on forest vegetation than climate on the
Northeast Tibetan Plateau.

(4) Our findings also suggest LH climate conditions would not have
inhibited forest development at lower elevations, especially
coniferous forests, since archeological evidence supports the
presence of coniferous and even broadleaf forests in Hehuang
Valley. The cold dry climate of the LH may have aggravated the
pace of deforestation at high elevations where severe deforestation
had already occurred.
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