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The connection of subway stations to surrounding underground spaces inevitably
involves opening construction in the existing underground structure. The opening
construction can strongly impact the existing underground structure when there is
no reserved condition. In this study, three-dimensional numerical simulation, model
test, and theoretical analysis are used to analyze the mechanical behaviors of side
wall opening construction in a mined excavation subway station-Xuanwumen
Station of Beijing Subway Line 4. Based on the deformation and stress
characteristics of the existing side wall structure, two different reinforcement
measures are compared. It is found that the vertical and horizontal deformations
of the existing structure caused by opening construction is −1.58 and −1.79 mm,
respectively, which are lower than the subway deformation control requirements
(3 mm). However, the first and third principal stress increments are 2.14 and
−4.62 MPa, respectively, which are markedly higher than the control requirement
(10%). A “two-step opening” method is proposed for side wall opening construction
in underground structures based on the solution of complex function to the orifice
problem. This theoretical method is validated by numerical simulations and model
tests, achieving highly consistent results. The allowable ultimate span of side wall
opening is 5.75 m without reinforcement. Findings of the present study provide a
reference for the design and construction of side wall openings in similar
underground spaces.
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Introduction

Connections are an essential way for the development of urban underground space from
isolated points to an interconnected underground space network (Wallace and Ng, 2016; Zhao
and Künzli, 2016). When a subway station is connected to the surrounding underground space,
it often involves the demolition of existing structural openings. The construction of opening in
existing subway stations leads to stress redistribution in the station structure. In particular,
when there are no reserved openings, improper construction can affect the function and
structural safety of the station (Yin and Zhang, 2018; Yin et al., 2020).

Extensive research has been conducted on the opening in aboveground building structures
and excavation of underground caverns. With respect to the opening in aboveground buildings,
model tests and theoretical analyses (Zhang et al., 2019) were conducted to explore opening-
induced changes in the mechanical properties of existing building walls (Moon et al., 2020),
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deep beams (Ahmed et al., 2020), rigid plates (Saad-Eldeen et al.,
2018), and arched steel beams (Zaher et al., 2018). In addition, studies
of mine roadways or tunnel mechanics investigated the deformation
(Jia et al., 2014; Li et al., 2020), plastic zone distribution (Abdellah,
2017; Kong et al., 2022), and dynamic characteristics (Aydan, 2019) of
surrounding rock caused by deep underground cavern excavation.

As for the openings in the subway station structure, the
construction technology of subway station side wall openings,
interface waterproofing, and deformation monitoring were
reported. Sun et al. (2014) analyzed the stress characteristics of
existing structure during opening construction of side wall and
propounded corresponding countermeasures for the new and
existing structure interfaces. Wu and Yan. (2017) introduced the
key points of opening construction in subway station connecting
aisle and discussed the waterproof treatments of interface. Liu et al.
(2018) obtained the maximum vertical displacement generated by
opening construction based on site monitoring. In terms of
mechanical properties, some studies mainly involved the stress
characteristics, seismic responses, and theoretical model analysis of
shear wall with reserved opening. Nassernia and Showkati. (2017)
examined the mechanical behaviors of tensile-braced mid-span steel
plate shear walls with circular openings based on theoretical and
experimental methods. Zhai et al. (2019) fabricated and tested six
double-short-limb reinforced concrete shear walls with different
reserved openings and studied the seismic performance under
cyclic horizontal loads and constant vertical loads. Zabihi et al.
(2021) investigated the behavior of a panel between two openings
in shear walls subjected to monotonic loads. However, there have been
few studies on the construction mechanical behaviors of side wall
opening in mined excavation subway stations.

In this study, finite element numerical simulation, model test, and
theoretical analysis are used to analyze the construction mechanical
behaviors of side wall opening in an existing subway station, the
Xuanwumen Station of Beijing Subway Line 4, which is a new transfer

project in China. The force-sensitive area of opening construction is
clearly defined, and the ultimate opening span under different
reinforcement measures is determined.

Engineering background

The Xuanwumen Station on Beijing Subway Line four is a mined
excavation station with double layers and three spans. It has a buried
depth of 8 m and is constructed by the pile-beam-arch method. The
opening of the station is rectangular (6 m × 4.35 m) and is located in
the second-floor side wall (Figure 1).

FIGURE 1
Elevation of side wall opening in Xuanwumen Station (cm).

FIGURE 2
The construction site of opening demolition.
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The side wall opening can be demolished by a water drill and wire
saw (Figure 2), with local parts demolished manually. During
demolition, the reinforcement steel bars of existing structures at
the side column and the top beam should be retained as much as
possible. The interface between the new and old concrete should be
chiseled and cleaned. In the construction process of the side wall
opening (Figure 3), firstly, both sides ① are demolished, and
concealed columns on both sides are poured. Secondly, areas ②

and ③ are demolished, and temporary supports are applied.
Thirdly, after structure stabilization, the temporary supports are
removed, and the top beam is poured. Finally, area ④ is
demolished into blocks.

Numerical simulation of side wall
opening

The finite element software MIDAS GTS (version 2018R1;
MIDAS Information Technology Co., Ltd., Beijing, China) is
used to build a three-dimensional numerical model (Figure 4).
The strata are simulated using the Mohr-Coulomb model, and the
station structure is simulated using the Drucker-Prager model,
both with three-dimensional solid units. The concealed column
and the top beam are simulated using the Drucker-Prager model,
both with three-dimensional solid units. According to a previous
geotechnical investigation report (Li, 2020), the mechanical
parameters of the strata and station structure are obtained
(Table 1).

The numerical model only considers the gravity field and does not
consider the tectonic stress field. The top surface of the model is a free
surface, and its front, rear, left, right, and bottom surfaces are all
constrained to the displacement. Horizontal displacement constraints
are imposed on the strata at the opening. The construction process of
the model is shown in Figure 3. In the numerical simulation,
passivating of wall elements in the existing structure, and activating
of beam and column elements are used to simulate the opening
construction.

FIGURE 3
The processes of opening construction (cm).

FIGURE 4
Diagram of the numerical calculation model.
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Model test of side wall opening

Similarity ratio design

Based on the model chamber size and the relevant parameters of the
test instrument, the geometric similarity ratio (CL = 40) and the bulk
density similarity ratio (Cγ = 1) are determined for the model tests (Liu
et al., 2022). Using two these basic similarity ratios, the similarities of other
parameters are derived through the similarity relations (Table 2).

Test material

The test stratum sample is proportioned with quartz sand and fine
sand in a ratio of 1:3 (w/w). Themechanical parameters of the test stratum
sample are determined by direct shear tests and converted to the
corresponding mechanical parameters of the actual stratum through
the similarity relations. The mechanical parameters of the test stratum
sample are found to be close to those of the actual stratum (Table 3),
which can meet the model test requirements (Xu et al., 2020; Qin et al.,
2022; Zhang et al., 2022).

The station model section (75 cm × 57 cm × 37 cm) is made of
organic glass (a polymer of methyl methacrylate). Its modulus of
elasticity is 0.69 GPa (determined by uniaxial tensile test) and
Poisson‘s ratio is 0.32. The width and height of the top, middle
and bottom slabs and the side wall are designed using the
geometric similarity ratio CL. Its thickness is designed using the
equivalent flexural stiffness [Eq. 1]:

EmIm � CEEPCL
3IP (1)

where Em and Im are the modulus of elasticity and cross-sectional
moment of inertia of the prototype material, respectively; EP and IP are
the modulus of elasticity and cross-sectional moment of inertia of the
test material, respectively; and CE and CL are the similarity ratios of the
modulus of elasticity and geometry, respectively. The thicknesses of
the top, middle, bottom slabs and the side wall of the station are
calculated to be 54.3, 23.4, 121.5, and 54.3 mm, respectively, with a
column diameter of 8.1 mm.

Test procedures and protocols

1) Uniaxial tensile test of organic glass specimens

Uniaxial tensile tests are carried out on organic glass specimens to
verify whether the strength of organic glass after joining by hot melt
adhesive (ethylene-vinyl acetate copolymer) is similar to that before it is cut.
The specimens are designed according to the specification of the ASTM
Committee on Standards (2003), with five specimens manufactured for
each group. Specimens of group 1 is an organic glass whole specimen, and
Specimens of group 2 is an organic glass specimen connected by hot melt
adhesive. The width of hot melt adhesive in the specimens of group 2 is
2 mm. After sufficient cooling, the specimens are subjected to uniaxial
tensile test. The stress–strain relationship of between the two groups of
specimens is obtained by taking the mean values.

A universal testing machine is used as the loading device, which
has a loading rate of 10 mm/min. The extensometer is fixed to the
specimen at both ends of the gauge length (50 mm) to measure
deformation. A 2-mm-thick polyvinyl chloride slab is applied to
both ends of the specimen to prevent the breaking of its clamped

TABLE 1 Mechanical parameters of the strata and station structure.

Stratum or structure Volumetric weight γ
(kN/m3)

Elastic modulus
E (MPa)

Poisson’s
ratio μ

Cohesive force
c (kPa)

Internal friction
angle φ (°)

Artificial fill (1.50 m) 17.50 7.00 0.35 10.00 12.00

Powdered soil fill (3.00 m) 20.00 20.00 0.30 30.00 12.00

Powdery clay (11.50 m) 20.00 20.00 0.30 35.00 15.00

Medium-coarse sand (8.00 m) 22.00 35.00 0.25 0.00 40.00

Round gravel pebbles (21.00 m) 25.00 45.00 0.22 0.00 45.00

Station top slab, bottom slab, medium slab, and
side wall (C40 reinforced concrete)

24.00 32500.00 0.25 16700.00 51.00

Station column, concealed column, and top beam
(C50 reinforced concrete)

26.00 34500.00 0.22 18900.00 51.00

Temporary support (I15 steel) 78.50 206000.00 0.30 – –

TABLE 2 Model similarity relation and similarity ratio.

Physical quantity Similarity relation and similarity ratio

Model scale l Cl = 40

Displacement u Cu = Cl = 40

Stress σ Cσ = ClCγ = 40

Strain ε Cε = 1

Volumetric weight γ Cγ = 1

Elastic modulus E CE = ClCγ = 40

Poisson’s ratio μ Cμ = 1

Cohesive forces c Cc = ClCγ = 40

Internal friction angle φ Cφ = 1
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end before the gauge length section. The device of uniaxial tensile test
is shown in Figure 5. When comparing the stress–strain relationship
curves of specimens in the two groups, similar trends are found
(Figure 6). In both groups, the specimens show a linear increase in
stress with increasing strain in the gauge length section, with a
maximum error of 4.7%. This shows that the strength of organic
glass specimens after joining by hot melt adhesive is relatively similar
to that of uncut specimens.

2) Model test of side wall opening

The model tests are carried out in a visual model test chamber with
pre-defined openings. Themodel chamber is made of steel and organic
glass. It measures 1.5 m × 0.8 m × 1.2 m with a reserved opening of
21 cm × 17 cm. The station structure measures 75 cm × 57 mm ×
37 cm and is made of organic glass, with a reserved opening in the side
wall of 15 cm × 11 cm. Pre-cut organic glass blocks are used to seal the
openings, leaving a 5 mm gap between the blocks. The strength of the
organic glass specimen after connection by hot melt adhesive
connection is relatively similar to that of the uncut specimen, and
the hot melt adhesive softens quickly when exposed to heat. Therefore,
the gaps between the blocks are filled with hot melt adhesive to
facilitate the subsequent tests. The model test device of side wall
opening is shown in Figure 7.

The model tests are conducted to measure the vertical
displacement at the top of the side wall opening and the variation
in the principal stresses around the opening. Specifically, strain

rosettes are placed around the opening. When the model chamber
is filled with the stratum sample to the design position, the station
model is placed into the chamber, with its side wall opening aligned to
the model chamber opening. Settlement bars are placed at the top slab
above the side wall opening and connected to a displacement meter.
Subsequently, the model chamber is filled with the remaining stratum
sample. The locations of the measurement points for displacement and
strain are shown in Figure 8.

The test procedure involves cutting the hot melt adhesive
between organic glass blocks in the side wall opening using an
electric heating cutter (Figure 9). The cutter has a 3-mm-thick
blade and can reach a temperature of 500°C. The hot melt
adhesive is melted at a high temperature and then slowly cut. The
overall cutting speed is maintained at 1 mm/s to minimize
disturbance to the existing structure. After cutting, the unloaded
glass is removed and let stand for a while. Subsequent cutting
operations can be carried out when the readings in the data
acquisition system are less variable. In this way, the procedure of
block demolition in the opening construction of the actual project is
realized.

Results and analysis

The model test results are converted into actual displacement and
principal stress values through the similarity relations. The test results
are then compared with the displacement and stress patterns with
construction steps in numerical simulations.

1) Deformation characteristics of the existing structures in opening
construction

The stress state after the completion of station construction by the
pile-beam-arch method is used as the initial stress state for side wall

FIGURE 5
The device of uniaxial tensile test.

FIGURE 6
Stress–strain relationships of organic glass specimens.

TABLE 3 Mechanical parameters of the test stratum sample.

Volumetric weight (1:1) Cohesive force (1:40) Internal friction angle (1:1)

Actual stratum 17.5 35.0 15.0

Test stratum 17.5 44.0 14.9
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opening construction. Figure 10 shows the vertical and horizontal
deformations of the existing station structure. Subsidence occurs at the
top of the opening, with the largest value at the mid-span of the top
beam (1.58 mm). The subsidence gradually expands to the upper side
of the vault, while its influence is diminished. There is a certain uplift
at the bottom of the opening (0.97 mm), and the impact extends to the
negative second floor.

After the side wall opening is demolished, the station shows an
inward transverse deformation at the top of the top beam
(−1.79 mm), along with an outward transverse deformation at
the side wall (0.10 mm). According to the relevant regulations
and evaluation opinions of Beijing Subway Operation Co., Ltd.
On train safety operation, when the side wall structure is
demolished, the vertical and transverse allowable deformations of
the existing main structure and track are 3 mm (Yuan, 2019).
Therefore, the deformations of the station caused by side wall

opening demolition are relatively small, and the deformations of
the station and the track are in a safe state.

During opening construction, the subsidence at the top of the
opening is characterized by three stages (Figure 11). In the first stage,
when the two sides are demolished and the concealed columns are
poured, the deformation increment is minimal (−0.17 mm). In the
second stage, when the top areas are demolished and the top beam is
poured, the deformation increment reaches the highest level

FIGURE 8
Layout of displacement and strain measurement points (mm).

FIGURE 9
Relative position relation between organic glass blocks and hot
melt adhesive (mm).

FIGURE 7
The model test device of side wall opening.
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(−1.26 mm). In the third stage, when the remaining rectangular areas
are demolished, the deformation value is unchanged (−0.15 mm).

2) Stress characteristics of the existing structures in opening
construction

The stress distribution of the side wall after demolition is
shown in Figure 12. The first principal stress is largest at the mid-
span of the top beam (1.82 MPa), and the stress increment caused
by opening construction is 2.14 MPa, which indicates that the side
wall below the opening should be strengthened. The third
principal stress (−6.19 MPa) is concentrated at the top corner
of the opening, and the stress increment caused by opening
construction is −4.62 MPa. Despite the large value, it is still in
the safe range. However, according to the regulations and
evaluation opinions of the Beijing Subway Operation Co., Ltd.,
the stress change of the existing main structure should be less than
10% when demolishing the side wall structure (Yuan, 2019).
Collectively, the results indicate that the stress increment
caused by opening demolition has exceeded the allowable

range, and can cause cracking of the concrete structure. Before
demolition, the surrounding area of the opening should be
strengthened, or the structural stiffness of the concealed
columns and the top beams should be improved.

The model test results are consistent with the stress patterns based
on the numerical simulations, and the principal stress around the side
wall openings is characterized by three stages (Figure 13). In the first
stage, when the two sides are demolished and the concealed columns
are poured, the stress increment is relatively small
(0.43 and −1.60 MPa). In the second stage, when the rectangular
areas are demolished and the top beams are poured, the stress
increment is highest (1.51 and −2.85 MPa). In the third stage,
when the remaining rectangular areas are demolished, the stress
value is unchanged (0.02 and −0.06 MPa).

After the opening construction, the envelope curves of the
principal stresses are shown in Figure 14. Although the model test
results are slightly higher than the numerical simulation results, the
distribution patterns of the principal stresses are consistent.

Comparing the numerical simulation and model test results reveal
consistent variation in the distribution patterns of displacement and
stress around the side wall opening. The first principal stress is
concentrated at the mid-span of the top and the bottom, with
higher values at the top (1.82 MPa) than at the bottom (0.48 MPa).
The third principal stress is concentrated at the corners of the top and
bottom, with higher values at the top (−6.19 MPa) than at the bottom
(−3.75 MPa). The top mid-span and corners of the opening are force-
sensitive positions during construction.

Theoretical analysis of side wall opening

The above-mentioned opening construction problem can be
approximated as an excavation problem for the strata. Strata
excavation can be considered as the first “opening
construction”. The vertical and horizontal stresses around the
station structure are used to calculate the load, i.e., the
surrounding rock pressure exerted on the station structure.
Side wall excavation can be considered as the second “opening
construction”. The total vertical stress and the total horizontal
stress are used to calculate the state of stress distribution around

FIGURE 11
The maximum vertical displacement of existing side wall structure
during opening construction.

FIGURE 10
Vertical and horizontal deformations of existing station structure (mm): (A) Vertical deformation and (B) Horizontal deformation.
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the opening. The theoretical analysis process is illustrated in
Figure 15.

Basic assumptions

1) The station excavated in the strata is a rectangular structure.
2) The side wall of the station structure is considered infinite body.
3) The materials of strata and station structure are continuous,

uniform, and isotropic.

First-step opening

The excavated station structure is subjected to vertical and
horizontal stresses exerted by the strata (Figure 16). The vertical
stress (Pz = −156.25 kPa) is obtained by Eq. 2, and the horizontal
stress (Px = −67.19 kPa) is obtained by Eq. 3.

Pz � ∑
n

i�1
γihi (2)

Px � ∑
n

i�1
{ μi/ 1 − μi( )[ ]γihi} (3)

where γi is the volumetric weight of each stratum above the top slab of
the station structure, hi is the corresponding stratum thickness, μi is
the corresponding Poisson’s ratio, and n is 3. The relevant parameters
are given in Table 1.

Based on a complex function solution to the orifice problem (Sa,
1958), the stress equations for the rectangular orifice perimeter is
shown in Eq. 4, Eq. 5, Eq. 6.

σθ � 4 AC + BD( )
C2 +D2

px + 4 A′C′ + B′D′( )
C′2 +D′2

pz (4)
σρ � 0 (5)
τρθ � 0 (6)

where θ is the angle around the opening relative to the midline of the
section (θ = 0°–360°);

A � 14 − 24 cos 2θ − 7 cos 4θ,

A′ � 14 + 24 cos 2θ − 7 cos 4θ;

B � −24 cos 2θ − 7 sin 4θ,

B′ � 24 cos 2θ − 7 sin 4θ;

C � 56 + 28 cos 4θ,

C′ � 56 + 28 cos 4θ; and

D � 28 sin 4θ,

D′ � 28 sin 4θ.

The stress on the station structure is obtained by taking
the corresponding values θ). The stress at a 45° angle to the
midline of the section (θ = 45°) is chosen as the surrounding
rock pressure on the side wall of the station structure
(σ45˚ = −652.53 kPa; Figure 17).

FIGURE 13
Variation in the principal stresses of existing side wall structure
during opening construction.

FIGURE 12
Principal stress distribution around the side wall opening (MPa): (A) First principal stress and (B) Third principal stress.
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Second-step opening

The side wall opening in the station structure is subjected to the
surrounding rock pressure exerted by the strata and the self-weight
stress of the side wall (Figure 18). The surrounding rock pressure has
been calculated for the first-step opening (σ45˚ = −652.53 kPa). The self-
weight stress (σcz = −360 kPa) is obtained by Eq. 2, where γ = 24 kN/m3,
h = 15 m, and n = 1. The sum of the surrounding rock pressure and the
self-weight stress (σ45˚+σcz = −1052.53 kPa) is taken as the total vertical
stress (Pz՛) of the second “opening construction”. The total horizontal
stress (Px՛) is obtained by Eq. 3, where μ = 0.25 and n = 1.

The stress around the opening (σθ՛) is obtained by Eq. 4, Eq. 5, Eq. 6.
Then, the stress distribution around the opening obtained by the
theoretical analysis is compared with that obtained by the numerical
simulation (Figure 19). Both methods reveal similar stress distribution
patterns, but the stress values obtained from the theoretical analysis are
lower. This is mainly because the equations used for the theoretical
analysis are applicable to the “opening construction” in the strata, whereas

the second “opening construction” is carried out in the station structure.
In addition, it is possible that the first “opening construction” has resulted
in a rectangular structure, whereas the actual structure is vaulted.

Ultimate opening span

Without reinforcement

The concealed columns and top beams contribute to the
reinforcement of the existing structure around the side wall
opening. However, it is easy to find that, at a certain span, the
displacement and stress are within the safe range, even without
reinforcement. The construction period and cost can be
considerably reduced if the concealed columns and top beams
are not poured. A comparative analysis of five opening spans
(4.35, 5.00, 5.50, 6.00, and 8.00 m) is carried out with the
opening height being kept constant (4.35 m). Using the

FIGURE 15
Theoretical analysis process of the “two-step opening” method.

FIGURE 14
Envelope diagrams of the principal stresses around the side wall opening (MPa): (A) First principal stress and (B) Third principal stress.
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allowable vertical deformation (−3 mm) and the design tensile
strength of C40 concrete (1.71 MPa), the maximum opening
spans that the structure can withstand without strengthening
measures are 7.45 and 5.75 m, respectively (Figure 20). The
minimum value of 5.75 m is taken as the ultimate opening span.

Under reinforcement

When the opening span is greater than 5.75 m, two construction
control measures are proposed: temporary steel supports alone and
combined with a plugging wall (Table 4). With the opening height
being kept constant (4.35 m), four opening spans (5, 6, 8, and 10 m)
are adopted to analyze the corresponding ultimate opening spans
under different reinforcement measures.

The first principal stress as a major influencing factor is taken as
the control condition. The ultimate opening span under reinforcement
with temporary steel supports is 6.94 m, and that under reinforcement
with a combination of temporary steel supports and a plugging wall is
9.28 m (Figure 21).

FIGURE 19
Stress distribution around the side wall opening.

FIGURE 20
Ultimate opening span under allowable conditions.

FIGURE 18
Stress distribution in the second “opening construction”.

FIGURE 16
Stress distribution in the first “opening construction”.

FIGURE 17
Schematic diagram of surrounding rock pressure on the side wall.
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Conclusion

In this study, the mechanical properties of existing subway station
structure are derived from the construction of side wall opening. The
following conclusions are reached based on numerical simulations,
model tests, and theoretical analysis.

1) During the opening construction, the variation in displacements and
stresses is characterized by three stages: slow growth, rapid growth, and
almost stable. Tensile stresses are concentrated at the mid-span and
compressive stresses are concentrated at the corners. In practical
engineering, attentions should be paid to the rapid growth stage and
the stress concentration in the topmid-span and the corners of opening.

2) There is rapid growth of displacements and stresses when the
uppermost layer of the structure is demolished. The opening
should be strengthened at this location and even at the top
beam before construction.

3) During the opening construction, the displacement of the existing
structure is less than 3 mm and under the safe criteria, but the stress
increment of the structure exceeds the control criteria, indicating that
the stress variation should receive attention during construction.

4) According to the variation characteristics of displacement and stress
during the opening construction, it is seen that the sensitive areas of the
structure are the top mid-span (maximum vertical displacement and
first principal stress) and the corners (maximum third principal stress).

5) The “two-step opening” method can be used for opening analysis
of side walls in underground space structures according to the
study of this paper.

6) An increase in the opening span can result in a sharp increase in the
tensile stresses at the mid-span. The ultimate opening span without
reinforcement measures is 5.75 m; temporary steel support
reinforcement measures are suggested to be conducted, when the
opening span is between 5.75 m–6.94 m; reinforcement measures
containing temporary steel supports and plugging walls are suggested
to be implemented, when the opening span is between 6.94 m–9.28 m.
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FIGURE 21
Ultimate opening span under different reinforcement measures.

TABLE 4 Description of opening construction control measures.

Control measure Temporary steel supports Temporary steel supports with a plugging wall

Schematic

Description of demolition procedure
and control measures

1 Demolish the areas on both sides in blocks and apply
temporary steel support II

1 Demolish the areas on both sides in blocks, apply temporary steel support
II, and pore column IV and beam V

2 Demolished the middle area in blocks and apply temporary
steel support I; and

2 Demolish the middle area in blocks, apply temporary steel support I, and
pour beam III; and

3 Removed temporary steel supports after stabilization of the
structure

3 Remove temporary steel supports after stabilization of the structure
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