
Research on the modified
surrogate model based on local
RBF for concrete dam static and
dynamic response analysis

Jiaming Liang1, Zhanchao Li1,2* and Ebrahim Yahya Khailah1,3

1College of Water Resources Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China,
2Intelligent Water Conservancy Research Institute, Nanjing Jurise Engineering Technology Co., Ltd.,
Nanjing, Jiangsu, China, 3Civil Engineering Department, College of Engineering, Thamar University,
Dhama, Yemen

In recent years, as AI technology has advanced, online monitoring of dams has
garnered increasing interest. In addition, surrogate model technology is a crucial
component of online monitoring. As a result, developing a high-quality surrogate
model has become one of the pillars of dam online monitoring. This work
proposes a local radial basis function based on sensitivity modification to
address the deficiencies of the current radial basis function. In addition, a
benchmark function is utilized to validate the method’s viability. Comparisons
with BP neural network and RBF demonstrate the usefulness of the proposed
strategy. The analysis demonstrates that the proposed strategy for constructing a
surrogate model of the dam’s structural behavior is possible and accurate. This
paper aims to establish a high-quality surrogate model to provide technical
support for dam online monitoring.
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1 Introduction

As an important part of national infrastructure (Sevieri et al., 2019), the safety of dams
has been paid more andmore attention to. Thanks to the development of digital twin (Cunbo
et al., 2017; Fei et al., 2017; Uhlemann et al., 2017) and parallel intelligence (FeiYue, 2004; Xi
et al., 2017) technology, dam online monitoring (Han et al., 2022) has increasingly become a
trend and hotspot in dam safety monitoring. It is required to obtain the structural behavior of
dam operation in real-time to assess, diagnose, and evaluate the dam safety condition online
and identify the abnormal dam operation behavior in time. On the other hand, the
traditional deterministic method based on physical models relies on simulation
techniques such as finite element (Salazar et al., 2015) and finite difference models
(Jinping, 2010). Even though this method can produce accurate results, it often takes a
lot longer to do the calculations and cannot be used to track how a dam is behaving in real-
time. Therefore, the surrogate model comes into being and is widely used in the fields of
parameter optimization (Savic and Walters, 1997), model calibration (Duan et al., 1992;
Beven and Freer, 2001), multi-objective optimization (Castelletti et al., 2010), global
sensitivity analysis (Hornberger and Spear, 1981), reliability analysis (Skaggs and Barry,
1997), and so on.
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In current research on dam engineering, surrogate model
technology mainly focuses on the field of parameter
identification. By establishing the approximate mapping
relationship between parameter space and response space, the
repeated time-consuming simulation model calculation is
replaced to form an online model base, which can
significantly improve identity efficiency and realize online
parameter identification. Lin et al. (2022) established a multi-
output surrogate model based on the Gaussian process to
identify the viscoelastic parameters of the dam system. An
inverse analysis method based on a novel hybrid fireworks
algorithm (FWA) and the radial basis function (RBF) model
is proposed by Dou et al. (2019) to diagnose the health condition
of concrete dams. This method identifies the elastic modulus of
materials to determine whether a dam will fail. Das and
Soulaimani. (2021) established a surrogate model in the form
of polynomial regression and used GA, FDTD, and PSO to
identify the relevant parameters of the dam. Li et al. (2023)
presented a surrogate-assisted stochastic optimization inversion
(SASOI) algorithm to identify the static and dynamic parameters
based on LHS. Shahzadi and Soulaïmani. (2021) constructed a
surrogate model by combining polynomial chaos expansion and
deep learning networks to assess the effect of constitutive soil
parameters on the behavior of a rockfill dam based on sobol
sampling. Zhang et al. (2023) taken the multi-layer perceptron
algorithm as a surrogate model to determine deformation
monitoring indexes based on LHS. By solving the RBDO
problem of the gravity dam design, Rad et al. (2022)
constructed a new surrogate model by combine a hybrid
Support Vector Regression (SVR) based generalized normal
distribution optimization (GNDO) with the Monte Carlo
Simulation (MCS). Online analysis of structural behavior is
the basis of online parameter identification, anomaly
detection, and sensitivity analysis. An issue with online
structural analysis will have repercussions for any calculations
or analyses that follow. So, it is important to create a surrogate
model that’s both precise and reliable. Once there is a problem in
online structural analysis, it will repercuss the following analysis
and calculation. So, it is important to establish surrogate model
that’s both precise and reliable.

The surrogate model, also called a meta-model (Forrester and
Keane, 2009), is a simplified model with a small computation
scale, but the calculation outcomes are quite similar to those of a
high precision model. Popular surrogate models include the
polynomial response surface model (RSM) (BUCHER and
BOURGUND, 1990; Schultz et al., 2004; Schultz et al., 2006),
Kriging model (Jones et al., 1998; Baú and Mayer, 2006), neural
network model (Theocaris and Panagiotopoulos, 1995;
Papadrakakis et al., 1996; Furukawa and Yagawa, 1998; Karimi
et al., 2010), support vector machine model (SVM) (Rocco and
Moreno, 2002; Zhao, 2008; Zhang et al., 2009; Li et al., 2016),
radial basis function interpolation model (RBF) (Mugunthan
et al., 2005; Mugunthan and Shoemaker, 2006; Li et al., 2018;
Jing et al., 2019), and so on. Radial basis function interpolation,
as a function of the distance between data points, has the
characteristics of dimensionality independent and meshless.
As an exact interpolation model, it has been extensively
acknowledged in the study of surrogate models due to its high

interpolation accuracy, straightforward methodology, well-
defined principles, small number of parameters, and easy-to-
understand implementation (Bui-Thanh et al., 2008). Therefore,
the surrogate model based on radial basis function interpolation
is studied in this paper.

The stability and accuracy of radial basis function
interpolation are heavily dependent on shape parameters,
which are mainly affected by the basis function and node
distribution. Consequently, numerous scholars have
conducted extensive research on the selection of shape
parameters. The Multiquadric function (MQ) was suggested
by Hardy. (1971) in 1971 as the basis function for the radial
basis function interpolation shape parameters reference
formula. Rippa. (1999) determined the shape parameters of
the radial basis function interpolation with Multiquadric
(MQ), Inverse multiquadric (IMQ), and Gaussian as the
basis function by minimizing a cost function. To identify
shape parameters, Fasshauer and Zhang. (2007) proposed an
RBF pseudo-spectral technique based on leave-one-out cross-
validation. This method is applicable for the iterated
approximate moving least squares approximation of
function value data and for the solution of partial
differential equations.

In most cases, shape parameters obtained through trial
error or some other ad hoc means (Fasshauer and Zhang,
2007). The shape parameters determined by these
approaches are called global shape parameters. However, the
interpolation precision of the radial basis function is highly
dependent on grid densities and shape parameters. Therefore,
selecting a single shape parameter in the state space may result
in a loss of precision. In recent years, several scholars have
developed a novel method for selecting shape parameters based
on the preceding theory. In other words, the original shape
parameters are substituted by a variable, also known as the
local shape parameters. Bayona et al. (2011) calculated the
shape parameters using the local radial basis function
algorithm in order to reduce the inaccuracy in
approximation. Davydov and Oanh. (2011) addressed
adaptive meshless discretization of the Dirichlet problem for
the Poisson equation using numerical differentiation stencils
derived using the radial basis function. Gao et al. (2020)
computed adaptively the shape parameters of the local radial
basis function using the local point densities of the points, and
then implemented adaptive interpolation of the radial basis
function. Acar. (2014) optimized the shape parameters and
weight factor on the basis of an ensemble of standard RBFs. The
outcome shown that the proposed strategy enhanced the
accuracy of prediction.

Currently, the dam surrogate model research is mainly
based on ANN, RSM, and other methods. And radial basis
function is primarily applied to RBF neural network in the form
of the basis function. Few literatures directly use radial basis
function interpolation to establish a dam surrogate model. The
radial basis function is an interpolation function based on
distance, and different parameters have different sensitivity
coefficients to the response space. Magnus and Vasnev.
(2015) applied the relative sensitivity to forecast
combinations, and introduced the sensitivity-based weights.

Frontiers in Earth Science frontiersin.org02

Liang et al. 10.3389/feart.2023.1125691

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1125691


And by compared with the multivariate and random walk
benchmarks, different forecasting models are combined using
equal, fit-based and sensitivity-based weights. Li et al. (2013)
analyzed the sensitivity of the Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS) method in water
quality assessment mainly includes sensitivity to the
parameter weights and sensitivity to the index input data. In
the distance calculation process, modifying the distance by
parameter sensitivity is equivalent to assigning weight
coefficients to the parameters in the calculation process,
which dramatically reduces the influence of parameters
insensitive to response space in distance calculation and
enhances the effect of parameters more sensitive to static
behavior. The process adaptively adjusts the weight of
parameters to the response space to improve the model’s
accuracy.

Therefore, based on local shape parameters and sensitivity
analysis, a local radial basis function based on sensitivity
modification is proposed in this paper. The method is applied
to modeling the dam structural behavior surrogate model, and the
static and dynamic behaviors of the dam are established,
respectively. The feasibility and advantages of the proposed
method are verified by comparing with the radial basis function
and BP neural network. The remainder of this paper is organized as
follows. Section 2 describes the process of establishing a local radial
basis function surrogate model in detail. In Section 3, the feasibility
of the proposed method is verified by the benchmark function. The

surrogate model of dam structural behavior is established in
Section 4, and the effect of the surrogate model is analyzed. In
Section 5, the applicability of the local radial basis function
surrogate model is analyzed by comparing it with the radial
basis function and BP neural network. Section 6 draws some
conclusions.

2 Establishment of local radial basis
function surrogate model

In this study, the sensitivity coefficients of parameter space to
response space are determined first, followed by the determination
of local shape parameters using leave-one-out cross-validation
(LOOCV) and genetic algorithm (GA). Sensitivity coefficients
are used to adjust the kernel function during calculating local
shape parameters in order to realize the local radial basis function
based on sensitivity modification. Figure 1 depicts the specific
process.

2.1 Radial basis function interpolation model

The radial basis function (RBF) interpolation model is a non-linear
scatter interpolationmodel that fits the high-dimensional function with
a one-dimension expression. As an accurate interpolation model, it not
only has high interpolation accuracy but also has a simple principle and

FIGURE 1
Flow chart of interpolation algorithm based on local radial basis function.
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requires few parameters to be specified. As a result, it has received
widespread recognition in surrogate model research (Jin et al., 2001;
Xuefeng et al., 2005; Zhao and Xue, 2010).

Suppose n samples are randomly taken as the training set,
denoted as (xi, yi). Then the RBF interpolation model can be
expressed as a linear combination, as shown in Eq. 1.

y x( ) � ∑n
i�1
ωiφ x − xi‖ ‖( ) (1)

Where φ is the corresponding kernel function, ri � ‖x − xi‖
represents the Euclidean distance between the sampling point x of
any parameter and the known sampling point xi. ωi is the weight
coefficient of the kernel function at different training points.
Common radial basis kernel functions include the Thin-plate
spline function, Gaussian function, Multiquadric (MQ) function,
Inverse multiquadric (IMQ), and so on. In this paper, Multiquadric
(MQ) function is assumed to be the kernel function, and its
expression is shown in Eq. 2.

φ r( ) � ������
r2 + c2

√
(2)

Where, c is the radial basis function’s shape parameter, whose
value determines the specific shape of the kernel function.

Eq. 1 of the n sampling points can be utilized to create the
equations system indicated in Eq. 3, which gives the weight
coefficient ωi.

ω1φ x1 − x1‖ ‖( ) + ω2φ x1 − x2‖ ‖( ) +/ + ωnφ x1 − xn‖ ‖( ) � y1

ω1φ x2 − x1‖ ‖( ) + ω2φ x2 − x2‖ ‖( ) +/ + ωnφ x2 − xn‖ ‖( ) � y2

..

.

ω1φ xn − x1‖ ‖( ) + ω2φ xn − x2‖ ‖( ) +/ + ωnφ xn − xn‖ ‖( ) � yn

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3)

The above expression can be represented by the matrix
Φ(Xn)Ω � Yn, where Xn � [x1, x2,/, xn]T,
Yn � [y1, y2,/, yn]T, Ω � [ω1,ω2,/,ωn]T.

Φ Xn( ) �
φ x1 − x1‖ ‖( ) φ x1 − x2‖ ‖( )/φ x1 − xn‖ ‖( )
φ x2 − x1‖ ‖( ) φ x2 − x2‖ ‖( )/φ x2 − xn‖ ‖( )

..

.

φ xn − x1‖ ‖( ) φ xn − x2‖ ‖( )/φ xn − xn‖ ‖( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

Micchelli theorem states that Φ is invertible and Eq. 3 has a
unique solution if the training sample points are pairwise distinct.
Consequently, its weight coefficient matrix Ω can be represented
using Eq. 5.

Ω � Φ−1 Xn( )Yn (5)
After obtaining the weight matrix Ω, the function value y(x) at

any point x can be approximated by radial basis function
interpolation (Eq. 1).

2.2 Kernel function modification based on
sensitivity coefficient

In this paper, global sensitivity analysis based on variance
(Saltelli, 2002) is used to modify r (Euclidean distance) in kernel
function (Eq. 2). First-order and total-order sensitivity coefficients
are calculated as follows.

(1) Generate a (N, 2k) matrix of random numbers using the Sobol
sequence (k is the number of input parameters, N is the base
sample), and define two matrices A and B, each containing half
of the random number matrix (Eq. 6).

A �

x 1( )
1 x 1( )

2 / x 1( )
i / x 1( )

k

x 2( )
1 x 2( )

2 / x 2( )
i / x 2( )

k

/ / / /

x N−1( )
1 x N−1( )

2 /x N−1( )
i / x N−1( )

k

x N( )
1 x N( )

2 / x N( )
i / x N( )

k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

B �

x 1( )
k+1 x 1( )

k+2 / x 1( )
k+i / x 1( )

2k

x 2( )
k+1 x 2( )

k+2 / x 2( )
k+i / x 2( )

2k

/ / / /

x N−1( )
k+1 x N−1( )

k+2 / x N−1( )
k+i / x N−1( )

2k

x N( )
k+1 x N( )

k+2 / x N( )
k+i / x N( )

2k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

(2) Define a matrix Ci formed by all columns of B except the ith
column, which is taken from A.

Ci �

x 1( )
k+1 x 1( )

k+2 / x 1( )
i / x 1( )

2k

x 2( )
k+1 x 2( )

k+2 / x 2( )
i / x 2( )

2k

/ / / /
x N−1( )
k+1 x N−1( )

k+2 / x N−1( )
i / x N−1( )

2k

x N( )
k+1 x N( )

k+2 / x N( )
i / x N( )

2k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

(3) Compute the model output for all input parameters in the
sample matrices A, B, and Ci, obtaining three vectors of
model outputs of dimension N × 1.

yA � f A( ), yB � f B( ), yCi � f Ci( ) (8)

(4) The first-order sensitivity coefficient is calculated as follows.

Si � V E Y|Xi( )[ ]
V Y( ) �

1
N( )∑N

j�1
y

j( )
A y

j( )
Ci

− 1
N2 ∑N

j�1
y

j( )
A ∑N

j�1
y

j( )
B

1
N( )∑N

j�1
y

j( )
A( )2

− f2
0

(9)

Where

f2
0 �

1
N

∑N
j�1
y

j( )
A

⎛⎝ ⎞⎠2

(5) The total-order sensitivity coefficient is calculated as follows.

STi � 1 − V E Y|X−i( )[ ]
V Y( ) � 1 −

1
N( )∑N

j�1
y

j( )
B y

j( )
Ci

− f2
0

1
N( )∑N

j�1
y

j( )
A( )2

− f2
0

(10)

The kernel function is modified by the total-order sensitivity
coefficient as follows. Assuming that there are two groups of
parameters di � (xi, yi, zi) and dj � (xj, yj, zj) in parameter space,
and their total-order sensitivity coefficients to response space are ST1,
ST2 and ST3 respectively. The modified kernel function is:

φ r( ) � ������
r2 + c2

√

r �
������������������������������������
ST1 xi − xj( )2 + ST2 yi − yj( )2 + ST3 zi − zj( )2√

(11)
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2.3 Establishment of local radial basis
function

Generally speaking, mean square error (MSE) is a common
method to test the quality of the surrogate model. However, because
the radial basis function adopts the complete interpolation method,
the model strictly passes through each sample point, and the MSE is
0, which is not conducive to the evaluation of model quality.
Therefore, in order to evaluate the quality of the model, cross-
validation (Jiang and Wang, 2017) is usually used to calculate the
MSE of the model. Cross-validation divides the sample set into k
mutually exclusive subsets of the same size. Then, k-1 subsets are
randomly selected as the training set, and the remaining 1 subset is
used to verify the prediction performance of the model. When k is
equal to the sample size n, this cross-validation is called Leave-one-
out cross-validation (LOOCV). In order to accurately find the most
appropriate shape parameter c under the current test set, a genetic
algorithm (GA) is used for optimization calculation, and its objective
function is:

f � min
c

y − ŷ( )2 (12)

Where, ŷ is the predicted value of the test set under the current
model.

After the most appropriate shape parameter is obtained under
the current test set, the new test set is selected according to LOOCV
until the whole sample set is traversed. After n loops, the local shape
parameters of the whole model can be obtained.

When the local radial basis function is used for prediction, the
nearest neighbor method (kNN) is first used to find the sample point
that is closest to the prediction parameter, and then the
corresponding shape parameter and weight coefficient matrix of
this sample point is used to predict the results. Figure 2 selects a two-
dimensional parameter space to explain. The blue area represents
the set of all neighboring points of the red dot. When the predicted
parameter is within the range of the blue area, the shape parameter
corresponding to the red dot should be used for prediction.

3 Method feasibility verification

In order to verify the feasibility of the proposed local radial basis
function based on sensitivity modification, a benchmark function is
constructed in this paper, and the local radial basis function, radial
basis function, and BP neural network (Basheer and Hajmeer, 2000)
are respectively used for benchmark testing.

Griewanke Function (Eq. 14) is used to test the applicability of
this method to complex function models. The Sobol function
(Tarantola et al., 2006) (Eq. 15) is used to change the sensitivity
of the input parameters. In this paper, two functions are
superimposed (Griewanke+Sobol), and the specific is shown in
Eq. 13. The graphs of these three functions are shown in Figure 3.

f � 1 + 1
4000

∑n
i�1
x2
i −∏n

i�1
cos

xi�
i

√( ) +∏n
i�1

gi xi( ) (13)

G x1, x2,/, xn( ) � 1 + 1
4000

∑n
i�1
x2
i −∏n

i�1
cos

xi�
i

√( ) (14)

h x1, x2,/, xn( ) � ∏n
i�1

gi xi( ) (15)

Where, gi(xi) � |4xi−2|+ai
1+ai , ai ≥ 0.

It can be seen that the newly constructed benchmark function
retains the complexity of the original Griewank function and solves
the problem that the parameter sensitivity of the original function is
the same. It makes the newly constructed test function more
complex and closer to the actual engineering situation. This
section firstly calculates the sensitivity coefficient of each
parameter, and then modifies the kernel function based on
sensitivity coefficients. The modified radial basis function is used
to determine the shape parameter on each test set. Finally, a local
radial basis surrogate model is established on the sample space.

Figure 4 shows the sensitivity coefficient of each parameter to
benchmark function, the correlation coefficient of three different
models, and their MSE. The sensitivity coefficient of x1 and x2 to the
benchmark function is 0.6233 and 0.5949, respectively. In terms of
the correlation coefficient, local RBF model has the highest
correlation, BP neural network model has the worst correlation,
and RBF model has the medium correlation on the validation set.
Among them, the correlation degree of local RBF model is 4.36%
higher than that of RBF model and 7.54% higher than that of BP
neural network model. In terms of MSE, local RBF model has the
smallest MSE, BP neural network has the largest MSE, and RBF
model has the medium MSE.

For the newly constructed benchmark function, local RBFmodel
proposed in this paper has the best effect, followed by RBF model,
and BP neural network model has the worst effect. It can be seen that
the method proposed in this paper is reasonable and feasible.

4 Establishment and analysis of dam
structural behavior surrogate model

This paper takes the gravity dam and arch dam as examples, and
the static and dynamic behavior surrogate models of dams are
established and analyzed. Static behavior includes deformation,
stress, and temperature, while dynamic behavior mainly analyzes

FIGURE 2
Diagram of test set shape parameter selection range.
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the tensile damage under earthquake. In the static behavior,
deformation mainly includes U, V, and W, that is, the
deformation along the x, y, and z directions. The stress mainly
includes σxx, σyy, σzz, τxy, τxz and τyz, which are the normal stress
along the x, y, and z directions and the shear stress along y, z, and z
directions in the yz, yz, and xz planes respectively.

4.1 Static behavior surrogate model of dam

This section takes a gravity dam as an example to study the static
behavior surrogate model of the dam. The dam is located on the
Brahmaputra River in Tibet, China. The controlled catchment area
of dam toe is 157,407 km2, the annual average flow is 1,010 m3/s, the
total reservoir capacity is 57.89 million m3, the normal water level of
the reservoir is 3,477.00 m, and the corresponding reservoir capacity
is about 55.28 million m3. The dam is an RCC gravity dam with a
maximum dam height of 118.0 m and a total crest length of 389 m. It
is divided into 17 sections, among which 6#~9# is the overflow dam
section and the rest is the water retaining dam section.

According to the steps of establishing a surrogate model, the set
of sample parameters, namely, the Design of Experiment (DoE), is
designed first. The probability distribution and value range of
parameters are shown in Table 1. The parameters are sampled in
the Sobol sequence (Saltelli and Sobol, 1995) to generate parameter
space. As it is commonly recognized that in the absence of any priori

knowledge on the problem under consideration, uniform sampling
of the design space throughout the whole space is favourable. Sobol
sequence has the property of uniform distribution in space. Unlike
random numbers, quasi-random points are deterministic sequences
that know about the position of previously sampled points and are
constructed to avoid the presence of clusters as much as possible. It
should be noted that all parameters in Table 1 are used to establish
the deformation and stress behavior surrogate model, while only
four parameters are needed to establish the temperature behavior
surrogate model: time, upstream and downstream water level, and
thermal conductivity. Then the response space is generated by
numerical analysis of the model based on parameter space. The
specific numerical model is shown in Figure 5. Finally, the mapping
model is established according to themethod proposed in this paper.

According to the proposed local RBF based on sensitivity
modification, the sensitivity coefficient of parameter space to
response space should be analyzed first. The sensitivity coefficient
of concrete elastic modulus to U in deformation and σzz in stress is
selected for a simple explanation. The distribution of its sensitivity
coefficient within the dam body is shown in Figure 6. It can be seen
from the figure that the elastic modulus of concrete in most dam
sections is not significantly sensitive to U. The sensitivity coefficient
of the left side of the overflow dam section is 0.6–0.8, which is higher
than that of the water retaining section on the left side of the dam.
While for the water retaining section on the right side of the dam, the
sensitivity coefficient of elastic modulus to U is greater on the left

FIGURE 3
Graphs of benchmark functions.
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side than on the right side. The sensitivity coefficient is most
sensitive in the middle part of this dam section, at about 0.9.
Generally speaking, for U, the influence of elastic modulus on
both sides of the dam is much smaller than that on the middle

part of the dam. The elastic modulus of concrete has a high
sensitivity coefficient to σzz only at a finite number of elements,
and the sensitivity coefficient is only 0.45. While at most elements,
the sensitivity coefficient of elastic modulus to σzz is 0.05–0.25. In

FIGURE 4
Display of benchmark function calculation results.

TABLE 1 The probability distribution and value range of the parameters of static behavior surrogate model.

ID Parameter Symbol Unit Distribution form Value range

1 Time t month Uniform [0,12]

2 Upstream water level H1 m Normal [3340,3451]

3 Downstream water level H2 m Normal [3350,3390]

4 Uplift reduction coefficient of upstream curtain α1 - Normal [0.1,0.8]

5 Uplift reduction coefficient of downstream curtain α2 - Normal [0.1,0.8]

6 Elastic modulus of concrete E GPa Normal [10,30]

7 Linear expansion coefficient of concrete αC - Uniform [1e-6,1e-5]

8 Thermal conductivity of concrete λC kJ/(mh°C) Normal [3,10]

9 Deformation modulus of rock E0 GPa Normal [5,30]
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general, for σzz, the elastic modulus is not very sensitive to it.
Although there are some differences among the different elements of
the dam body, the differences are not very obvious.

The kernel function is modified based on the sensitivity
coefficient calculated above, and the deformation, stress, and
temperature surrogate models are established based on local RBF.

4.1.1 Establishment and analysis of dam
deformation behavior surrogate model

This paper divides the sample data into three parts: training set,
test set, and validation set. The training set and test set are used to
determine the local shape parameters and the training model, and
the validation set is used to test the overall effect of the surrogate
model. In terms of testing the effect of the surrogate model, in
addition to the MSE mentioned above, this paper also uses the
correlation coefficient between the response value of the validation
set and the fitting value calculated by the surrogate model to test the
effect of the surrogate model. Correlation coefficient can effectively
reflect the correlation between variables and its direction, so it is
widely used in the effect evaluation of surrogate model. Goel et al.
(2007) used correlation coefficient, RMS error and maximum error
to evaluate the model effect of the ensemble of surrogates. Jin and

Jung. (2016) taken correlation coefficient and RMSE as the stopping
criteria to conduct adaptive sampling on surrogate model. In this
paper, the correlation coefficient is used to characterize the trend
relationship between the response value and the fitting value, and
MSE is used to characterize the error between the response value and
the fitting value. Therefore, the correlation coefficient and MSE
between the response value of the validation set and the fitting value
obtained through deformation behavior surrogate model are shown
in Figures 7A–F, and the cumulative probability distribution is
shown in Figures 7G, H.

According to Figure 7, the performance of deformation behavior
surrogate model is analyzed. For U, a 90% probability of its
correlation coefficient is greater than 0.9910, and a 10%
probability reaches 0.9982. In different dam sections, although
the correlation degree fluctuates to a certain extent, the
correlation degree is relatively high. Only some nodes on the
right part of the dam have a low correlation degree of about
0.9750. MSE has a 90% probability below 0.0008. As can be seen
from the figure, the distribution rule of MSE is opposite to the
correlation coefficient. That is, at a certain node, the larger the
correlation coefficient, the smaller MSE. For V, its correlation
coefficient is the highest among the three models of deformation
behavior, with a 90% probability above 0.9967 and a 10% probability
reaching 1. Similarly, its MSE has a 90% probability below 0.0003. It
can be seen from the correlation coefficient distribution that its
correlation degree is significantly higher than that of U and W. In
cumulative probability distribution, U and W show a slow growth
trend. While at 0.9980, V shows a sudden growth trend with a very
large growth range, and the correlation coefficient increases from
0.9980 to close to 1. For W, its correlation coefficient is higher than
that of U. The same with U is that there is a 90% probability makes
the correlation coefficient greater than 0.9910, while there is a 10%
probability of reaching 0.9986. It can be seen from the correlation
coefficient distribution within the dam body that the correlation
degree of W is significantly higher than that of U. Although the
correlation degree also fluctuates to a certain extent, the overall
correlation degree is relatively high.

As can be seen from the above analysis, through the verification
of the correlation coefficient and MSE, it can be found that the local
RBF based on sensitivity modification is suitable for deformation
behavior surrogate model and has a good effect. And it can ensure

FIGURE 5
A dam numerical model for establishing static behavior surrogate
model.

FIGURE 6
The sensitivity distribution of a particular parameter to static behavior.
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that the surrogate model has more than 92% confidence to achieve
99% accuracy of the original model. In deformation behavior
surrogate model, the effect of V is significantly better than that

of U andW. There is a phenomenon that the correlation coefficient
and MSE of U and W fluctuate to a certain extent, and this
phenomenon has been obviously improved in V. In addition, it

FIGURE 7
(A–F) correlation coefficient and MSE distribution of deformation behavior surrogate model within the dam body; (G,H) cumulative probability
distribution of correlation coefficient and MSE of deformation behavior surrogate model.
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can be found from the figure that the distribution rule of correlation
coefficient and MSE within dam body is basically completely
opposite, except for different values, the distribution shape is
basically the same.

4.1.2 Establishment and analysis of dam stress
behavior surrogate model

Stress behavior includes six aspects: σxx, σyy, σzz, τxy, τxz and
τyz. In this paper, the correlation coefficient distribution of two
surrogate models σxx and τyz within the dam body is given, as
shown in Figures 8A–D. The cumulative probability distribution of
the correlation coefficient and MSE of the stress behavior surrogate
model are shown in Figures 8E, F.

According to Figure 8, the effects of σxx and τyz surrogate model
are similar. A 90% probability of its correlation coefficient is greater
than 0.99, and the probability of MSE less than 0.0012 is greater than
90%. From the distribution of the correlation coefficient within the
dam body, it can be found that most of the elements have a high
correlation degree, but only a limited number of elements have a low
correlation degree. Similarly, the MSE of most dam elements is very
small, only reaching 0.006–0.008 at some elements at the top of the
dam. It can be found from the cumulative probability distribution
that the correlation coefficient of τxz is slightly lower than that of
other stress behavior surrogate models. Although there are some
differences in the correlation degree of other stress behavior
surrogate models, the overall difference is not large. In the

FIGURE 8
(A–D) correlation coefficient and MSE distribution of stress behavior surrogate model within the dam body; (E,F) cumulative probability distribution
of correlation coefficient and MSE of stress behavior surrogate model.
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cumulative probability distribution of MSE, the differences between
these six stress behaviors are not obvious, and on the whole, they
show the phenomenon of σxx ≈ τxy > τxz > σzz > τyz ≈ σyy.

From the above analysis, it can be seen that the model effect of
other elements is very good except that the model effect of the
individual elements is poor. Therefore, local RBF based on
sensitivity modification is also suitable for stress behavior. And
the confidence of at least 90% enables the surrogate model to achieve
99% accuracy of the original model. In stress behavior surrogate
model, although there are some differences among the model effects
of each stress behavior, the differences are not significant on the
whole. It can be seen that local RBF surrogate model has good
stability in application.

4.1.3 Establishment and analysis of dam
temperature behavior surrogate model

The distribution of the correlation coefficient and MSE of
temperature behavior surrogate model within the dam body is
shown in Figures 9A, B, and the cumulative probability
distribution of the correlation coefficient and MSE of
temperature behavior surrogate model are shown in Figures 9C,
D. As can be seen from the figure, a 90% probability correlation
coefficient is above 0.977, and a 10% probability basically reaches 1.
In addition, the cumulative probability suddenly increases around
0.995, indicating that the model has a high correlation coefficient at
most nodes. Similarly, MSE has a 90% probability of less than
0.0075, but there is also a shape drop phenomenon, which makes the

MSE of most nodes small. It can be found from the distribution of
the correlation coefficient within the dam body that most nodes are
highly correlated. The correlation between the top and bottom of the
dam decreases to some extent, but the decreasing degree of the top is
smaller than that of the bottom. The distribution rule of MSE within
the dam body is contrary to that of the correlation coefficient. By
comparing the above deformation and stress behavior surrogate
models, it can be found that the correlation degree of temperature
behavior is lower, and MSE is higher than that of the two behavior
surrogate models. The result shows that the effect of temperature
behavior surrogate model is slightly weaker than that of deformation
and stress behavior surrogate models.

From the above analysis, it can be seen that although
temperature behavior surrogate model has a good effect,
deformation and stress behavior surrogate models have a better
effect. For temperature behavior surrogate model, the confidence of
at least 75% enables the surrogate model to achieve 99% accuracy of
the original model. And there is the confidence of 90% enables the
surrogate model to achieve 97.7% accuracy of the original model.
Although the surrogate model has a poor effect at some nodes, it
basically achieves 90% accuracy, indicating that local RBF based on
sensitivity modification is suitable for temperature behavior.
Compared with deformation and stress behaviors, temperature
behavior has only 4 parameters, while deformation and stress
behaviors have 9 parameters. Therefore, whether local RBF has a
certain correlation with the size of parameter space remains to be
studied.

FIGURE 9
(A,B) correlation coefficient and MSE distribution of temperature behavior surrogate model within the dam body; (C,D) cumulative probability
distribution of correlation coefficient and MSE of temperature behavior surrogate model.
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4.2 Dynamic behavior surrogate model
of dam

This section takes an arch dam as an example to study the
dynamic behavior surrogate model of a dam. Located in the
downstream of Jinsha River in China, the hydropower station is
the second stage of a cascade of power stations along downstream of
the Jinsha River. The power station consists of barrage, flood
discharge, and energy dissipation facilities, water diversion and
power generation systems, and other main buildings. The barrage
is an RCC double-curvature arch dam with a crest height of 834 m, a
maximum dam height of 289 m, a normal water level of 825 m, a
dead water level of 765 m, and a total storage capacity of
20.627 billion m3.

As with the construction of the static surrogate model, the
parameter space should be determined first. The probability
distribution and value range of parameters are shown in Table 2.
The parameter space is also generated by the Sobol sequence, and
then the response space is generated by analyzing the tensile damage
of the arch dam under seismic load based on the parameter space.
The numerical model is shown in Figure 10. Finally, the surrogate
model based on parameter space and response space is established.
Due to the particularity of the damage, some elements may not be
damaged, or some elements may reach the damage limit, have been
broken, and no further damage will occur. Therefore, in order to
better establish the surrogate model, before using the local RBF
based on sensitivity modification to establish the surrogate model,
the damage degree should be first classified, and the three cases of
complete damage, damage occurrence, and no damage should be

distinguished. In this paper, SVM (Chen et al., 2018) is used to
classify the damage, and then local RBF is used to train the damaged
elements.

According to the local RBF proposed in this paper, the sensitivity
coefficient of parameter space to tension damage within the dam
body is firstly analyzed. The distribution of the sensitivity coefficient
of gravity acceleration to tensile damage within the arch dam is
shown in Figure 11. It can be seen from the figure that the
distribution of gravity acceleration to tensile damage within the
dam body is very uneven. The sensitivity coefficient of the
connection between dam body and foundation is significant, and
the sensitivity coefficient of other parts is low. In the main part of the
arch dam, the sensitivity degree of gravity acceleration to damage is
not high, which is basically concentrated between 0 and 0.1.

In the connection between the dam body and the foundation, the
sensitivity coefficient of the dam bottom is slightly higher than that
of the two sides of the dam body, about 0.8–0.9. Although the
sensitivity coefficient on both sides of the dam has decreased, the
overall value is still above 0.7. Because the damage to the dam body is
mainly concentrated in the connection between the dam body and
the foundation, although there is damage in the main body of the
dam, the degree of damage is not significant, which conforms to the
rule of sensitivity distribution. Therefore, in general, the sensitivity
degree of gravity acceleration to tensile damage of arch dam is
greatly affected by the damage degree.

The kernel function is modified based on the sensitivity
coefficient calculated above, and the tensile damage surrogate
model is established based on local RBF.

The distribution of correlation coefficient and MSE of tensile
damage surrogate model within the dam body is shown in Figures
12A, B, and the cumulative probability distribution of the
correlation coefficient and MSE of tensile damage surrogate
model are shown in Figures 12C, D. Due to the particularity of
the damage, the damage degree of the main part of the dam body is
small or no damage, so the correlation and MSE are greatly affected
by the classification results. As can be seen from the figure, in the
main part of the dam body, the correlation coefficient is basically
kept above 0.98 and MSE is below 0.005. While the correlation
coefficient between dam body and foundation is obviously lower
than that of the dam body. Among them, the correlation coefficient
of the right side of the dam is between 0.965 and 0.985, which is
slightly higher than that of the left side of the dam. The correlation
coefficient of the bottom of the dam is the lowest, which is 0.91. As
mentioned above, the distribution of MSE is opposite to that of the
correlation coefficient, so it will not be analyzed in detail here. In
terms of the correlation coefficient, more than 90% probability of the
surrogate model is better than 0.988, and about 30% probability is
exactly equal to the original value. In terms of MSE, more than 90%
probability of the surrogate model is less than 0.0022. Similar to the

TABLE 2 The probability distribution and value range of the parameters of dynamic behavior surrogate model.

ID Parameter Symbol Unit Distribution form Value range

1 Upstream water level H m Normal [765,832.34]

2 Gravitational acceleration g g Uniform [0,0.8]

3 Height of swell Hwater m Normal [0,160]

FIGURE 10
A dam numerical model for establishing dynamic behavior
surrogate model.
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correlation coefficient, it has a high probability exactly equal to the
original value.

From the above analysis, it can be seen that the effect of the
surrogate model is significantly affected by the classification results at
elements with no or complete damage. In this case, the correlation
coefficient is strictly equal to 1 and the MSE is strictly 0.While among
other elements, model effects are influenced by classification and local
RBF. Although the model effect of the dam bottom is not ideal, the

model accuracy of most elements is 98%. Therefore, the feasibility of
local RBF in dynamic behavior surrogate model can be proved.

5 Discussion

The static and dynamic behavior surrogate models of dams are
developed using local RBF, and the effect of the surrogate models

FIGURE 11
Distribution of sensitivity coefficient of Gravitational acceleration to tensile damage within dam body.

FIGURE 12
(A,B) correlation coefficient and MSE distribution of tensile damage surrogate model within the dam body; (C,D) cumulative probability distribution
of correlation coefficient and MSE of tensile damage surrogate model.
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are tested using the correlation coefficient and MSE. The results
suggest that the method proposed in this study is appropriate for
establishing a dam structural behavior surrogate model, and the
surrogate model’s accuracy meets the criteria of various
applications. This section compares the proposed method to
RBF and BP neural networks to demonstrate the method’s
viability and advantages.

5.1 Comparison and research of dam static
behavior surrogate model

The correlation coefficient and MSE are used in this section, as
in the section above, to confirm the influence of the surrogate
model. The cumulative probability distribution of three different
surrogate model types is displayed to help explain and analyze the
findings.

5.1.1 Comparison and research of deformation
behavior surrogate model

The cumulative probability distribution comparison of
correlation coefficient and MSE on the validation set of the
deformation behavior surrogate model established by local
RBF, RBF, and BP neural network is shown in Supplementary
Figure S1. As can be seen from the figure, the model effect of local
RBF is always better than the other two methods, regardless of the
deformation direction. For U, the correlation coefficient of local
RBF on the validation set is significantly higher than that of BP
neural network and RBF, and the correlation coefficient is lower
than 0.985 only at a finite number of nodes. While for neural
network and RBF, 25% and 40% of nodes have correlation
coefficients lower than 0.985. Similarly, the MSE of local RBF
is significantly lower than that of neural network and RBF, which
is less than 0.0015. For V and W, the correlation degree of local
RBF is still the highest, but the correlation degree of neural
network and RBF is relatively close. In this case, for MSE, RBF is
significantly lower than the neural network. This is because the
correlation coefficient measures the linear trend between two
groups of data, while MSE measures the difference between two
groups of data. In some cases, the correlation degree may be high
while the MSE is also significant. Therefore, it is reasonable that
the correlation coefficients of the neural network and RBF are
similar, but the MSE of RBF is more significant than that of the
neural network.

On the whole, the effect of the surrogate model established by
local RBF is significantly better than that of BP neural network and
RBF, and the effect of BP neural network is better than that of RBF.
The above analysis shows that the local shape parameters improve
the accuracy of the model to a certain extent than the single global
shape parameters. Similarly, by modifying the kernel function
based on sensitivity coefficients, the weights of input parameters
can be updated adaptively, and the accuracy of the surrogate model
can be improved to a certain extent. Compared with RBF, the effect
of local RBF based on sensitivity modification is significantly
enhanced. Therefore, local RBF based on sensitivity
modification proposed in this research is practicable and has
high accuracy in the establishment of deformation behavior
surrogate model.

5.1.2 Comparison and research of stress behavior
surrogate model

Similar to deformation behavior, Supplementary Figure S2
depicts the cumulative probability distribution comparison of
correlation coefficient and MSE on the validation set of stress
behavior surrogate model established by local RBF, RBF, and BP
neural network. As observed in the figure, local RBF performs
noticeably better than neural network and RBF for stress
behavior surrogate models σxx and τxz. Although generally
superior to neural network and RBF, alternative stress behavior
surrogate models’ rise rates are marginally lowered when the
correlation coefficient is close to 1 or MSE is close to 0. It may
lead to the effect of neural network or RBF being better than local
RBF in extremely limited cases. Taking σyy as an example, when the
correlation coefficient reaches 0.998, the increased rate of the
cumulative probability distribution of local RBF is slightly lower
than that of the neural network. This indicates that the neural
network surrogate model has a higher probability to make a
correlation coefficient greater than 0.998. But in general, local
RBF has a 98% probability of making a correlation coefficient
greater than 0.99, while the neural network has only a 47%
probability of making a correlation coefficient greater than 0.99.
Similarly, local RBF has a 98% probability of making MSE lower
than 0.002, while the neural network only has a 42% probability. The
validation accuracy of the local RBF surrogate model is significantly
higher than that of the neural network, and the validation accuracy
of the neural network surrogate model is higher than that of RBF.

Overall, the dam stress behavior surrogate model established
by local RBF has the best effect, followed by BP neural network,
and RBF has the worst effect. Although the probability that a
neural network or RBF is superior to local RBF is very small, the
accuracy of the surrogate model at this time is very high, and the
surrogate model established by these three methods can meet the
application requirements. Similar to deformation behavior, by
replacing the global shape parameters with local shape
parameters and modifying the kernel function according to
sensitivity coefficients, the model effect of local RBF is
improved to a certain extent, which is better than RBF.
Therefore, it can be considered that local RBF based on
sensitivity modification proposed in this paper is very suitable
for the establishment of a stress behavior surrogate model.

5.1.3 Comparison and research of temperature
behavior surrogate model

Supplementary Figure S3 depicts the cumulative probability
distribution comparison of correlation coefficient and MSE on
the validation set of temperature behavior surrogate model
established by local RBF, RBF, and BP neural network. As
observed in the figure, the effect of local RBF is better than
the other two models, both in terms of correlation coefficient and
MSE. In the cumulative probability distribution comparison of
the correlation coefficient, local RBF starts to grow from 0.94,
while the correlation coefficient between the neural network and
RBF is less than 0.94 at some nodes. Although the cumulative
probability of local RBF and RBF is similar in the range of
0.99–0.993, the correlation coefficient of RBF is significantly
lower than that of local RBF with the increase of cumulative
probability. Although neural network and RBF have their
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advantages and disadvantages in different areas, the effects of
these two models are generally similar. In the cumulative
probability distribution comparison of MSE, local RBF is
obviously better than neural network and RBF.

While BP neural network and RBF surrogate models have their
advantages and disadvantages, the local RBF surrogate model
generally has the best effect on dam temperature behavior
surrogate models. Similar to deformation and stress behavior,
local RBF replaces global shape parameters with local shape
parameters and modifies the kernel function with sensitivity
coefficients, making the model effect better than RBF. Therefore,
the proposed local RBF based on sensitivity modification can replace
BP neural network and RBF to establish the temperature behavior
surrogate model.

5.2 Comparison and research of dam
dynamic behavior surrogate model

Similar to the above, the cumulative probability distribution
comparison of the correlation coefficient and MSE of dynamic
behavior surrogate model established by local RBF, RBF, and BP
neural network is shown in Supply Figure 4. As can be seen from the
figure, different from static behavior surrogate model, dynamic
surrogate model is also affected by SVM classification results.
Therefore, the effects of undamaged and completely damaged
elements are not considered. So, the correlation coefficient and
MSE of local RBF are significantly better than those of neural
network and RBF in damaged elements. In the cumulative
probability distribution comparison of the correlation coefficient,
local RBF shows an increasing trend at 0.987, while in neural
network and RBF, about 30% of elements have correlation
coefficients less than 0.987. The neural network and RBF effect
are similar to that of the temperature behavior surrogate model.
Although there are some advantages and disadvantages in different
areas, the overall effect is relatively identical. By substituting local
shape parameters for global shape parameters and altering the
kernel function based on sensitivity coefficients, RBF is enhanced
similarly to static behavior. As a result, it can be said that local RBF
based on sensitivity modification has better applicability than BP
neural network and RBF.

In conclusion, the proposed local RBF based on sensitivity
modification is significantly better than BP neural network and
RBF for both the static and dynamic behavior of the dam. For
deformation and stress behavior, BP neural network surrogate
model is better than RBF surrogate model. While BP neural
network and RBF surrogate model have their own advantages
and disadvantages in temperature and dynamic behavior.

6 Conclusion

On the basis of dam online monitoring technology, this study
explains the notion of the surrogate model and explores the
limitations of RBF in light of the surrogate model technology’s
current state of development. Then, in an effort to address the
drawbacks of RBF, a novel local RBF based on sensitivity
modification is developed using local shape parameters and

sensitivity analysis, and the method’s feasibility is confirmed
using a benchmark function. Finally, the dam structural behavior
surrogate model is developed in order to assess the model’s
influence. In addition, the differences between these three
methods are determined by comparing them to BP neural
networks and RBF surrogate models. The subsequent conclusions
are reached.

(1) The proposed local RBF surrogate model based on sensitivity
modification is entirely feasible. In establishing the dam
structural behavior surrogate model, the accuracy of this
model is better than BP neural network and RBF surrogate
model, which has good applicability.

(2) In this research, the correlation coefficient and MSE are utilized
to validate the model’s effectiveness. MSE is used to represent
the inaccuracy between the response value and the fitting value,
whereas the correlation coefficient is used to characterize the
trend relationship between the response value and the fitting
value. The example analysis demonstrates that these two indices
can indicate the established surrogate model’s effect from
different levels.

(3) The deformation surrogate model based on the suggested
method has the best effect on the static behavior surrogate
model of the dam, followed by the stress surrogate model, and
the temperature surrogate model has the worst effect. Despite
having the weakest performance, the temperature behavior
surrogate model still has a good correlation coefficient and a
low MSE. Additionally, this model’s results are still superior
than those of RBF and BP neural networks. As for dynamic
behavior surrogate model of the dam, this research primarily
examines the tensile damage surrogate model. Due to the
unique nature of the damage, this paper uses SVM to
classify the damage and then train the model. The outcome
shows that while the surrogate model’s effect is not optimal for
all elements, it generally has a high correlation coefficient and
a low MSE.

(4) In constructing static and dynamic behavior surrogate
models of the dam, local RBF based on sensitivity
modification has greater universality than BP neural
network and RBF surrogate model. In terms of
deformation and stress behavior, the BP neural network
surrogate model is superior to the RBF model. In terms of
temperature and dynamic behavior, these two surrogate
models each have their own benefits and drawbacks.

(5) The local RBF based on sensitivity modification proposed in this
paper is limited by the characteristics of RBF and is only suitable
for the training of a single target model. Therefore, the
computational cost will significantly increase once the
response variable type increases. So how to train a muti-
objective model using RBF to ensure accuracy and efficiency
will be the focus of future research.
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