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Detecting and analyzing changes of water resources is critical for human survival
and societal development in theQinghai Tibet Plateau (QTP). We implemented the
cosine similarity method to complete the migration of samples and achieve a
more accurate random forest classifier (mean Kappa = 0.872) for each period.
Based on these classifiers and 45,370 Landsat images, we estimated the surface
water distribution of the QTP for six periods between 1990 and 2020 based on the
Google Earth Engine platform. The results indicate that the QTP has a surface
water area of 57,229 ± 3,248 km2 (1990–1995), 58,444 ± 3,248 km2 (1996–2000),
67,319 ± 3,704 km2 (2001–2005), 67,399 ± 2,798 km2 (2006–2010), 70,286 ±
3,033 km2 (2011–2015), 75,176 ± 2,785 km2 (2016–2020), that the area of water
rose by ap-proximately 31.3% and continued to increase. The area of permanent
water remained constant between 1990 and 2020 at 47,280 km2. On the QTP, the
change in water area can be split into four regions: rapid increase (Qiangtang
Plateau), slow increase (eastern basins), decrease (northern and northeastern
basins), and relatively stable (southern basins). About 186,408 km2 area of land
is significantly losing water bodies, while about 589,567 km2 area of land is
significantly gaining water bodies. This study provides higher accuracy
temporal distribution data of water bodies in the Qinghai-Tibet Plateau, and
quantitatively evaluates the area changes of water bodies from multiple spatial
scales. Research provides an important scientific reference for hydrological
research and effective management of water resources in important rivers in
the QTP.
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1 Introduction

As one of the most important resources on land, surface water is closely related to human
production and life, and its spatial distribution and temporal changes can play an important
role in the indication of climate change (Deng et al., 2019). The QTP contain a significant
amount of freshwater resources, accounting for more than half of China’s lakes. TheQTP is the
primary source of more than 10 rivers, including the Yangtze river, the Yellow river, and the
Brahmaputra river. It is also known as the “Asian water tower,” it is critical for human survival,
social stability, and growth in the QTP (Immerzeel et al., 2010; Pritchard, 2019).
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Simultaneously, the presence and status of surface water in the QTP
are critical indicators of climate and environmental change. The
imbalanced status of surface water would increase the frequency of
natural disasters such as ice collapse and glacier lake outbursts. Thus,
examining the temporal and spatial variance of surface water in QTP
contributes to our understanding of climate change and helps us
prevent natural disasters.

Long-term and large-scale monitoring are advantages of
remote sensing technology, which is essential for surface water
monitoring. The water monitoring technology of remote sensing
is improving daily as a result of the efforts of several scholars.
Early water extraction was accomplished by the use of spectral
index in combination with threshold segmentation, spectral
index such as the normalized difference water index (NDWI)
(McFeeters, 1996), modified normalized difference water index
(MNDWI) (Xu, 2006), automated water extraction index (AWEI)
(Feyisa et al., 2014) and threshold segmentation algorithm Otsu.
(1979). However, the performance of each water body spectral
index varies according to its geographical context, and the
machine learning method gives a more precise and general

way for water body extraction. For instance, using the random
forest algorithm to extract the Yangtze River Basin’s water bodies
(Wang et al., 2018), extracting water from urban areas using
convolutional neural networks (Wang et al., 2020), using neural
networks to extract high spatial resolution water bodies from low
spatial resolution imagery (Qin et al., 2020).

Remote sensing has achieved fruitful results in the research of
surface water extraction thanks to the advances of water
extraction technologies (Mao et al., 2020). Remote sensing
technology has realized the long time series monitoring of the
dynamic changes of global water bodies (Donchyts et al., 2016;
Yamazaki and Trigg, 2016), and the accuracy and spatial
resolution of global water body extraction are gradually
improving (Carroll et al., 2009; Feng et al., 2016; Pekel et al.,
2016). The QTP’s surface water is dominated by lakes (including
salt lakes), glacier lakes, rivers, and their tributaries. Lakes account
for a sizable portion of surface water. Studies show that lakes on
the QTP were expanding (Wan et al., 2014; Zhang et al., 2017).
There are numerous glacier lakes within the QTP. Changes in the
status of glacier lakes may directly result in glacier lake outbursts
and other disasters (Chen et al., 2017; Lu et al., 2020; Wu et al.,
2020). Zhang et al. (2015) carried out remote sensing
interpretation and manual boundary correction for the glacier
lakes of QTP in several periods. According to the research, the
quantity and extent of glacial lakes in the QTP were increasing. In
addition to monitoring the area of water bodies on the QTP,
several studies have estimated the water storage volumes on the
QTP (Song et al., 2013; Qiao et al., 2019). However, due to the
accuracy of water extraction and the absence of support for large-
scale remote sensing data calculating capability, long-term surface
water change monitoring is still lacking throughout the QTP.

Google Earth Engine (GEE) is a cloud computing platform and has
large scale geospatial data analysis capabilities. Researchers can solve

FIGURE 1
Landsat image numbers and QTP location (1990–2020 Landsat TM, ETM+ and OLI image).

TABLE 1 Statistics of image number in each period.

Year TM ETM+ OLI Total

1990–1995 7,825 0 0 7,825

1996–2000 5,533 0 0 5,533

2001–2005 4,707 2,267 0 6,974

2006–2010 6,180 0 0 6,180

2011–2015 1204 3,409 5,128 9,741

2016–2020 0 0 9,117 9,117
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deforestation, drought, disasters, diseases, food security, water resources
management, climate monitoring, and environmental protection
problems more effectively by using the GEE platform (Gorelick
et al., 2017). This paper employs GEE in combination with machine
learning methods to extract the QTP’s surface water from 1990 to
2020 and to determine the QTP’s surface water change trend in each
watershed.

2 Materials and methods

2.1 Satellite image and preprocess

We used the Top-Of-Atmosphere (TOA) reflectance imagery
from the Landsat satellite Thematic Mapper (TM), Enhanced
Thematic Mapper Plus (ETM+), and Operational Land Imager

FIGURE 2
The flowchart of surface water extraction.

TABLE 2 Features list of water classification.

Type Names Description

Band Blue Wavelength 0.45–0.52 μm

Green Wavelength 0.52–0.60 μm

Red Wavelength 0.63–0.69 μm

NIR Wavelength 0.76–0.90 μm

SWIR1 Wavelength 1.55–1.75 μm

SWIR2 Wavelength 2.08–2.35 μm

Spectral Index NDWI (Green–NIR)/(Green + NIR)

MNDWI (Green–SWIR1)/(Green + SWIR1)

NDVI (NIR–Red)/(NIR + Red)

AWEInsh 4*(Green–SWIR1)–0.25*NIR + 2.75*SWIR2

AWEIsh Blue + 2.5*Green–1.5*(NIR + SWIR1)–0.25*SWIR2

Topographic Features Elevation DEM

Slope DEM gradient
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(OLI) covering the entire QTP (Figure 1). A total of 45,370 Landsat
imagery were utilized in this study to reduce the detrimental impact
of clouds on water classification by keeping the image cloud cover
score below 30%. Figure 1 displays the total number of images
selected in each tile of the study area.

The period 1990–2020 was separated into six time periods
(Table 1), and the cloud-free images for each period were
obtained by applying the 25% percentile composite (Corbane
et al., 2020) approach to all images in that period. The GEE
platform provides the “ee.Reducer.percentile” function that
implements the percentile image composite method. To reduce
the error introduced by the Landsat EMT+ sensor failure in
2003, only a subset of Landsat ETM+ images were used in
2013 following the sensor failure and paired with Landsat 5 and
Landsat 8 images.

2.2 Water classification

Water classification consists of three steps (Figure 2): first,
construct water samples and select suitable features, then use
cosine similarity to select the water samples for different periods,
and finally train the random forest classifier (Breiman, 2001) on the
samples from each period to obtain the water map for that period.
Each stage is detailed in full below.

Water samples were collected manually from cloud-free and
high-resolution sentinel imagery between 2016 and 2020. There
are 28,786 samples in total, with 21,227 being non-water samples
and 7,559 being water samples. The accuracy of the random
forest also depends on the selection of input features. This study

the input features (Table 2) are composed of three parts: 1) six
spectral bands, including blue band, green band, red band, near-
infrared band (NIR), short-wave infrared band 1 (SWIR1), and
short-wave infrared band 2 (SWIR2); 2) spectral index, including
normalized difference vegetation index (NDVI), MNDWI,
NDWI, AWEI; 3) topographic features, including digital
elevation models (DEM) and slope. The DEM data for this
study was collected from the Shuttle Radar Topography
Mission (SRTM) (Farr et al., 2007), which has a spatial
resolution of 30 m Table 2.

To reduce misclassification induced by a change in sample
type over time (water to non-water or non-water to water), this
study employs the cosine similarity method. By calculating the
cosine similarity between the target sample features and the
reference sample features, only samples with a cosine
similarity greater than 0.99 are preserved, and the sample type
is assumed to be unchanged. The cosine similarity is calculated
using

COS< �A, �B> � �A · �B
�A

�
�
�
�

�
�
�
� · �B

�
�
�
�

�
�
�
�

(1)

where �A and �B are a reference and target features, respectively. The
norm of either vector is denoted by ‖ �A‖ and ‖ �B‖. Figure 3 shows a
more detailed calculation process of cosine similarity between target
features and reference features.

As reference samples, we chose manually annotated samples
from 2016 to 2020 based on cloud-free Landsat imagery and high-
resolution sentinel images, Figure 4 illustrates their features. The

FIGURE 3
Calculation of cosine similarity between reference features and
target features.

FIGURE 4
Sample features statistics. (A) Spectral features; (B) spectral index features.

TABLE 3 Number of samples in each period.

Year Non-water sample Water sample Total

1990–1995 18,853 3,878 22,731

1996–2000 18,794 4,528 23,322

2001–2005 19,933 5,538 25,471

2006–2010 19,739 6,020 25,759

2011–2015 19,190 5,746 24,936

2016–2020 21,227 7,559 28,786
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random forest water classifier was trained in each period using
samples filtered by cosine similarity (Table 3).

2.3 Post-process and accuracy assessment

The primary source of the misclassification in water mapping
was the terrain shadow (Carroll et al., 2016). In the post-process, this
study masks pixels in the classification results that have a slope more
than 10° and a probability of being identified as water of less than
0.85 in the random forest classification. This efficiently reduces
misclassification due to terrain shadows and further improves the
accuracy of the final water map. The commission error, omission
error, overall accuracy (OA), and kappa coefficient (Congalton,
1991) were used as the classification accuracy assessments.
Additionally, high-resolution aerial photographs captured by

unmanned aerial vehicles (UAV) were used to validate the
extracted surface water’s boundary precision.

3 Results and discussion

3.1 Accuracy assessment

This study adjusts the random forest classifier parameters and
evaluates its accuracy using 30% of the samples in each period.
Table 4 list the accuracy assessment of the random forest classifier in
each period. The results show that the classifier from 2016 to
2020 has the highest classification accuracy (OA = 96.1%,
kappa = 0.899). The classifier between 1990 and 1995, which is
the furthest removed from the reference year, has the lowest
accuracy (OA = 95%, kappa = 0.847).

TABLE 4 Muti-temporal random forest classifier accuracy.

Year Validation Commission error (%) Omission error (%) Overall accuracy (%) Kappa

Water Non-water

1990–1995 1218 5,679 5.0 19.5 95.0 0.847

1996–2000 1351 5,681 4.4 18 95.8 0.857

2001–2005 1618 5,964 6.2 13.8 95.4 0.859

2006–2010 1831 5,959 4.4 13.2 95.9 0.884

2011–2015 1683 5,843 4 12.9 96.3 0.890

2016–2020 2,314 6,433 3.4 11.4 96.1 0.899

FIGURE 5
Boundary accuracy assessment. (A) The boundary from Landsat and UAV; (B) extraction water from Landsat; (C) Landsat image in Sister Lake
(composed with red, green, blue bands).
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We evaluate the boundary accuracy for water extraction in this
study using the mean intersection over union (mIOU)
(Ghorbanzadeh et al., 2019) and the Sister Lake UAV image as
validation data (Figure 5). Sister Lake National Wetland Park
(30°18′N, 99°33′E) is located in the northeast of Batang County.
It is the main birthplace and water supply area of Maqu, an
important first-class tributary on the upper left bank of the
Jinsha River, with an altitude of 4,486 m. We manually marked
the lake boundary in the UAV images. The results show that the area

of Sister Lake in the UAV image is 322,711 m2, the water area
extracted from the Landsat image is 315,462 m2, and the overall area
error is 2.25%. The perimeter of the Sister Lake is about 2,433 m, the
mIOU is 91.8%, and the average boundary error is about 2.97 m,
which is about 1/10 Landsat pixels (the size of Landsat pixels is
30 m). In addition, this paper also provides a qualitative analysis of
the boundary differences between the UAV images and the extracted
water bodies at Xinluhai, located at 31°51′N, 99°07′E
(Supplementary Figure S1). The results show that the extracted
water body boundaries match well with the water body boundaries
from the UAV images.

We also compared this study with the global 10 m resolution land
cover mapping (https://esa-worldcover.org/en) provided by the
European Space Agency (ESA). This product used Sentinel-1 and
Sentinel-2 image and has a minimum overall accuracy of 75%. The
results of the comparison show that in the classification of surface water,
especially for the extraction of small tributaries, the extraction results of
this paper have less omission error (Figures 6B–D) and commission
error (Figure 6A), and the extracted rivers have better continuity.

3.2 Water extraction results

We acquired the QTP water map in six periods from 1990 to
2020 using a large number of remote sensing imagery and a high
accuracy automated water extraction approach and estimated the
uncertainty (Loosvelt et al., 2012) of the water area, obtained a pixel-
level uncertainty map for each period (Supplementary Figure S2).
The results show that the QTP has an area of water bodies 57,229 ±

FIGURE 6
Comparisons the water extraction results of this study and ESA water. (A-D) is the different location of the QTP.

FIGURE 7
Water area and its uncertainty from 1990 to 2020.
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3,248 km2 (1990–1995), 58,444 ± 3,248 km2 (1996–2000), 67,319 ±
3,704 km2 (2001–2005), 67,399 ± 2,798 km2 (2006–2010), 70,286 ±
3,033 km2 (2011–2015), 75,176 ± 2,785 km2 (2016–2020) (Figure 7).
The QTP’s surface water area has increased significantly from
1990 to 2020, and its total water area has increased by as much
as 31.3%.

The permanent water bodies of the QTP give a minimal
estimate of the total amount of water in the QTP. Permanent

water is defined in this paper as water that existed from 1990 to
2020, and its spatial distribution is shown in Figure 8. These
surface waters are primarily made up of big lakes (Qinghai Lake)
and rivers (Jinsha River) with the exception of water bodies that
arise and disappear with seasonal changes in the QTP. The QTP
contains approximately 47,280 km2 of permanent water bodies,
which are widely distributed across the plains in the central part
of the QTP.

FIGURE 8
Permanent water in QTP.

FIGURE 9
Surface water area change trend in the watershed (1990–2020).
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TABLE 5 Watersheds with significant changes in surface water area (km2, Trend: km2 yr-1).

Name 1990–1995 1996–2000 2001–2005 2006–2010 2011–2015 2016–2020 Trend p-value R2

Heyuan 2168.87 2120.07 2104.99 2330.90 2360.03 2341.31 10.33 0.049 0.662

Maqu 443.91 465.83 453.40 536.76 552.10 597.52 6.34 0.004 0.896

Daxia River and Tao River 12.30 19.81 20.87 21.76 29.35 30.56 0.69 0.002 0.921

Longyang Gorge 73.86 97.03 98.24 117.49 133.71 136.90 2.54 0.001 0.956

Tongtian River 1981.27 2179.53 2643.96 2504.36 2591.47 2716.61 27.27 0.022 0.769

Ya-lung River 216.92 261.46 290.52 238.67 302.86 355.39 4.37 0.044 0.678

Stone Drum 65.01 72.30 71.83 72.31 81.69 106.13 1.34 0.031 0.728

Eastern Qaidam Basin 1139.95 1037.05 1226.02 1526.61 1450.98 1571.45 21.14 0.016 0.801

Western Qaidam Basin 2772.94 2623.10 3089.77 3573.10 4136.54 4497.41 77.98 0.002 0.932

Hotan River 349.17 311.36 323.50 278.37 238.97 251.87 −4.28 0.007 0.867

Yarkant River 578.91 561.02 507.56 497.08 401.29 388.83 −8.23 0.001 0.943

Kashgar River 797.14 648.55 634.21 533.66 527.84 448.87 −12.59 0.002 0.927

Creea Rivers 182.98 166.33 220.46 228.49 239.87 260.84 3.53 0.007 0.864

Qiangtang Plateau Region 31941.10 33070.40 40324.80 40797.70 42946.40 46402.30 585.18 0.002 0.936
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3.3 Multi-temporal water area change
analysis

The QTP contains a total of 32 tertiary watersheds, with
watersheds derived from Resource and Environment Science
and Data Center (https://www.resdc.cn/data.aspx?DATAID=
278). We counted the surface water area within each
watershed for each period, obtained the linear change trend
of surface water area change within the watershed, and tested the
trend of change for significance (Figure 9). The trend analysis
reveals that there are 20 watersheds within the QTP with an
increasing trend in surface water area and 12 watersheds with a
decreasing trend in surface water area. Watersheds with
increasing surface water area are primarily found in the
center and eastern portions of the QTP, whereas those with
decreased surface water area are primarily found in the northern
and western parts of the QTP.

There are about 10 watersheds which the surface water area is in
a relatively stable state (area increase or decrease less than 1 km2 yr-
1), and these watersheds are mainly located in the southern portions
of the QTP. However, not all watersheds had significant trends
(p-value < 0.05), and only 14 of the 32 watersheds had significant
trends, and all watersheds with significant trends are listed in
Table 5. Trends in surface water area changes for all
32 watersheds are presented in Supplementary Table S1. Among
these watersheds, the surface water area is increasing in as many as
11 watersheds, mainly in the Qiangtang Plateau and some
watersheds in the eastern part of the QTP, while the surface
water area is decreasing in only 3 watersheds in the northern
part of the QTP.

The Qiangtang Plateau, located in the center of the QTP, is
the watershed with the biggest surface water area and the fastest
changing water area trend in the QTP. The water area of

Qiangtang Plateau increased from 31,941.10 km2 to
46,402.30 km2 between 1990 and 2020, with a net increase of
14,461.20 km2 and an area change rate of 45.2%. The trend of
water area in the Qiangtang Plateau is 585.18 km2 yr-1, which is
significant (p-value = 0.001, R2 = 0.93, where the R2 is the
coefficient of determination). The Western Qaidam Basin,
located in the northeastern portion of the Qiangtang Plateau,
is the basin with the largest increase in water area outside of the
Qiangtang Plateau, and its change trend within the Qiangtang
Plateau is significantly greater than that of other watersheds. The
water area of the Western Qaidam Basin increased from
2,772.94 km2 to 4,497.41 km2 between 1990 and 2020, a net
increase of 1,724.47 km2 with an area change trend of
77.98 km2 yr-1 (p-value = 0.002, R2 = 0.93). The Kashgar River
watershed, which is in the northernmost part of the QTP, is the
watershed with the largest reduction in surface water area in the
QTP, with a reduction of 348.27 km2 in water body area between
1990 and 2020, with an area change rate of −43.6% and an area
change trend of −12.59 km2 yr-1 (p-value = 0.002, R2 = 0.927).

The water area change trend on the QTP exhibit various spatial
distribution, with the Qiangtang Plateau and Western Qaidam
Basin exhibiting strong increase, the eastern part exhibiting slow
increase, the northern and northwestern parts exhibiting decrease
surface water area, and the southern part exhibiting stable surface
water area.

To further analyze the geographical distribution of changes in
water area, this study divided the QTP into 3,120 grids of 27,600 x
32,200 m in size and conducted statistical and trend analysis on
the grids’ surface water area. There are approximately 913 grids
with significant (p-value < 0.05) surface water area changes in an
area of approximately 775,976.85 km2, representing 29% of the
total area of the QTP, which is shown in Figure 10. The center
portion of the QTP has significant regions of increased surface

FIGURE 10
The region of significant change in surface water area (1990–2020).
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water area, whereas the northern and northern western parts of
the QTP have significant areas of decreased surface water area.
The results of the trend analysis show that about 186,408 km2

land areas in the QTP are experiencing a significant decrease in
surface water area, accounting for only 24% of the total
significant change area, while another 589,567 km2 land areas
are experiencing increase in water area (with significance),
accounting for 76% of the total area. The area of water bodies
with the largest increasing trend is located in the northeastern
portion of the QTP, with a rate of change of 6.51 km2 yr-1

(p-value = 0.0005, R2 = 0.96), and the area of surface water
with the largest decrease trend is located in the southern part of
the QTP, with a rate of change of −1.35 km2 yr-1 (p-value = 0.012,
R2 = 0.81). The water area changes slowly in the majority of grids,
with approximately 84% of areas experiencing increase in water
body area exhibiting a trend below 1 km2 yr-1 and 99% of areas
experiencing a significant decrease in water body area exhibiting
a trend greater than −1 km2 yr-1.

In summary, the majority of the gained water area inside the
QTP occurs in the Qiangtang Plateau, while the loss in water body
area occurs in a large number of regions along the QTP’s northern
boundary, and in general, the QTP’s surface water area continues to
expand.

4 Conclusion

In this paper, we used 45,370 Landsat remote sensing images and a
high-precision random forest water classification model to determine the
surface water distribution on the QTP for six time periods between
1990 and 2020. By analyzing themulti-temporal changes trend of surface
water, the following conclusions are mainly obtained in this paper.

1) Surface water on the QTP since 1990 to 2020, the net increase in
the water body area of 17,947 km2, accounting for 31.3% of the
total, and the state of continuous growth in the water body area,
and about 47,280 km2 of water bodies have not changed, the
main distribution of these water bodies in the Qiangtang Plateau.

2) The spatial distribution pattern of water body trends on the QTP
was found to be mainly composed of the Qiangtang Plateau and
theWestern Qaidam Basin as a zone of rapid water area increase,
the eastern basin of the QTP as a zone of low water area increase,
the northern and northwestern basins of the QTP as a zone of
decrease water area, and the southern part of the QTP as a zone
of the stable water body area.

3) The rate and location of surface water area change in the QTP were
obtained. About 186,408 km2 land areas in the QTP are experiencing
a significant decrease in surface water area from 1990 to 2020, and as
many as 589,567 km2 land areas are experiencing a significant
increase in surface water area concentrated in the Qiangtang Plateau.
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