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Considering the strong non-linear time-varying behavior of dam deformation, a
novel prediction model, called Levy flight-based grey wolf optimizer optimized
support vector regression (LGWO-SVR), is proposed to forecast the
displacements of hydropower dams. In the proposed model, the support vector
regression is used to create the predictionmodel, whereas the Levy flight-based grey
wolf optimizer algorithm is employed to search the penalty and kernel parameters for
SVR. In this work, a multiple-arch dam was selected as a case study. To validate the
proposedmodel, the predicted results of themodel are comparedwith those derived
from Grid Search algorithm, Particle Swarm Optimization, Grey Wolf Optimizer
algorithm, and Genetic algorithm. The results indicate that the LGWO-SVR model
performs well in the accuracy, stability, and rate of prediction. Therefore, LGWO-SVR
model is suitable for dam engineering application.
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Introduction

The safety of hyperpower dams has always been a widely-concerned issue of every country.
To ensure the security of dam, dam safety monitoring model is built for monitoring the actual
operation state of the dams (Li et al., 2021; Ge et al., 2020) . The deformation of a dam is
commonly used to reflect the working condition during the operation period (Bui et al., 2016).
Considering the non-linear and complex process of the deformation, it is difficult to forecast the
dam behavior with high accuracy (Chen et al., 2018).

In recent years, various machine learning methods, such as artificial neural network,
support vector machine, and random forest method, have been applied to establish the
prediction models of dam deformation (Salazar F et al., 2017). The most widely used
method is artificial neural networks (ANNs). However, an artificial neural network is more
likely to fall into the situation that the trained ANN over-fits training samples, which reduces
the accuracy of predicted dam deformation.

Support vector regression (SVR) has always been a hotspot in civil engineering to solve
regression prediction (Su et al., 2015). SVR has distinctive superiority in solving non-linear problems
with few samples and high dimensions. The prediction accuracy of SVR is influenced by the values of
the penalty and kernel parameters in SVR. Therefore, a number of swarm intelligence algorithms
were presented to optimize the parameters, including the Grid Search algorithm (GS), Particle
SwarmOptimization algorithm (PSO), Cuckoo Search algorithm (CS), Genetic Algorithm (GA), etc.
Su et al. (2018) employed the Particle Optimization algorithm (PSO) to seek the best parameter set
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for SVR in predicting dam deformation. Ranković et al. (2014) proposed
an SVR-based model for forecasting the dam deformation. In Rankovic’s
model, the parameters of SVR are specified with the trial-and-error
method. Shu et al (2021) proposed a variational autoencoder-based
model for dam displacement prediction. Li et al (2019) proposed a
novel distributed time series evolution model for predicting the dam
deformation. Meng et al. (2018) combined the Ant Colony Optimization
algorithm (ACO) with SVR to forecast the price of stock. Kaltich et al.
(2015) presented a wavelet genetic algorithm-support vector regression
(GA-SVR) to forecast monthly river flows. Xue et al. (2018) proposed the
Artificial Bee Colony algorithm (ABC) for global optimization to obtain
the optimal solutions of several benchmark functions. In conclusion, the
possible optimal solution can be obtained through these algorithms, but
these algorithms aremore likely to fall into the local optimal solutions and
their convergence rates are very slow. Considering the lower speed and
precision of these algorithms, a novel type of swarm intelligence algorithm
called the Grey Wolf Optimizer (GWO) algorithm is introduced in this
paper.

The GreyWolf Optimizer algorithm has receivedmuch attention and
been widely used in many fields such as optimal reactive power
scheduling, multiple input and output problems, and truss structures
with motive power restrict (Faris H et al., 2017). The GWO algorithm is
easy to implement and has fewer control parameters. Numerical
comparisons showed that the GWO algorithm could present a higher
performance than other swarm intelligence algorithms (Zhang and Zhou,
2015). The search scope becomemore andmore smaller with the increase
of iterations in the GWO algorithm, which increase the possibility of
falling into a local optimum. To expand the scope of the search, the Levy
flight is combined with the GWO algorithm to optimize the parameters.
The Levy flight is a random process that is inspired by the Levy
distribution (Viswanathan et al., 1996). Application of the Levy flight
can result in a more effective search because of the use of the long jumps.
The Levy flight can reduce the possibility of falling into a local optimum,
taking into account the short-range exploratory hopping and occasional
long-distance walking simultaneously.

In this paper, the Levy flight-based GreyWolf Optimizer (LGWO)
algorithm is presented to optimize support vector regression model for
forecasting dam deformation. Historical data of the water pressure,
temperature, and time-varying effect values of a dam are taken as
input variables and the model is constructed to forecast the
deformation. To validate the performance of the LGWO algorithm,
a comprehensive comparison is carried out among the prediction
capability of some other swarm intelligence algorithms.

The rest of the paper is organized as follows: Section 2 presents a brief
introduction to the Levy flight-based GreyWolf Optimizer algorithm and
the Support Vector Regression model, describes the framework of the
LGWO-SVR model, and presents the criteria of prediction performance.
Section 3 presents a description of a case study, the calculation of the input
effects, and the initial parameters of each algorithm. The comprehensive
comparison among those swarm intelligence algorithms and the
prediction results of the LGWO-SVR model are also showed in
Section 3. Finally, the conclusion for the current work is given in Section 4.

LGWO-SVR model

There are many factors affecting dam deformation, such as
water pressure, seepage coupling, joint fissure, concrete
temperature, etc (Wei et al., 2019). Limited by current

monitoring technology and analysis theory, the prediction for
dam deformation is complex. It is generally accepted that the
displacements are composed of water pressure component,
temperature component, and time-varying component. The
relationships between these components and their relevant
factors are non-linear. For example, water pressure component
is the polynomials of the water depth. The prediction of dam
deformation is a non-linear problem with high dimensions. As
mentioned above, the SVR has distinctive superiority in solving
non-linear problems with few samples and high dimensions.
Therefore, it is suitable for the SVR to construct a prediction model.

Support vector regression

The support vector regression (SVR) is data-based prediction
model improved by the support vector classification. The basic idea
of SVR is to find an optimal classification surface to minimize the error
of all training samples from the optimal classification surface (Li et al.,
2018). Suppose that there is a training sample set {(xi; yi)}(i =1,2, . . . ;
n). xi denotes the input variable vector of the i th training sample, yi

(yi ∈ R) represents the corresponding output value, and n is the
number of sample points.

The goal of SVR is to find a function relationship f(x)
between the input vector xi and the output vector yi under the
premise that the relationship between input and output variables
is unknown. The function can be expressed as a linear relationship
as follows:

f x( ) � wϕ x( ) + b (1)
wherew represents the weight coefficient matrix, b represents the value of
offsets, and ϕ(x) is a non-linear mapping function which is used to
transform the complex non-linear problem in to a simple linear problem.

Based on the principle of structural risk minimization, the
function f(x) should loosely fit training data and avoid over-
fitting problem by minimizing the norm of w (i.e., ‖w‖). To cope
with infeasible constrains, two slack variables ξi and ξ

p
i are introduced.

FIGURE 1
Social hierarchy of grey wolves (dominance decreases from top to
bottom).
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Then the seeking process of minimizing w can be converted to solving
the convex optimization problem:

min
1
2
w‖ ‖2 + C∑m

i�1
ξ i + ξpi( )

s.t.

yi − wϕ x( ) − b≤ ε + ξi

−yi + wϕ x( ) + b≤ ε + ξpi , i � 1, 2,/m

ξi ≥ 0, ξpi ≥ 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

where ε is the insensitive loss function which represents the error
requirements for the regression function, and C(C> 0) is the penalty
factor. A larger C indicates that a larger penalty will be exerted on the
samples when the training error is bigger than ε.

The convex optimization problem can be converted to solving the
extremum of Lagrangian function L through the Lagrange multiplier
method.

L w, b, ξ i, ξ
p

i , αi, α
p
i , ηi, η

p
i( ) � 1

2
w‖ ‖2 + C∑n

i�1
ξ i + ξpi( )

−∑n
i�1
αi ξ i + ε − yi + wϕ xi( ) + b( )

−∑n
i�1
αpi ξpi + ε + yi − wϕ xi( ) − b( )

−∑n
i�1

ηiξi + ηpi ξ
p

i( ) (3)

where αi, αpi , ηi, and ηpi are the Lagrangian multipliers, which satisfy
the positivity constraints.

According to the Karush-Kuhn-Tucher (KKT) condition which
describes the necessary and sufficient conditions to meet the optimal
solution, the derivatives of L about the original variable must be 0 to
obtain optimal results (Smola and Scholkopf, 2004).

zL

zb
� ∑n

i�1
αi − αpi( ) � 0, 0≤ αi, αpi ≤C (4)

zL

zw
� w −∑n

i�1
αi − αpi( )φ xi( ) � 00w � ∑n

i�1
αi − αpi( )φ xi( ) (5)

zL

zξpI
� C − αpi − ηpi � 00C � αpi + ηpi (6)

According to Eq. 5, the regression function of the SVR model can
be transformed as follows.

f x( ) �∑n
i�1

αi −αpi( ) ϕ xi( ) ·ϕ x( )( )+b�∑n
i�1

αi −αpi( )K x,xi( )+b (7)

where K(x, xi) represents the kernel function.
When the SVR is used to solve the non-linear regression

problem in practice, the non-linear problem is mapped to a
high-dimensional space and the linear function is constructed in
this space by selecting an appropriate kernel function. The
selection of kernel function has a significant influence on the
performance of the SVR because different kernel function is
suitable for different data types (Huang et al., 2012). A radial
basis kernel function is more favored than other kernel functions
due to its facilitating implementation and strong mapping
performance (Rasmussen, 2003). The expression of a radial basis
kernel function is shown in Eq. 8.

K x, xi( ) � exp − x − xi‖ ‖2
2σ2

( ) (8)

where σ denotes the parameter related to the width of kernel in
statistics.

FIGURE 2
Position vectors and the possible next locations of a grey wolf.
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Using the Lagrangianmultiplier method, duality principle, and the
kernel function, the problem is transformed into a quadratic
programming optimization one.

max −∑n
i,j�1

αi − αpi( ) αj − αpj( )exp − xi − xj

 2
2σ2

⎛⎝ ⎞⎠ − ε∑n
i�1

αi + αpi( ) +∑n
i�1
yi αi − αpi( )⎧⎨⎩ ⎫⎬⎭

subject to ∑n
i�1

αi − αpi( ) � 0 and αi , α
p
i ∈ 0, C[ ]

(9)

Obtaining the Lagrange multiplier αi and αpi from the above
quadratic optimization problem, the regression function of support
vector machine can be expressed as Eq. 10.

f x( ) � ∑n
i�1

αi − αpi( ) exp − x − xi‖ ‖2
2σ2

( ) + b (10)

where αi and αpi are the Lagrange multipliers, and σ denotes the
parameter related to the width of kernel in statistics.

There are two essential parameters (the penalty parameter C and
kernel parameter σ) in a SVR. The penalty parameter C controls the
trade-off between the complexity of the function and the frequency in
which errors are allowed. The parameter σ affects the mapping
transformation of the input data to the feature space and controls
the complexity of the model. Thus, it is important to select suitable
parameters in the SVR.

A levy flight-based grey wolf optimizer
(LGWO)

As mentioned above, the penalty parameter C and the kernel
parameter σ are essential in a SVR. Many swarm intelligence
algorithms mentioned above were presented to optimize those two
parameters. However, these algorithms are more likely to fall into local
optimum solutions. To cope with the problem, a novel algorithm
called Levy flight-based Grey Wolf Optimizer (LGWO) is introduced
to select the suitable parameters for the SVR.

GWO is a swarm intelligence meta-heuristic algorithm given by
Mirjalili et al. (2014). The inspiration of the GWO algorithm is based
on the social hierarchy and hunting strategy of grey wolves in nature
(Searemi et al., 2014). In each group of grey wolves, there is a very strict
social dominant hierarchy shown in Figure 1.

To simulate the social hierarchy of grey wolves, four categories of
wolves are defined--alpha (α), beta (β), delta (δ), and omega (ω). In the
iterative calculation process, the first three best solutions are
considered as alpha, beta, and delta, respectively. The rest of the
candidate solutions are called omega. The wolves need to encircle the
first three optimal solutions (alpha, beta, and delta) to find better
solution for the problem (Mirjalili et al., 2014), which is modelled as:

D
→ � C

→ ·X→P t( ) −X
→

t( )
∣∣∣∣∣∣ ∣∣∣∣∣∣ (11)

X
→

t + 1( ) � X
→

P t( ) − A
→ ·D→ (12)

where t denotes the current iteration,X
→

p denotes the position vector of
the prey, X

→
represents the position vector of a grey wolf, and A

→
, C
→
are

the random vectors.
The random vectors A

→
and C

→
are formulated as:

C
→ � 2r

→
2, A

→ � 2a
→
gr
→
1 − a

→
(13)

FIGURE 3
Location updating process of grey wolves in 2D space.

FIGURE 4
The process of training SVR using LGWO.
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where a is gradually linearly decreased from 2 to 0, and r
→
1,

Combination forecast model for concrete dam displacement
considering residual correction r

→
2 are random vectors in [0, 1].

Different mathematical operators are defined in Eqs 11–13, which
can be summarized as follows:

D
→
gB
→ � d1b1, d2b2, L, dnbn( )
E
→∣∣∣∣∣∣ ∣∣∣∣∣∣ � e1| |, e2| |, L, en| |( )

where D
→
, B
→
, and E

→
are N-dimensional vectors. D

→ � (d1, d2,/, dn),
B
→ � (b1, b2,/, bn), and E

→ � (e1, e2,/, en).
Figure 2 shows how a grey wolf updates its position (X,Y)

according to the position of the prey (Xp, Yp). In the process of
encircling prey, the grey wolf can reach different places around the
best agent by adjusting the parameter values of A and C in Eqs 11, 12.

To simulate the hunting behavior of the grey wolves, the alpha,
beta, and delta wolves in the GWO algorithm are three best
solutions obtained so far. The omega wolves are obliged to
update their positions according to the positions of the above
best wolves. The hunting process can be mathematically
described (Song et al., 2015):

D
→

α � C
→
1gX

→
α −X

→∣∣∣∣∣∣ ∣∣∣∣∣∣, D→β � C
→
2gX

→
β −X

→∣∣∣∣∣∣ ∣∣∣∣∣∣, D→δ � C
→
3gX

→
δ −X

→∣∣∣∣∣∣ ∣∣∣∣∣∣ (14)

X
→

1 � X
→

α − A
→

1gD
→

α, X
→

2 � X
→

β − A
→

2gD
→

β, X
→

3 � X
→

δ − A
→

3gD
→

δ (15)

X
→

t + 1( ) � X
→

1 +X
→

2 +X
→

3

3
(16)

where C1, C2, C3, A1, A2, and A3 represent the random vectors,
Xα, Xβ, and Xδ represent the positions of the alpha, beta, and delta
wolves respectively, t represents the number of iteration, and X

r
is the

position of current solution.
As showed in Figure 3, a grey wolf can update its position

according to the positions of alpha, beta, and delta wolves in a 2D
search space. The final possible position of the prey is distributed in a
circle determined by the positions of alpha, beta, and delta in the
search space. The hunting process can be summarized that the
position of the prey is estimated by the best three wolves, whereas
the other wolves update their positions randomly around the prey.

When the grey wolves start to attack the prey, the encirclement of
wolves became smaller and smaller. The GWO algorithm are more
likely to fall into local optimum solutions under the small search
encirclement (Mirjalili et al., 2015). Considering the small
encirclement, the Levy flight is introduced to increase the ability of
global and local search simultaneously.

The Levy flight is a category of random search process (Amirsadri
et al., 2017). In this method, the short-range exploratory hopping and
occasional long-distance walking are combined to result in a more
effective search. The hopping behavior ensures that the search agents
can search the small areas carefully, whereas the long-distance walking
behavior ensures that the search agents can enter into another areas

FIGURE 5
Structure of the proposed LGWO-SVR model.
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and search a wider range. The jump size in the Levy flight follows the
Levy probability distribution function (Yang and Deb, 2009).
Considering the difficulty of calculating the search path, a simple
mathematical definition of the Levy distribution is described:

s � u/ v| | 1β (17)

where s is the random step size obeying the Levy distribution, and u, v
are the random numbers produced by normal distribution.

u : N 0, σ2( ), v : N 0, 1( ) (18)
with

FIGURE 6
Layout of the multiple-arch dam.

FIGURE 7
Pendulum systems for monitoring horizontal displacement.

FIGURE 8
Thermometers installed in the dam section 13.
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σ � f 1 + β( )g sin πβ
2( )

βgf 0.5 + β
2( )g2 β/2−0.5( )

⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭
1/β

(19)

wheref(x) is the standard gamma function, and the range of β is from
0 to 3.

In this study, a hybrid optimization algorithm which combines the
GWO algorithm with the Levy flight is presented. In the proposed
algorithm, all the wolves except the three leading wolves update their
positions through the Levy flight. Therefore, the following equations
can be used to update the position.

X
→

t + 1( )LGWO � X
→

t + 1( ) + S (20)

where S is the step size determined by Eqs 17–19, X
→

LGWO(t + 1) is the
updated position of the wolf after the Levy flight, and X

→(t + 1) is the
updated position of the wolf without the Levy flight calculated by Eqs
14–16.

LGWO for parameter determination for SVR

As mentioned above, the penalty parameter C and the kernel
function parameter σ in a SVR have a significant influence on the
prediction performance. The LGWO algorithm is introduced to obtain
the best series of parameters for the SVR. Therefore, the position of
each wolf in the LGWO algorithm represents a parameter pair (C, σ)
and the root mean squared error between the measured and predicted
values is served as the fitness of each wolf.

Figure 4 shows the overall process of training the SVR using
the LGWO algorithm at each iteration. At the beginning, the
positions of wolves are obtained from the last iteration and served
as the parameters of SVR. After giving the position of each wolf in
SVR successively and training SVR, the predicted values of the

testing sample are generated in SVR. Then the root mean squared
error (RMSE) as the fitness of each wolf is given to the LGWO
algorithm from SVR. The positions of the wolves are updated in
the LGWO algorithm according to the fitness given by SVR.
Finally, the best parameter pair (C, σ) is obtained from the

FIGURE 9
Reservoir level, air temperature, and displacements recorded in the dam section 13.

TABLE 1 Initial parameters.

Algorithm Parameter Value

LGWO Population size 10

�a Linearly decreased from 2 to 0

Max iteration 100

Stopping criteria Max iteration

β 1.5

GWO Population size 10

�a Linearly decreased from 2 to 0

Max iteration 100

Stopping criteria Max iteration

PSO Population size 10

C1, C2 0.5,0.5

W 0.8

Max iteration 40

Stopping criteria Max iteration

GA Population size 10

C1, C2 0.6,0.001

Max iteration 40

Stopping criteria Max iteration
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LGWO algorithm and the predicted value with highest prediction
accuracy is generated in SVR after reaching the maximum
iteration.

In this paper, a novel hybrid model composed of the Levy flight-
based grey wolf optimizer (LGWO) and support vector regression
(SVR) was proposed and applied to make prediction for dam

TABLE 2 Experimental results of every algorithm.

Algorithm RMSE RAE R2

Averaged Std dev Averaged Std dev Averaged Std dev

LGWO 0.1021 1.8E-05 0.0830 2.0E-05 0.9594 4.6E-05

GWO 0.1051 3.9E-03 0.0856 3.3E-03 0.9564 4.5E-03

PSO 0.2035 0.0782 0.1713 0.0685 0.7661 0.1411

GS 0.2755 0.0432 0.2378 0.0441 0.6036 0.1276

GA 0.3036 0.0681 0.2708 0.0703 0.4935 0.2234

FIGURE 10
The distribution of RMSE at each run of each algorithm.

FIGURE 12
The distribution of MAE at each run of each algorithm.

FIGURE 13
Convergence curves of the five algorithms over 20 independent runs.

FIGURE 11
The distribution of R2 at each run of each algorithm.
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deformation. The structure of the proposed hybrid method for dam
deformation prediction is shown in Figure 5. To avoid calculation
error caused by numerical differences, the data is normalized and
all the samples are divided into the training and testing samples.
Main steps are as followed.

Step 1: Normalize the parameters of the LGWO-SVR model.

Step 2: Initialize the population of the wolf pack.

Step 3: Enter the position of each wolf to the SVR model and obtain
the fitness of each wolf.

Step 4: Select the alpha, beta, and delta wolves in the wolf pack.

Step 5: Update the positions of the omega wolves.

Step 6: If the maximum iteration number reaches, the iteration is
terminated and the position of the alpha wolf is outputted. Otherwise,
repeat steps 3–6;

Step 7: Train the SVR model according to the outputted parameters
and obtain the prediction values.

Criteria of prediction performance evaluation

To evaluate the performance of the proposed model, three widely
used quantitative evaluation indicators are introduced. The specific
expression of these indicators is shown as follows:

Squared correlation coefficient (R2)

R2 �
n∑n

i�1
ŷiyi − ∑n

i�1
ŷi ∑n

i�1
yi[ ]2

n∑n
i�1

ŷ2
i − ∑n

i�1
y2
i( )2[ ] n ∑n

i�1
ŷ2
i( ) − ∑n

i�1
ŷi( )2[ ] (21)

Mean absolute error (MAE)

MAE � 1
n
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣ (22)

Root mean squared error (RMSE)

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√
(23)

where n is the number of testing samples, ŷi is the predicted value of
the i th testing sample, and yi is the measured value of the i th testing
sample.

Case study

General description of the project

The project used in this paper is situated on the Luo River (a
tributary of the Huaihe River) in Anhui province, China. It is a
multiple-arch dam consisting of 20 sections and 21 arches showed
in Figure 6. The total height of the dam is 75.9 m, and the total length
of the dam is 510 m. To understand the real-time working status of
the dam during operation, the dam is installed with pendulum
monitoring system. The aim is to monitor and assess the
horizontal displacements of the dam. A total of 21 pendulum
systems are installed in the arches. The pendulum monitoring
system consists of 20 pendulum lines (PL) and three inverted
pendulum lines (IP). The distribution of the pendulums is
showed in Figure 7. The raw data was recorded by manual and
automated equipment every day.

At the same time, some environmental data are also monitored,
such as reservoir level, air temperature, water temperature. There are
57 thermometers embedded in the dam body, which are used to
measure air, water, and concrete temperatures. In this study, the dam
section 13 is selected for testing the model. The thermometer
distribution of the dam section 13 is showed in Figure 8.

FIGURE 14
The distribution of parameter C for 20 independent runs of the
LGWO and GWO algorithms.

FIGURE 15
The distribution of parameter σ at 20 independent runs of the
LGWO and GWO algorithms.
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Input variables selection and data processing

In this study, the environmental monitoring data and
displacements of the dam section 13 are used. Time series with
1700 data points from January 2009 to September 2013 are
selected. The time series are divided into training and testing
samples. The training time series are from January 2009 to June
2013. The testing time series are from June 2013 to September 2013.
The amounts of training and testing samples are 1,000 and 260. The
time series of air temperature, reservoir level, and displacements are
presented in Figure 9.

Dam deformation is mainly influenced by hydraulic effect,
thermal effect, and time-varying effect (Wei et al., 2019). For the
hydraulic effect, it is usually considered as a reversible effect and

can be represented by the polynomials(H4; H3; H2; H) of the
reservoir level. To consider the thermal effect, the measured
temperatures including air, water, dam foundation, and
concrete temperatures(Tair; Twater; Tfoundation,; Tconctrete) are
used. The time-varying effect represents the irreversible
deformation of dam over the time effect. The effect could be
represented by the combination of θ, ln(1 + θ), and θ/(θ + 1)
where θ � t/100 and t is the cumulative days from current data
to initial monitoring date. Therefore, a total of 11variables are
used as the input variables to construct the model and the
displacements are the outputs.

Training the SVR model using LGWO

Asmentioned above, there are two parameters (the penalty parameter
C and kernel function parameter σ) in the SVR. The range of values of C
and σ is [0.01,100] in SVR. In the LGWO algorithm, the number of the
grey wolves is 20 and the maximum iteration is 100.

To describe the prediction performance of the LGWO-SVR
model, four other algorithms are combined with SVR to predict
the displacements: GS, PSO, GWO, and GA. Table 1 shows the
initial parameters of these algorithms. To test the stability for each
algorithm, 20 independent runs are carried out.

Results and discussion

The results from all the algorithms are presented in Table 2. The
results are averaged over 20 independent runs. The Averaged and Std
dev represent the mean evaluation indicators and standard deviation,
respectively. As showed in Table 2, the squared correlation coefficients
of the LGWO algorithm are 0.9594, which are higher than other four
algorithms. In addition, the MAE and RMSE of the LGWO algorithm

FIGURE 16
Measured and predicted displacements from the LGWO-SVR model.

FIGURE 17
Linear regression analysis between themeasured and the predicted
values.
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are lower than the other four algorithms. It indicates that the LGWO
algorithm performs better in the prediction accuracy.

To assess the solution stability of the LGWOalgorithm, the distributions
of evaluation indicators for the LGWO algorithm ais drew in Figures 10–12
with those for four other algorithms. It can be seen that the RMSE,MAE, R2

of the LGWOalgorithmare concentrated near 0.1, 0.8, and 0.96, respectively.
However, the evaluation indicators of the other four algorithms are
decentralized. The LGWO algorithm can obtain the parameter pair with
the higher accuracy at each run. However, only one series of parameters is
obtained in the GA and GS algorithm and eight series of parameters are
obtained in the PSO algorithm at each independent 20 runs. It indicates that
the LGWO algorithms perform well in the prediction stability.

Figure 13 shows the convergence curves of the five algorithms. The
LGWO algorithm can reach the best solution at the third iteration
although the initial fitness of the LGWO algorithm is much higher
than the other algorithms, which indicates that the LGWO algorithm
performs well in solution rate.

The above evaluations show that the LGWO algorithm performs
better than the other algorithm in prediction accuracy, solution
stability, and solution rate.

Considering the similar performance of the LGWO and GWO
algorithms, the results of the 20 independent runs are presented in
Figures 14, 15. The best series of the parameters is concentrated
near (2.00,0.01) in the LGWO algorithm and the fitness of the result
is all near 0.9595. However, the series of the parameter obtained
from the GWO algorithm is decentralized and the fitness of six runs
in 20 independent ones is about 0.9495. From this aspect, the GWO
algorithm is more likely to fall into a local optimum and the LGWO
algorithm can reduce the possibility of falling into a local optimum.

To further validate the performances of the LGWO-SVR model,
the predicted displacements of the LGWO-SVR model and the
measured displacements are shown in Figure 16. The best series of
the parameters (C � 2.029, σ � 0.010) were found using the LGWO-
SVRmodel. It can be seen from the figure that the LGWO-SVR model
has better performance in prediction accuracy and reflect the variation
of the dam displacements in a short time period. Figure 17 shows the
linear fitting results of the measured and predicted displacements of
the LGWO-SVR model. From the figure, the predicted values are
within the 95% prediction band, which indicates the predicted results
are very close to the actual values.

Conclusion

In this paper, a Levy flight-based grey wolf optimizer
algorithm is applied into support vector regression for
predicting dam deformation. In the proposed approach, the
recently popular GWO algorithm was employed as the swarm
intelligence algorithm to obtain the best parameters of the SVR
model. Considering the possibility of falling into the local
optimum, the Levy flight-based grey wolf optimizer was
proposed to increase the chance of searching the potential
global optimal solution. For verification, the results of the
LGWO-SVR model were compared with four other swarm
intelligence algorithms (PSO, GA, GS, and GWO). The
prediction accuracy of the model is accessed by using MAE,
RMSE, and R2. The stability of the model can be seen from the
distribution of the MAE, RMSE, and R2 for 20 independent runs.

The results showed that the LGWO-SVR model have higher
prediction accuracy, stability, and solution rate than the other
swarm intelligence algorithms, and the LGWO algorithm can
obtain the global optimum of the SVR model for each run.
This indicates that the LGWO algorithm is a good swarm
intelligence algorithm to obtain the optimal parameter of SVR.
Generally, the major contribution of this study of the dam
deformation prediction are highlighted as follows:

(1) The LGWO algorithm was used to obtain the best series of the
parameter in the SVR model and the results showed that the
LGWO algorithm have the capability to obtain the global
optimum accurately and swiftly.

(2) The dam deformation predicted by the LGWO-SVR model were
compared with other swarm intelligence algorithms and the result
showed that the LGWO-SVR model could reach better fitting
accuracy and have lower residuals.

(3) The good performance of the LGWO-SVR model indicates that the
Levy flight can reduce the possibility of falling into the local optimum.
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