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The seismic reflectivity and quality factor Q play an important role in seismic
processing and interpretation, such as improving the resolution of seismic data
and enhancing the reservoir identification. Most methods estimate seismic
reflectivity and Q separately. However, the error of Q model has a negative
impact on the reflectivity estimation and the interference of reflectivity makes Q
estimates less reliable. In this paper, we propose a new method for concurrent
estimation of seismic reflectivity andQ by using optimal dictionary learning. This new
method first constructs a complete dictionary based on the non-stationary
convolution model, then computes the reflectivity series under different
dictionary matrices with the corresponding referencing Q values, and finally
selects the optimal dictionary matrix by comprehensively analyzing the residual
and reflectivity sparsity so as to obtain seismic reflectivity andQ simultaneously. The
results of synthetic and real data examples test confirm the effectiveness of the
proposed method. The proposed method provides accurate estimation of seismic
reflectivity and Q, improves the vertical resolution without losing weak events and
offers more accurate information concerning stratigraphic features in great details.
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1 Introduction

Seismic attenuation is ubiquitous because of the earth anelasticity, and it can lead to
amplitude decay and phase distortion of the seismic wavelet (Futterman, 1962). The seismic
quality factor Q, an important parameter for characterization of rocks, measures seismic
attenuation. Seismic reflectivity andQ are sensitive to the geologic information such as lithology
and fluid (Winkler and Nur, 1982). Hence, accurate estimation of seismic reflectivity and Q has
an important role in seismic processing and interpretation, such as improving the resolution of
seismic data and enhancing the reservoir identification.

Seismic reflectivity is commonly computed by the deconvolution methods based on the
stationary convolution model, which assumes that the stationary seismic data as input (Velis,
2008). Therefore, the seismic data should be compensated for the anelastic attenuation effects
before using the conventional methods to estimate reflectivity. Margrave (1998) extends the
stationary convolution model to a non-stationary one by the constant Q theory (Kjartansson,
1979). And then Margrave et al. (2011) develop a non-stationary deconvolution method that
estimates reflectivity using the Gabor transform. This method requires non-stationarity
propagating wavelets. Chai et al. (2014) present a non-stationary sparse reflectivity
inversion method to estimate reflectivity. The non-stationarity seismic data is addressed by
non-stationary deconvolution so as to estimate the seismic reflectivity, but the Q value need to
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been estimated in advance. The computational accuracy of the seismic
reflectivity depends on the estimated Q value.

Many methods have been proposed for Q estimation from
seismic data, such as the spectral ratio method (McDonal et al.,
1958; Hauge, 1981; Blias, 2012; Reine et al., 2012; Nakata et al.,
2020), the matching method (White, 1980), the amplitude decay
method (Tonn, 1991), the analytical signal method (Engelhard,
1996), the frequency shift method (Quan and Harris, 1997; Zhang
and Ulrych, 2002; Gao and Yang, 2007; Hu et al., 2013; Matsushima
et al., 2016; Li et al., 2020; Yang et al., 2020), the Q-tomography
method (Brzostowski and McMechan, 1992; Dutta and Schuster,
2016) and the Q-analysis method (Wang, 2004; 2014). Among the
above-mentioned methods, the spectral ratio method and the
frequency shift method are widely used in practice, which
estimate Q values by comparing the frequency content of two
individual waveforms at different depths or time levels. These
methods suffer from the problem of instability because they are
very sensitive to layering effects and random noise.

Most methods estimate seismic reflectivity and Q separately.
However, the error of Q model has a negative impact on the
reflectivity estimation (Shao et al., 2019), and the interference of
reflectivity makes Q estimates less reliable (Hackert and Parra,
2004; Xue et al., 2020). Gholami (2015) proposes a semi-blind
non-stationary deconvolution method to determine both the
reflectivity and Q models simultaneously. And then Aghamiry and
Gholami (2018) develop this method for interval Q estimation based
on the adaptive parametric dictionary learning. This method only uses
the sparsity of the earth impulse response to determine the Q model.

In this paper, we propose a new method to estimate the seismic
reflectivity and Q concurrently by using optimal dictionary
learning. First, we review the basic theory of the non-stationary
convolution and introduce our new method. Then, we test the new
method for seismic reflectivity and Q estimation by the synthetic
examples using simulated data. Finally, we apply and validate the
new method on real seismic data. The synthetic and real data
examples are presented confirming high performance of the new
method.

2 Theory and methodology

2.1 Theory of non-stationary convolution

The traditional convolution model of a seismic trace is often stated
as (Robinson, 1967)

ystat t( ) � w t( )*r t( ) + e t( ) � ∫
∞

−∞
w t − τ( )r τ( )dτ + e t( ), (1)

where t and τ are the time indexes, ystat(t) is the stationary seismic
trace, w(t) is the seismic wavelet, r(t) is the seismic reflectivity, and
e(t) is the random noise term. We can write a matrix equivalent
expression for Eq. 1, as

y � Wr + e, (2)
where W is a Toeplitz matrix formed from seismic wavelet; y, r and e
are the vector forms of the seismic trace, the seismic reflectivity series
and the random noise term respectively.

We first convolute the reflectivity r(t) and delta function δ(t) to
derive the mathematical formula of the non-stationary convolution
model (Gholami, 2015)

x t( ) � ∫
∞

−∞
δ t − τ( )r τ( )dτ. (3)

Using x(t) to replace r(t) in Eq. 1, we have

ystat t( ) � w t( )*x t( ) + e t( ). (4)
We can write a matrix equivalent expression for Eq. 4, as

y � Wx + e. (5)
Considering the attenuation effect of seismic wave, the attenuation

coefficient (Aghamiry and Gholami, 2018) is introduced into the delta
function to obtain

δ
∧
f, τ( ) � α f, τ( )δ∧ f, τ − 1( ) � ∏τ

k�1
α f, k( )δ∧ f, 0( ), (6)

where f is the frequency index, δ
∧(f, τ) is the frequency spectrum of

the delta function, δ
∧(f, τ) � F t→f δ(t, τ){ }, and F t→f denotes the

Fourier transform with respect to t. δ
∧(f, 0) is the frequency spectrum

of the delta function at the initial time. Using the constant Q theory
(Aki and Richards, 1980), the attenuation coefficient can be defined as
follows (Aki and Richards, 1980; Gholami, 2015):

α f, τ( ) � exp −πβ f( )
Q τ( ) − i2πf

N
( ), (7)

where α(f, τ) is the attenuation coefficient on the propagation time τ,
β(f) is a function of frequency and its role is to impose some physical
constraints, N is the number of data samples, and Q(τ) is the seismic
quality factor which is a function changing with the propagation time.
The average quality factor can be defined as follows (Margrave et al.,
2011):

t

Qave t( ) � ∑K
k�1

Δtk
Qk

, (8)

where Qave(t) is the average of the seismic quality factor as a function
of the propagation time, k = 1, . . . , K,K is the total number of assumed
Q layers, Δtk and Qk are the traveltime and Q value through the kth
layer, respectively.

In Eq. 7, β(f) � |f| − iH|f|, where H is the Hilbert transform
operator. We can rewrite Eq. 7 into the following matrix form
(Aghamiry and Gholami, 2018)

Δ̂ � α f, τ( )0 α f, τ( )1 ... α f, τ( )N−1[ ], (9)

where Δ is the attenuation operator in the time domain and Δ̂ is the
frequency domain representation of it. Figure 1A shows the
attenuation matrix Δ for a constant Q = 30, and Figure 1B shows
some columns of this matrix. This figure suggests that the shape of the
propagated delta functions is severely affected by the attenuation
effect. According to Eqs 3, 9, we have

x � F−1Δ̂r � Δr, (10)
where F−1 is the inverse Fourier transform matrix. Substitute Eq. 10 into
Eq. 5 and obtain thematrix form of the non-stationary convolutionmodel
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y � WΔr + e. (11)

2.2 Estimation of seismic reflectivity and Q

We construct a dictionary matrix corresponding to the Q
model. Let

G � WΔ. (12)
Substitute Eq. 12 into Eq. 11 and obtain

y � Gr + e. (13)
The dictionary matrix G is related to Q value. The sparsity of the

seismic reflectivity series can be used to determine the corresponding
dictionary matrix G in the optimal case (Aghamiry and Gholami,
2018), so as to obtain the quality factor. We first assume that G is
known, then the solution to the seismic reflectivity series r can be
converted to an optimization problem, which is expressed in the
following form (Gholami, 2015; Aghamiry and Gholami, 2018)

argmin r‖ ‖1 subject to y−Gr���� ����22 ≤ ξ, (14)
or

argmin y−Gr���� ����22 + λ r‖ ‖1{ }, (15)

where ξ is an error bound of the data, λ is the regularization
parameter and ‖‖p denotes the p-norm. Due to the sparseness of
the reflectivity series, it is necessary to use the sparse norm as
much as possible to constrain it. The value of the p-norm in [0, 1]
can ensure its sparsity. The value of the reflectivity series always
lies between −1 and 1, so we use p=1/2 to measure the sparsity of
the reflectivity in this paper.

In the inverse Q filtering method, the first step is usually to
estimate the Q value, and then use the estimated Q value to
perform inverse Q filtering, so the inverse Q filtering result
depends on the estimated Q value. In this paper, we adopt a
similar matching pursuit algorithm in dictionary learning to solve
Eq. 14. The traditional matching pursuit algorithm needs to
construct the dictionary matrices in Hilbert space, and each
column of the dictionary matrices is dealed with normalization.

In this paper, however, we construct a complete dictionary based
on the theory of the non-stationary convolution model, and
compute the reflectivity series under different dictionary
matrices with the corresponding referencing Q values. Finally,
we select the optimal dictionary matrix by comprehensively
analyzing the residual and reflectivity sparsity, so as to obtain
the seismic reflectivity and Q concurrently. The complete
dictionary can describe changes in seismic amplitude over time,
which is more in line with the laws of physics.

In the specific implementation process, the first step is to
construct a three-dimensional dictionary matrix Gdic as shown in
Figure 2. The first dimension of this matrix is related to the value
of the quality factor. Slicing along the first dimension is a two-
dimensional N×Nmatrix G, with the N th column representing the
seismic wave at the propagation time N ms under the quality factor
corresponding to the slice. According to the theory of the average
Q value, we construct the dictionary matrix G by extracting the
corresponding column from the matrix Gdic for the multi-layered
signal (multi-segment Q value), which avoids the reduplicate
calculation for constructing the matrices in every loop and
significantly improves the computational efficiency. The second
step is to initialize the reference Q values. The exact approach is to
select a certain number of Q values in a reasonable range in
logarithm scale as the reference Q values. The third step is to
perform the subsection process for the seismic signals. The seismic
signal is divided to several segments according to the rough
seismic horizon to estimate the reflectivity and Q. For each
seismic signal segment, the similar matching pursuit algorithm
is used to compute the reflectivity series under the different
referencing Q values, so as to obtain the corresponding residual
ε � ‖y − Gr‖22 and the sparsity of the seismic reflectivity series
σ � ‖r‖1/2. ε* and σ* are defined to represent the normalization
of ε and σ respectively, and we can construct the following formula
to evaluate the estimation results

ξ � 1 − ϕ( )ε* + ϕσ*, (16)
where ξ is a synthetic criterion, and ϕ is an adjustable constant,
measuring the weight of sparsity versus residual when evaluates the
estimation results. A pseudo-code for this procedure is presented in
Algorithm 1.

FIGURE 1
(A) Attenuation matrix Δ (Q = 30) and (B) some of its columns.
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1 Input: y, the number of signal segment ns, the number of

the reference Q nq

2 Initialize: W, Gdic, the reference Q values

3 for i � 1,..., ns:

4 for j � 1,..., nq:

5 qi ← Qj

6 calculate qave via q

7 according to qave, construct the dictionary matrix Gj by

extracting the corresponding columns from Gdic

8 r′
j � argmin ‖y − Gjr′

j‖
2

2
+ λ‖r′

j‖1/2{ }
9 εj � ‖y − Gjr′

j‖22
10 σj � ‖r′

j‖1/2
11 end

12 ξ � (1 − ϕ)ε* + ϕσ*

13 find the index of the minimum value for ξ

14 ri ← rindex′ , qi ← Qindex

15 end

16 Output: r, q

Algorithm 1. A pseudo-code for seismic reflectivity and Q
estimation.

3 Synthetic examples

In this section, we test the new method for seismic reflectivity and
Q estimation of synthetic data. Both the constant-Q and the interval-Q
models are designed for this purpose.

3.1 Seismic reflectivity andQ estimation of the
constant-Q model

We first test the performance of the new method for seismic
reflectivity and Q estimation of the constant-Qmodel. Some synthetic
traces have been generated by convolving the reflectivity with a Ricker
wavelet of dominant frequency 35 Hz and then contaminated by the
random noises. The recording time is 1 s with the sample interval at
1 ms. These wavelet and recording parameters are used for all the
synthetic examples in this paper.

Figures 3A–C shows the simple synthetic traces attenuated by using
the constant-Qmodel with differentQ values (Q = 30,Q = 60 andQ= 110)
and contaminated by the 0.1% randomnoises. Here, the reflectivity series of
0.5, −0.6 and 0.7 are set at 250, 500, and 750ms respectively, and no
interference occurred between the reflections. The newmethod is applied to
these simple traces for the reflectivity and constant Q estimation. Thirty
logarithmically spaced Q values in the range [10, 120] are selected to run
Algorithm 1. The estimated reflectivity series are shown in Figures 3D–F.
As seen from these figures, the estimated reflectivity series are very close to
the true values. The corresponding estimations of the Q values are showed
in Figures 3G–I, showing a relatively goodmatch with the trueQ values, as
shown in these figures by the red lines for comparison.

Figures 4A–C shows the complex synthetic traces attenuated by
using the constant-Q model (Q = 60) and contaminated by random
noises of different levels (0.1%, 5% and 10%). Here, the high reflections
are set at 333, 500, and 666 ms, and the corresponding reflection
coefficients are 0.75, −0.75 and 0.75, respectively. At other times, the
reflection coefficients are set randomly. There are some reflection
interferences from the adjacent reflections in the complex synthetic
traces. These complex traces are used to test the new method for the
reflectivity and constant-Q estimation. Thirty logarithmically spaced
Q values in the range [10, 120] are also selected to run Algorithm 1.
The estimated reflectivity series are shown in Figures 4D–F. As seen
from these results, the new method improves the resolution and gives
satisfactory results in the case of complex waves. The corresponding
estimations of the Q values are showed in Figures 4G–I, which show
good consistency with the true Q values.

3.2 Seismic reflectivity andQ estimation of the
interval-Q model

We next test the performance of the new method for seismic
reflectivity and Q estimation of the interval-Q model. Similar to the
previous examples, some synthetic traces have been generated by
convolving the reflectivity with a Ricker wavelet of dominant
frequency 35 Hz, and then different random noises have been added
to the resulting traces. The newmethod is applied to these synthetic traces
for the reflectivity and interval-Q estimation. Algorithm 1 is performed for
thirty logarithmically spaced Q values in the range [10, 120].

FIGURE 2
The structure of the dictionary matrix.
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FIGURE 3
Simple synthetic traces attenuated by using constant-Qmodel with differentQ values: (A)Q = 30, (B)Q = 60, and (C)Q = 110. The estimated reflectivity
series are shown in (D–F). The true non-zero reflectivity coefficients are shown by the red points. The corresponding estimations of theQ values are showed
in (G–I). The true Q values are shown in red lines.

FIGURE 4
Complex synthetic traces attenuated by using constant-Qmodel (Q = 60) and contaminated by random noises of different levels: (A) 0.1%, (B) 5%, and
(C) 10%. The estimated reflectivity series are shown in (D–F). The true non-zero reflectivity coefficients are shown by the red points. The corresponding
estimations of the Q values are showed in (G–I). The true Q values are shown in red lines.
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FIGURE 5
Simple synthetic traces attenuated by using interval-Qmodel with differentQ values: (A)Q = (30, 60, 110), (B)Q = (60, 30, 110), and (C)Q = (110, 60, 30).
The estimated reflectivity series are shown in (D–F). The true non-zero reflectivity coefficients are shown by the red points. The corresponding estimations of
the Q values are showed in (G–I). The true Q values are shown in red lines.

FIGURE 6
Complex synthetic traces attenuated by using interval-Qmodel (Q= 60, 30, 110) and contaminated by random noises of different levels: (A) 0.1%, (B) 5%,
and (C) 10%. The estimated reflectivity series are shown in (D–F). The true non-zero reflectivity coefficients are shown by the red points. The corresponding
estimations of the Q values are showed in (G–I). The true Q values are shown in red lines.
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Figures 5A–C shows the simple synthetic traces attenuated by
using the different interval-Q models and contaminated by the
0.1% random noises. Here, the reflectivity series of 0.3, 0.4, −0.6,
0.7, −0.6, 0.4 and 0.3 are set at 111, 222, 333, 500, 666, 777, and
888 ms respectively, and no interference occurred between the
reflections. The estimated reflectivity series are shown in Figures
5D–F. The corresponding estimations of the Q values are showed in
Figures 5G–I.

Figures 6A–C shows the complex synthetic traces attenuated by
using the interval-Q model (Q = 60, 30, 110) and each contaminated
by random noises of different levels (0.1%, 5% and 10%). Here, the
high reflections are set at 333, 500, and 666 ms, and the corresponding
reflection coefficients are 0.7, −0.7 and 0.7, respectively. At other times,
the reflection coefficients are set randomly. The complex synthetic
traces contain some reflection interferences from the adjacent
reflections. The final obtained reflectivity series are shown in
Figures 6D–F. The corresponding estimations of the Q values are
showed in Figures 6G–I.

As seen from these results, the estimations of the reflectivity series
are very accurate and the estimated Q values are relatively close to the
true values in all the cases. Furthermore, the accuracy of the estimates
is related to the noise level, which decreases as the noise level increases
under normal circumstances. The new method improves the
resolution by removing the wavelet and attenuation effects even in
the case of high-level noises, especially at places with great attenuation
effects.

For comparison, we also perform the Gabor deconvolution
(Margrave et al., 2011) for the reflectivity estimation corresponding
to the synthetic traces shown in Figures 6A–C. The Gabor
deconvolution estimates and corrects for the effects of source
wavelet and anelastic attenuation (Margrave et al., 2011). The
corresponding estimated reflectivity series are shown in Figure 7. It
is clearly seen from Figures 6, 7 that the accuracy of the reflectivity
estimation by the Gabor deconvolution is not better than that by our
proposed method.

In addition, we compare the proposed method with the
conventional spectral ratio method (Hauge, 1981) for the Q
estimation. The results of the Q estimation are reported in
Table 1. It can be seen from Table 1 that the proposed method
provides more accurate Q values than the spectral ratio method in
all cases. The new method uses both the amplitude and phase
information of the attenuation operator, and regularizes the
estimated Q by the sparsity information of the seismic
reflectivity series. However, the conventional spectral ratio
method only uses the amplitude information to determine the Q
value, and the spectral interference from the adjacent reflections
limits it (Xue et al., 2020). Hence, the Q values estimated by the new
method are more accurate than the results provided by the
conventional spectral ratio method.

4 Real data examples

Finally, we test the performance of the new method with two sets of
real stacked seismic data shown in Figures 8A, 9A. The geometric
spreading correction and the simple de-noising process have been
operated for the real data. The real data represent the 2D poststack
sections with the high signal-to-noise ratio and look clean. The seismic
wavelet can be extracted from the early part of the data using the blind
deconvolution method (Gholami and Sacchi, 2013). In general, the signal
can be segmented according to the rough horizon in the seismic data. For
computational purposes, the numbers ofQ-layers 9 and 5 are assumed for
the two sets of real stacked seismic data respectively. For each data set,
thirty Q values in the range [20, 400] in logarithm scale are selected to run
Algorithm 1. The resulting reflectivity sections are depicted in Figures 8B,
9B, which show the vertical resolution has been greatly improved by the
new method, and provide the structural and stratigraphic features in great
details. The vertical resolution achieved by the new method is significant
and it may have important effects in seismic reservoir characterization of
thin layers. The estimatedQmodels by the proposedmethod are shown in

FIGURE 7
The estimated reflectivity series by the Gabor deconvolution. (A) The estimated reflectivity series corresponding to the synthetic traces shown in
Figure 6A. (B) The estimated reflectivity series corresponding to the synthetic traces shown in Figure 6B. (C) The estimated reflectivity series corresponding to
the synthetic traces shown in Figure 6C. The true non-zero reflectivity coefficients are shown by the red points.

TABLE 1 The results of the Q estimation by different methods, corresponding to the synthetic traces shown in Figures 6A–C.

True Q Noise level (%) Estimated Q spectral ratio method Estimated Q proposed method

(60, 30, 110) 0.1 (68.14, 40.25, 136.06) (60.46, 30.46, 110.15)

(60, 30, 110) 5 (74.23, 48.22, 159.86) (60.46, 30.46, 120.00)

(60, 30, 110) 10 (82.11, 56.82, 168.02) (60.46, 33.19, 120.00)
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Figures 8C, 9C. The estimatedQmodels by the conventional spectral ratio
method are shown in Figures 8E, 9E. We perform the inverse Q filtering
(Wang, 2006) of the data using the generated Q models. The resulting
seismic sections after inverseQfiltering using the estimatedQmodel by the
proposed method are shown in Figures 8D, 9D. The resulting seismic
sections after inverse Q filtering using the estimated Q model by the

conventional spectral ratio method are shown in Figures 8F, 9F. These
resulting seismic sections clearly show improvements in the vertical
resolution and more details on stratigraphic features compared to the
raw data. Furthermore, it can be seen from these figures that the improved
resolution using the estimated Qmodel by the proposed method is better
than the one by the conventional spectral ratio method.

FIGURE 8
(A) A stacked seismic data set, (B) estimated reflectivity section by the proposed method, (C) estimated Q model by the proposed method, (D) seismic
section after inverseQ filtering using the estimatedQmodel by the proposed method, (E) estimatedQmodel by the conventional spectral ratio method, and
(F) seismic section after inverse Q filtering using the estimated Q model by the conventional spectral ratio method.
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5 Discussion

In general, the performance ofQ estimation methods from seismic
data decreases with increasing wavelet interference and noise level (Tu
and Lu, 2010; Aghamiry and Gholami, 2018). Our proposed method
uses both the amplitude and phase information of the attenuation

mechanism, and regularizes the estimated Q model by the sparsity
constraint of the seismic reflectivity, but it is also affected by the high-
level noises. The accuracy of the estimates decreases as the noise level
increases. Therefore, the de-noising process is necessary for the real
data with low signal-to-noise ratio. In addition, the proposed method
is implemented in a trace by trace manner and takes no account of the

FIGURE 9
(A) A stacked seismic data set, (B) estimated reflectivity section by the proposed method, (C) estimated Q model by the proposed method, (D) seismic
section after inverseQ filtering using the estimatedQmodel by the proposed method, (E) estimatedQmodel by the conventional spectral ratio method, and
(F) seismic section after inverse Q filtering using the estimated Q model by the conventional spectral ratio method.
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lateral continuity. The method of the multichannel form may provide
better results.

6 Conclusion

In this paper, we have presented a new method for concurrent
estimation of seismic reflectivity and Q by using optimal dictionary
learning. This newmethod first constructs a complete dictionary based
on the non-stationary convolution model, then computes the
reflectivity series under different dictionary matrices with the
corresponding referencing Q values, and finally selects the optimal
dictionary matrix by comprehensively analyzing the residual and
reflectivity sparsity so as to obtain seismic reflectivity and Q
concurrently. Synthetic examples using simulated data demonstrate
that the proposed method provides accurate estimation of seismic
reflectivity and Q, and improves the resolution by removing the
wavelet and attenuation effects. Furthermore, the examples of real
data also confirm the effectiveness of the proposed method, which
improves the vertical resolution without losing weak events and
provides more accurate information concerning stratigraphic
features in great details. Thus, the presented method is very useful
to improve the vertical resolution and enhance the reservoir
identification in seismic processing and interpretation.
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