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Prestack reverse-time migration (RTM) is a popular imaging technique for
complex geological conditions, since the amplitude attenuation and velocity
dispersion are common in seismic recordings. To image attenuated seismic
recordings accurately, a robust migration algorithm with a stable attenuation
compensation approach should be considered. In the context of the
Q-compensated RTM approach based on the decoupled fractional Laplacians
(DFLs) viscoacoustic wave equation, amplitude compensation can be
implemented by flipping the sign of the dissipation term. However, the non-
physical magnification of image amplitude could lead to a well-known numerical
instability problem. The explicit stabilization operator can rectify the amplitude
attenuation and suppress the numerical instability. However, limited by the
inconvenient mixed-domain operator, the average Q value rather than the real
Q value is often used in the compensation operator, lowering the compensated
accuracy of the migration image. To overcome this problem, we propose a novel
explicit Q-compensation scheme. The main advantage of the proposed
compensation operator is that its order is space-invariant, making it more
suitable for handling complex heterogeneous attenuation media. Several two-
dimensional (2D) and three-dimensional (3D) synthetic models are used to verify
the superiority of the proposed approach in terms of amplitude fidelity and image
resolution. Field data further demonstrates that our approach has potential
applications and can greatly enhance the resolution of seismic images.
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Introduction

Seismic attenuation is commonly observed in the rockmatrix and pores such as sandstones
and gas clouds (Aki and Richards, 1980; Dutta and Schuster, 2014), which is commonly
characterized by the quality factor Q (Tselentis, 1998). The inherent attenuation properties of
the Earth media significantly affect the characteristics of seismic waves in terms of amplitude,
phase, and frequency band (Carcione, 1990; Zhu et al., 2013; Yang et al., 2015). As accurate
attenuation compensation is critical for understanding the mechanisms of seismic data and
mapping the Earth’s interior, ignoring the anelasticity would result in blurredmigrated images,

OPEN ACCESS

EDITED BY

Jidong Yang,
China University of Petroleum, Huadong,
China

REVIEWED BY

Hanming Chen,
China University of Petroleum, China
Li Ren,
The University of Texas at Dallas,
United States

*CORRESPONDENCE

Ying Shi,
shiying@nepu.edu.cn

SPECIALTY SECTION

This article was submitted to
Solid Earth Geophysics,
a section of the journal
Frontiers in Earth Science

RECEIVED 12 December 2022
ACCEPTED 06 February 2023
PUBLISHED 16 February 2023

CITATION

Li S, Shi Y, Wang W, Wang N, Song L and
Wang Y (2023), An explicit stable Q-
compensated reverse time migration
scheme for complex heterogeneous
attenuation media.
Front. Earth Sci. 11:1121648.
doi: 10.3389/feart.2023.1121648

COPYRIGHT

© 2023 Li, Shi, Wang, Wang, Song and
Wang. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 16 February 2023
DOI 10.3389/feart.2023.1121648

https://www.frontiersin.org/articles/10.3389/feart.2023.1121648/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1121648/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1121648/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1121648/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1121648&domain=pdf&date_stamp=2023-02-16
mailto:shiying@nepu.edu.cn
mailto:shiying@nepu.edu.cn
https://doi.org/10.3389/feart.2023.1121648
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1121648


dimmed amplitudes, and ultimately reduce the reliability of seismic
interpretation (Wang and Guo, 2004; Zhang and Gao, 2021).
Currently, the Q-compensated schemes are divided into two
categories. The first method is usually implemented on the post-
stack seismic profile, such as the inverse-Q filtering method (Bickel
and Natarajan, 1985; Wang, 2002; Wang, 2003), time-variant spectral
whitening (Yilmaz, 2001), and time-varying deconvolution (Margrave
et al., 2011). Although these methods are computationally efficient,
they are usually suitable for simple structures because of the lack of
consideration for the internal physical connotation in the process of
wave propagation (Hargreaves and Calvert, 1991). The second
approach is based on wave equations and compensates for
attenuation along the propagation path (Dai and West, 1994;
Mittet, 2007; Li et al., 2016b). Since the attenuation occurs during
wave propagation, it ismore reasonable to implementQ-compensated
as part of the migration process (Zhang et al., 2010; Zhu and Sun,
2017; Zhao Y. et al., 2018).

Earth materials usually exhibit nearly frequency-independent Q
behavior over the seismic frequency band (Korneev et al., 2004;
Dvorkin and Mavko, 2006; Zhu, 2017). Mechanical models are the
most commonly used approaches for describing frequency-
independent Q behavior (Mainardi, 2010; Rossikhin, and
Shitikova, 2010). Among these, the standard linear solid (SLS)
and the generalized standard linear solid (GSLS) models have
been extensively used in modeling and imaging (Xu and
McMechan, 1995; Causse and Ursin, 2000; Deng and McMechan,
2008; Zhang and Gao, 2022). Alternatively, some mathematical-
model-based schemes, such as the Kolsky-Margravechen model
(Kolsky, 1956; Futterman, 1962), the power-law model, and
Kjartansson’s constant-Q model (Kjartansson, 1979; Zhu and Bai,
2018; Wang et al., 2020), are also gradually applied to the
characterization of Earth attenuation. Recently, the decoupled
fractional Laplacians (DFL) viscoacoustic wave equation has
attracted attention (Chen et al., 2016; Yao et al., 2016; Wang N.
et al., 2018; Xing and Zhu, 2019; Liu and Luo, 2021) for the following
reasons. First, it incorporates the spatial fractional Laplacians to
avoid the memory issue often encountered by conventional anelastic
modeling (Dutta and Schuster, 2014) and fractional time derivative
approaches (Carcione, 2008). Second, compared with SLS, this
strategy is more attractive for Q-RTM because it realizes
amplitude compensation by flipping the sign of the amplitude-
loss term without changing phase information (Guo and
McMechan, 2015; Guo et al., 2016).

Attenuation compensation is critical for improving imaging
quality in complex attenuation structures. However, Q-RTM
usually suffers from numerical instability due to the inverse-
physical energy amplification of high-frequency noise. Several
strategies have been proposed to improve numerical stability. For
example, the schemes include regularization approaches (Zhang et al.,
2010; Wang et al., 2012), filter-based approaches (Zhu and Harris,
2014; Wang Y. et al., 2018; Chen et al., 2020a), improved imaging
conditions (Xie et al., 2015; Zhao X. H. et al., 2018; Sun and Zhu, 2018;
Yang et al., 2021) and least-squares Q reverse-time migration
(QLSRTM) (Chen et al., 2020b; Zhang et al., 2022; Zhang and
Gao, 2022). Among these, the implicit adaptive stabilization
compensation scheme (Wang et al., 2017) that adjusts the
truncation frequency according to the propagation time and Q
value provides a better trade-off between numerical stability and

imaging resolution. However, the implicit compensation operator is
calculated in the wavenumber domain, implying that it requires
additional Fourier transforms. Wang et al. (2019) further proposed
an explicit compensation strategy, which adjusts compensation
parameters more conveniently and simplifies the workflow of
Q-RTM. Nevertheless, this strategy is not straightforward for
dealing with the complex heterogeneous Q media (Sun and Zhu,
2015) because it involves the spatial variable-order Laplacians (mixed-
domain operators). To solve the mixed-domain problem, the average
Q value is usually used to replace the real Q value (Wang et al., 2019),
which would introduce significant errors for the sharp Q-contrast
models (Chen et al., 2016; Yang and Zhu, 2018a; Xing and Zhu, 2019).

In this study, we aim to derive a new explicitQ-compensated scheme
so as to accurately image complex heterogeneous attenuation structures.
Our derivation seeks an equation that avoids calculating spatial variable-
order Laplacian operators starting from the explicit compensation wave
equation (Wang et al., 2019). To accomplish this, we used Taylor
expansion to approximate the spatial variable-order Laplacian
operators to the spatial constant-order form and then integrate the
constant-order compensated scheme into the Q-RTM framework. The
following are the advantages of the proposedmethod. First, the proposed
scheme enables us to compensate for amplitude loss inQ-RTMwithout
changing the phase because the dispersion and dissipation effects are
naturally separated. Second, the explicit Q-compensated scheme is free
from frequent Fourier transforms, so it is expected to simplify the
workflow of Q-RTM. Third, compared with the original compensation
operator with average Q, the proposed algorithm visibly improves the
imaging quality in the heterogeneous Q media.

The organization of this study is as follows. First, we review the
explicit Q-compensation wave equation with spatial variable-order
Laplacian operators (Wang et al., 2019; Wang et al., 2022). Second, we
demonstrate the derivation of the proposed spatial constant-order
Q-compensated wave equation, followed by detailing its numerical
implementation and validating its accuracy. Then, much synthetic
and field data are used to demonstrate its advantages. Finally, we
conduct a discussion and draw some conclusions.

Materials and methods

Constant-order compensated viscoacoustic wave equation.
According to a previous study (Wang et al., 2019; Wang et al.,

2021), the wave equation based on the explicit compensated
operators can be expressed as follows:

1
c2

z2p

zt2
� ηa + τa + ηc1 + ηc2 + τc (1)

and

ηa � −c2γ0 ω−2γ
0 cos πγ( ) −∇2( )γ+1p, τa � c2γ−10 ω−2γ

0 sin πγ( ) z
zt

−∇2( )γ+0.5p,
ηc1 � c2γ−10 ω−2γ

0 sin πγ( )σ −∇2( ) 2γ+1+β( )/2p, ηc2 � −σ
2

c2
−∇2( )βp,

τc � −2σ
c2

z

zt
−∇2( )β/2p, γ � 1

πQ
, c � c0 cos πγ/2( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

where c0 is the phase velocity at the reference frequency ω0. p and ∇2

represent the pressure wavefield and Laplacian operator,
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respectively. ηa and τa represent phase dispersion and amplitude
compensation terms, respectively. ηc1 and ηc2 is introduced to keep
the phase unchanged during Q compensation. τc is a stabilization
term to keep the high-wavenumber component from uncontrolled
amplification, in which β and σ are the stable compensation
parameters. The stable compensation parameters usually depend
on the media’s physical properties. Generally, A larger β can reserve
more higher frequency, and the more high-wavenumber signal is
eliminated with σ increases (Wang et al., 2021).

Equation 1 can compensate for amplitude without introducing
high-frequency noise because it includes the stabilization term.
However, subject to the thorny mixed-domain (spatial-
wavenumber domain) operators, the average Q value is often
used when extrapolating the wavefields (Zhu et al., 2014; Zhu
and Harris, 2014; Mu et al., 2021). Even though the average
scheme works well for the homogeneous or smooth Q model, it
cannot accurately describe the characteristics of wave propagation in
the heterogeneous media (Yang and Zhu, 2018b). To overcome this
shortcoming, we propose a new explicit viscoacoustic wave equation
with the constant fractional-order Laplacians using a truncated
Taylor expansion algorithm (Chen et al., 2016).

If seismic waves propagate in a homogeneous medium, the plane
wave equation is substituted into Eq. 1 to obtain the frequency-
wavenumber domain viscoacoustic wave equation

1
c2 cos πγ( ) z2 ~pzt2 � ~ηa + ~τa + ~ηc1 + ~ηc2 + ~τc, (3)

and

~ηa � −c2γ0 ω−2γ
0 k2γ+2 ~p, ~τa � c2γ−10 ω−2γ

0

1
Q
k2γ+1

z~p

zt
,

~ηc1 � c2γ−10 ω−2γ
0

σ

Q
k2γ+1+β ~p, ~ηc2 � − σ2k2β

c2 cos πγ( )~p,
~τc � − 2σkβ

c2 cos πγ( ) z~pzt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

where ~p represents the wavefield in the wavenumber domain. Here,
the fractional Laplacian c2γ−10 ω−2γ

0
σ
Qk

2γ+1+β in Eq. 3 is taken as an
example of an approximation

c2γ−10 ω−2γ
0

σ

Q
k2γ+1+β � λσ

Qc0
k1+β

k

kd
( )2γ

(5)

where fd and kd represent the dominant frequency and dominant
wave number, respectively, λ � (ωd/ω0)2γ, ωd � 2πfd. Because
2γ|ln k

kd
|≪ 1, we use Taylor expansion to approximate Eq. 3 as

λσ

Qc0
k1+β

k

kd
( )2γ

≈
λσ

Qc0
k1+β 1 + 2γ ln

k

kd
( ), (6)

1 + 2γ ln k
kd

can be approximated by Taylor expansion again

1 + 2γ ln
k

kd
� 1 + 2γ

ζ
ln 1 + k

kd
( )ζ

− 1⎛⎝ ⎞⎠ ≈ 1 + 2γ
ζ

k

kd
( )ζ

− 1⎛⎝ ⎞⎠,

(7)
where ζ is a empirical constant coefficient (Chen et al., 2016), which
is introduced to guarantee ( k

kd
)ζ − 1 close to zero. Therefore, the left-

hand side of Eq. 5 can be approximated as follows:

c2γ−10 ω−2γ
0

σ

Q
k2γ+1+β ≈

λσ

Qc0
k1+β 1 + 2γ

ζ

k

kd
( )ζ

− 1⎛⎝ ⎞⎠⎛⎝ ⎞⎠ (8)

The other spatial variable-order Laplacians in Eq. 4 can be
approximated in the same way. Therefore, Eq. 3 can be expressed as
follows:

1
λc2 cos πγ( ) z2 ~pzt2 � ~ηanew + ~τanew + ~ηcnew + 1

λ cos πγ( )~ηc2
+ 1
λ cos πγ( )~τc (9)

where

~ηanew � − 1 − 2
ξπQ

( )k2 ~p − 2
ξπQ

c0
ωd

( )ξ

k1+0.5ξ ~p,

~τanew � 1
Qc0

z

zt
1 − 2

ξπQ
( )k0.5 + 2

ξπQ

c0
ωd

( )ξ

k0.5+0.5ξ⎛⎝ ⎞⎠~p,

~ηcnew � σ

Qc0
1 − 2

ξπQ
( )k 1+β( )/2 + 2σ

ξπQ

c0
ωc

( )ζ

k ξ+1+β( )/2⎛⎝ ⎞⎠~p,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

By transforming Eq. 9 back to the space domain, we obtain the
following equation

1
λc2 cos πγ( ) z2pzt2 � ηanew + τanew + ηcnew + 1

λ cos πγ( )ηc2
+ 1
λ cos πγ( )τc (11)

where

ηanew � 1 − 2
ξπQ

( )∇2p − 2
ξπQ

c0
ωd

( )ξ

−∇2( )1+0.5ξp,
τanew � 1

Qc0

z

zt
1 − 2

ξπQ
( ) −∇2( )0.5 + 2

ξπQ

c0
ωd

( )ξ

−∇2( )0.5+0.5ξ⎛⎝ ⎞⎠p,

ηcnew � σ

Qc0
1 − 2

ξπQ
( ) −∇2( ) 1+β( )/2 + 2σ

ξπQ

c0
ωd

( )ξ

−∇2( ) ξ+1+β( )/2⎛⎝ ⎞⎠p.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

In Eq. 11, the fractional Laplacians is the constant-order form,
and it naturally adapts to sharpQmedia. Note that forQ → ∞ case,
Eq. 11 reduces to the classic acoustic-wave equation. We introduce
the general principle of Q-RTM in the framework of the proposed
wave equation (Zhu, 2016; Wang et al., 2021).

Stable constant-orderQ-compensated RTM
framework

The complete procedure of the proposed Q-compensated RTM
is summarized as follows.

Step 1. Forward extrapolating the source wavefield.
Through a given source wavelet S(xs, t), we solve Eq. 11 to

extrapolate the source wavefield, then checkpoint wavefields (Chen
et al., 2020c) are stored. For source excitation at source positions
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p xs, t( ) � S xs, t( ) (13)
where xs indicate the source positions.

Step 2. Perform backward propagation at each receiver position.
We solve Eq. 11 to extrapolate the receiver wavefields where the

backward source is recorded data R(xr, t) in time as the boundary
condition. The receivers’s excitation at the record positions is given
as follows:

p xr, t( ) � R xr, T max − t( ) (14)

where xr and Tmax represent the receiver positions and record
duration, respectively.

Step 3. Compute the final imaging results using an imaging
condition.

Finally, the zero-lag crosscorrelation imaging condition is used
to obtain the image of the subsurface structure (Claerbout, 1971) as
follows:

Ip x( ) � ∫Tmax

0
ps x, t( )pr x, t( )dt (15)

FIGURE 1
RRMS with different parameters.

FIGURE 2
Single trace at (x = 1 km) with different wave equations. (A) Q � 20, fm � 20; (B) Q � 50, fm � 20; (C) Q � 20, fm � 50; (D) Q � 50, fm � 50.
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where Ip(x) represents the imaging result at position x. ps(x, t) and
pr(x, t) express the compensated source and receiver wavefields,
respectively. To ensure the time consistency between the source and
receiver wavefields, the source wavefields should be read from the
disk or reconstructed (Ren et al., 2022).

Numerical implementation

The pseudo-spectral method is widely applied to solve the
fractional Laplacian operator (Xue et al., 2017; Wang et al., 2018;
Wang et al., 2020; Wang et al., 2022). We used the second-order
central finite-difference approach and fast Fourier transform (FFT)
to calculate the temporal derivative and fractional Laplacian
operators, respectively (Bai et al., 2019; Xing and Zhu, 2020;
2021). The detailed numerical implementation is summarized in
the following three steps.

1) Calculate the fractional Laplacians. Take (−∇2)1+0.5ξp as an
example, and it can be expressed as follows:

−∇2( )1+0.5ξp � F−1 k| |2( )1+0.5ξF p[ ]{ } (16)

where F and F−1 denotes the forward and inverse Fourier transform,
respectively, and |k| is the norm of the complex wavenumber vector.
ζ is an invariable coefficient defined ζ � 1/16 in this study (Chen
et al., 2016).

2) Calculate the time partial derivative and next moment
wavefields.

pit+1 � 2pit − pit−1 + Lap (17)

where pit+1, pit, pit−1 represents the wavefields at the next, current,
and previous timestep, respectively. Lap denotes all Laplacians.

3) Update the wavefields and enter the next time cycle until the
maximum simulation time.

Therefore, the Q-compensated wave equation based on the
constant fractional-order Laplacians can be implemented.

Accuracy analysis

We conduct a numerical test to analyze this approximation
accuracy because the spatial constant-order fractional Laplacian is
approximated using Taylor expansion. Here, we take Eq. 8 as an
example. This test is performed using a 2D homogeneous model
with a grid size of 200 × 200 nodes and spatial intervals of 10 m. The
reference velocity is 4,000 m/s. For simplicity, we set
λ � 1, ζ � 1/16, β � 1. The degree of match between our
approximation solution (the right-hand side of Eq. 8) and the
original solution (left-hand side of Eq. 8) is evaluated using the
relative root mean square error (RRMS) defined as follows:

RRMS �

����������������∑N
i

xai − xbi( )/xai( )2√√ /N (18)

where xai and xbi represent the left and right sides of Eq. 8,
respectively.

Figure 1 shows the RRMS of different simulation parameters, in
whichQ ranges from 10 to 100 and fd (dominant frequency) ranges
from 5 to 50 Hz. The value of RRMS decreases with an increase in Q
(Figure 1), and it is almost unchanged as the frequency varies.
Furthermore, our approximation has a small RRMS even for the
lower Q, validating the accuracy of our approximation.
Furthermore, we compare several numerical simulations of
different wave equations to investigate the accuracy of Eq. 11 in
wavefield extrapolation. A Ricker wavelet is used as the source and is
located at the center of a homogeneous model. The single traces of
the different wave equation wavefields at x = 1 km are shown in
Figure 2, where Figures 2A–D correspond to Q � 20, fd � 20,
Q � 50, fd � 20, Q � 20, fd � 50, and Q � 50, fd � 50,
respectively. We can find that both types of compensation wave
equations can simulate almost the same wavefields as the reference
solutions (the black line, Q = infinity), confirming the validity of the
compensation wave equation.

Numerical examples

Two-layer model
Different fromWang et al. (2021) method, the proposed method

avoids calculating the spatial variable-order fractional Laplacians.
Therefore, it is more straightforward for dealing with the sharp Q
model, which can be verified by the two-layer model (Figure 3). The
grid is 400 × 400 cells with a unified 5 m interval. Ricker wavelet with
a peak frequency of 30 Hz is the location in the center of the model

FIGURE 3
Model parameters for the two-layer models.
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and has a time step of 0.5 ms. The compensated parameter β is 2 and
σ � 0.5c2γ−10 ω−2γ

0 sin(πγ)|kref|2γ+1−β.
We run simulations for three different cases. In the first case, the

fractional Laplacians in Eq. 1 are calculated by the pointwise strategy
(the reference solution). In the second case, the fractional Laplacians
are calculated by using the average Q value scheme (the average
Q-compensated scheme). The third case is implemented by solving
Eq. 11 (the proposed constant-order compensated method). The
reference solution, average Q-compensated, and constant-order
compensated schemes are shown in Figures 4A–C. The difference
between the reference solution and the average Q-compensated is
shown in Figure 4D, and the difference between the reference

solution and the constant-order compensated schemes is shown
in Figure 4E. Note that the color scales are the same for all snapshots.
Compared to Figure 4D, the smaller residual in Figure 4E confirms
the accuracy of the proposed method for sharp Q media.

Marmousi model
Furthermore, we use the Marmousi model to validate the

stability and reliability of the proposed scheme in a strongly
heterogeneous Q model. The velocity and Q models that are
discretized into 400 × 200 points with 10 m spacing are shown in
Figures 5A, B. A Ricker wavelet with a peak frequency of 25 Hz is
selected as the point source. The simulation time is 2.5 s with a time

FIGURE 4
Wavefield snapshots at 700 ms for the two-layer models. (A) the reference solution, (B) the average Q scheme. (C) the constant-order scheme (D)
the difference between the reference solution and average Q scheme (E) the difference between the reference solution and constant-order scheme.
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step of 1 ms. Forty shots and two hundred receivers are evenly
distributed at a depth of 20 m. The compensated parameter β � 6
and σ � 0.5c2γ−10 ω−2γ

0 sin(πγ)|kref|2γ+1−β.
The observed shots with and without the Q attenuation are

shown in Figure 6 where the first row corresponds to the elastic
media and the second row correspond to the loss media. Columns
1–4 represent to the 10th, 30th, 50th, and 70th shots, respectively.

All common-gathers are displayed at the same color scales. As
expected, the deep structural energy in loss medium is obviously
weakened due to the existence of attenuation. Figure 7 shows the
migration profiles with different methods. All profiles are
displayed at the same color scales. We tested four different
imaging methods: the acoustic RTM to acoustic data
(reference solution, Figure 7A), the acoustic RTM to

FIGURE 5
Marmousi (A) velocity and (B) Q model.

FIGURE 6
Common-gathers. The first row corresponds to the elastic media and the second row correspond to the loss media. Columns 1–4 represent to the
10th, 30th, 50th, and 70th shots, respectively.
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FIGURE 7
Migration results of the Marmousi model. (A) acoustic RTM to acoustic data; (B) acoustic RTM to viscoacoustic data; (C) average Q-compensated
RTM; (D) constant-order compensated RTM.

FIGURE 8
Migration results of the Marmousi model with different σ. (A) σ � 0.1ref; (B) σ � 0.5ref; (C) σ � ref; (D) σ � 10ref.
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viscoacoustic data (non-compensated RTM, Figure 7B), the
average Q-compensated RTM (Figure 7C), and the proposed
constant-order compensated RTM (our method, Figure 7D).
Obviously, significant amplitude reduction (particularly for
deep structures) is observed (Figure 7B) because of the

attenuation property of the medium. Two compensation
methods improve the imaging results without numerical
instability. Although both compensation results show clear
anticlinal structures because of the enhanced high-frequency
components, there is still some difference between the average

FIGURE 9
Vertical profiles of different migration images. (A) at x = 1.5 km; (B) at x = 3.5 km.

FIGURE 10
Amplitude spectra corresponding to the migrated seismic traces (A) at x = 1.5 km; (B) at x = 3.5 km.

FIGURE 11
3D overthrust model. (A) Velocity; (B) Q.
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Q-compensated RTM and the reference solution. In contrast,
Figure 7D is very similar to the reference solution.

We also test the possible effects of σ on Q-RTM results in the
Marmousi example and show results with the different σ in Figure 8.
We set ref � c2γ−10 ω−2γ

0 sin(πγ)|kref|2γ+1−β and test four different
parameters, where 8a-8d represent to σ � 0.1ref (very small),
σ � 0.5ref ; σ � ref ,; σ � 10ref (very large), respectively. Migration
results with the very small σ has numerical instability (Figure 8A)
and migration results with the very large σ damages too much

high-frequency information (Figure 8D). Figures 8B, C show better
imaging results. Hence, it means that the more high-wavenumber
signal is eliminated with σ increases.

For comparison, Figures 9A, B show vertical profiles at 1.5 km
and 3.5 km along the horizontal direction, respectively. The black
line, blue dashed line and red dashed line represent the reference
solution, average Q-compensated, and constant-order compensated
RTM, respectively. The blue dashed line suffers from amplitude
mismatch and phase distortion phenomenon, while the red dashed
line matches the reference trace better (particularly for deep
reflections). Figure 10 represents the corresponding amplitude
spectra. Compared with the non-compensated RTM (green line),
the high-wavenumber components of the average Q-compensated
RTM (blue dash line) and the constant-order compensated RTM
(red line) are significantly improved. Furthermore, confirming the
superiority of the proposed method in a strongly heterogeneous Q
model, the consistency between the red and black lines is slightly
better than that between the blue and black lines.

3D overthrust model
We verify the applicability of the proposed method in the 3D

case. The velocity and Q models are shown in Figures 11A, B,
respectively. The model contains 550 × 200 × 150 cells with unified
spatial intervals of 10 m. A total of 270 shots and 22,500 receivers are
evenly located. We simulate records using a Ricker wavelet with a

FIGURE 12
Migrated images of 3D overthrust model. (A) acoustic RTM to acoustic data; (B) acoustic RTM to viscoacoustic data; (C) average Q-compensated
RTM; (D) constant-order compensated RTM.

FIGURE 13
The traces selected at (x = 1,200 m, y = 1,200 m).
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peak frequency of 20 Hz. The records have a duration of 2 s with a
time interval of 1 ms, and the compensated parameter β is 8.

We set a maximum stacking aperture of 1.5 km for each shot to
eliminate the diffraction artifacts from the long offset. Different
migrated images with acoustic RTM to acoustic data (reference

solution), acoustic RTM to viscoacoustic data (non-compensated),
average Q-compensated RTM, and constant-order compensated
RTM are shown in Figures 12A–D. Unsatisfactory imaging
results, particularly below the high dip normal fault, indicate that
attenuation has a certain impact on 3Dmigrated images, as shown in

FIGURE 14
(A) Velocity model; (B) Q model.

FIGURE 15
Shot-gathers of field data. (A) the 50th shot; (B) the 100th shot; (C) the 150th shot; (D) the 200th shot.

FIGURE 16
Migrated images of the field data. (A) acoustic RTM; (B) constant-order compensated RTM.
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Figure 12B. Compared with Figures 12C, D agrees well with the
reference solution. We extract the migrated seismic traces (x =
1,200 m, y = 1,200 m) shown in Figure 13, where the black line, blue
dashed line and red dashed line represent the reference solution,
average Q-compensated, and constant-order compensated RTM,
respectively. The blue line has a shifted phase due to inaccurate
attenuation compensation, affecting the precise identification of the
target layer and horizon interpretation. In contrast, the red line
maintains polarity consistency with the reference solution,

demonstrating the effectiveness of the proposed method in the
3D case.

Field data from a land survey
To confirm the potential of our approach in field applications,

we apply the proposed constant-order compensated RTM to the
field data from a land survey. The velocity (Sava and Vlad, 2008) and
Q models (Tonn, 1991) are shown in Figures 14A, B, respectively.
The model has 900 × 300 cells with a grid size of 20 m2 × 20 m2. The

FIGURE 17
Zoom-in of the migrated image (A) acoustic RTM (B) constant-order compensated RTM.

FIGURE 18
Amplitude spectra corresponding to the migrated seismic traces (A) at x = 5 km; (B) at x = 9 km.

TABLE 1 Calculation-time comparison between different RTM schemes.

Modeling examples 2D Marmousi 3D overthrust Average error

Size 400×200 500×200×150 ______

Shot numbers 80 270 ______

Exact scheme 10.41 day ______ ______

Average-Q 13.24 min 44.42 h 2.60

Constant-Q 14.81 min 58.71 h 0.94
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maximum and minimum velocities are 5,515 and 2,213 m/s,
respectively.

The record duration is 5 s, with a time step of 1 ms. A 2D
acquisition line contains 240 excitation sources. We set the
maximum stacking aperture of 3.0 km for each shot to eliminate
the diffraction artifacts from the long offset, and the compensated
parameter β is 6. Figures 15A–D show the common-shot gathers of
50, 100, 150, and 200. All the shots were preprocessed, including
static correction, surface wave attenuation, multiple attenuations,
and bandpass filtering.

The acoustic RTM (non-compensated) and the constant-order
compensated RTM are shown in Figures 16A, B. Compared to the
acoustic RTM results (Figure 16A), the proposed compensated RTM
(Figure 16B) shows a higher resolution and has better illumination
of the deep reflections. Specifically, compared with Figure 16B, the
continuity of the structures in Figure 16A is destroyed, and the
lateral variation in the reflectors is worse (approximately 2 km depth
denoted by the red arrow) since acoustic RTM ignores the
attenuation compensation. This can be considered a fake fault,
thus degrading the reliability of the interpretation. A zoomed-in
section of the red box in Figure 16 is shown in Figure 17, with
Figures 17A, B showing the acoustic and the constant-order
compensated RTM, respectively. The reflections of Figure 17B
are stronger than Figure 17A. The wavenumber spectra of the
images at x = 5 and 9 km are shown in Figures 18A, B,
respectively. Indicating that the proposed method can effectively
recover the amplitude, the wavenumber components are increased
visibly after Q compensation (Figure 18).

Discussion

The accuracy of migration imaging is essential for seismic data
processing and structural interpretation, and calculation efficiency is
the premise of industrial practicality. Here, we discuss the cost of
several compensation schemes and their precision of imaging
results. The numerical examples are implemented using the
Compute Unified Device Architecture programming on an
Nvidia Geforce RTX 2080Ti. We run simulations for three
different cases: the exact solution, the average Q-compensated
method, and the constant-order compensated scheme. In Table 1,
we list the computation time with the different methods for the 2D
Marmousi and 3D overthrust models. For quantitative comparison,
we calculate the mean relative absolute error and mark them on the
right side of Table 1. The model parameters are consistent with the
previous test. Due to the huge amount of computation, the exact
solution (calculated by pointwise FFT) only runs a shot simulation.
As shown in Table 1, even though the exact solution can accurately
simulate the propagation of seismic waves, its numerical
implementation is more expensive. Compared with the pointwise
FFT, the average Q scheme significantly improves computing
efficiency under the condition of sacrificing computational
accuracy. Although the numerical implementation of the
constant-order compensated schemes is slightly more expensive
(about 1.3 times slower) than the average Q scheme in the 3D
case, the calculation accuracy was significantly improved. As
mentioned above, the computational cost and accuracy test
demonstrated that the proposed method provides a better trade-

off between imaging accuracy and calculation efficiency. In this
paper, we do not test the 3D field data because a single GPU card
cannot afford its memory requirements. Hence, the future research
direction on this topic is the 3D field data Q-compensated RTM by
multi-GPU computing based on model segmentation.

Conclusion

We presented a stabilized Q-compensated RTM scheme which
has the explicit stabilization terms in the time-space domain. The
proposed Q-compensated RTM avoids the compensating error
introduced by averaging spatially varying fractional orders, and it
enables us to precisely compensate for the seismic attenuation in
complex heterogeneous Q media. The proposed algorithm
enhances the resolution in Q-RTM without significantly
increasing computational cost. The explicit stabilization term is
free from frequent Fourier transforms, so it is expected to simplify
the Q-RTM workflow. Numerical simulation examples for
homogeneous models demonstrated that the numerical
solutions of the proposed wave equation agree with those of the
original viscoacoustic wave equation. Furthermore, the synthetic
and land field datasets demonstrate the superiority and
effectiveness of the proposed approach. We anticipate that the
proposed Q-compensated RTM will directly benefit imaging
applications as well as enhance the reliability of seismic
interpretations.
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