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To investigate the toppling displacement evolution characteristics of anti-dip rock
slopes, the Xiaodongcao-Zhengjiadagou bank slope is taken as an engineering
case, and firstly, the geological geometric distribution characteristics of the slope
are obtained by superimposing the lithology, slope, and elevation raster layers of
the slope through ArcGIS, and the geological partition with the largest area is the
Lower Triassic Daye Formation, bottom elevation, and medium slope; based on
the actual surface displacement monitoring data, the spatio-temporal evolution
nephogram of toppling displacement of bank slope every half year is interpolated
by Inverse Distance Weight method, and then the last displacement nephogram is
assigned to the thousandth and superimposed with the geological geometric
partition to obtain the displacement superposition characteristics. The results
show that: the obvious zone of horizontal displacement deformation mainly
occurs in the front and middle of the bank slope, mainly shear deformation,
vertical displacement is primarily in the front and the back edge of the bank slope
and the total displacement deformation is more similar to the horizontal
displacement; the horizontal displacement value is larger than the vertical
displacement value, the horizontal displacement deformation controls the
overall deformation of the bank slope; through the analysis of the geometric
superposition evolution of the anti-dip rock slope, the displacement superposition
strong deformation zone is located at the boundary between the Triassic
Jialingjiang Formation (T1j) and the Triassic Daye Formation (T1d).
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1 Introduction

Southwest China is a region where landslide geological disasters occur frequently, and
the analysis of the deformation characteristics of landslides is one of the essential aspects of
landslide control (Bao et al., 2023). Especially when encountering complex geological
conditions such as broken structural surface, weak interlayer and fault, the stability of
landslide is greatly reduced (Wang et., 2022a; Wang et., 2022b; He et al., 2022).
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Huang. (2012) studied some typical large-scale landslides in
mainland China in the 20th century and developed a geomechanical
model for large-scale toppling in anti-dip strata. Goodman and Bray.
(1976) classified the damage mode of anti-dip slopes into three main
types: bending damage, block damage, and bending-block damage.
Liu et al. (2009), Liu et al. (2010) conducted a more in-depth study
on overturning damage of rock slopes based on Goodman’s theory
of rock slope damage. Chen et al. (2016) established a mechanical
model and stability analysis method for bending and tipping damage
of anti-dip rock slopes based on limit equilibrium theory. Shen et al.
(2010) studied the rheological properties of red soft rock, and their
results have important reference values for the design of anti-dip red
soft rock slopes. Adhikary et al. (1997) conducted a series of model
centrifugal tests to study the bending and tipping damage

mechanism of jointed rock slopes. Alejano et al. (2010) used
numerical analysis to analyze the damage mechanism of open pit
mine. They interpreted the anti-dip stratified slope as a complex
combination of tipping and cyclic damage. Bowa and Xia. (2018)
proposed a technique for angular analysis of counter-tilted failure
surfaces applicable to block tipping failure mechanisms, which can
provide an accurate application for evaluating the instability of rock
slopes with counter-tilted failure surfaces. Li et al. (2019) analyzed
the width, and ridge number variation characteristics of the fast
Fourier transform spectrum along the slope surface to reveal the
internal damage characteristics of anti-dip rock slopes. Ning et al.
(2019) conducted a simulation study on the evolutionary
characteristics of toppling failure of anti-dip rock slopes and
revealed the relationships between the surface peak ground

FIGURE 1
The whole landscape of the bank slope.

FIGURE 2
Distribution and geological section of exposed rock and soil on bank slope.
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acceleration, the horizontal depth of the failure plane, and slope
displacement. Tao et al. (2019) used the superimposed cantilever
beam theory and the maximum tensile stress strength criterion for
brittle damage to derive a formula for calculating the vertical crack
extension depth in reverse slope overturning damage by studying
and analyzing the unstable damage mode of massive overturning
damage of the southwest slope of the Changshanhao open-pit gold
mine. Based on the similarity ratio theory, Zhu et al. (2020)

developed a physical model to investigate in depth the damage
mechanism of anti-dip layered slopes during excavation. Weng et al.
(2020) proposed an innovative failure criterion for assessing the
stability of anti-dip rock slopes, which outperforms the Mohr-
Coulomb criterion at low normal stresses and is more relevant to
reality. Xie et al. (2020) analyzed the evolution characteristics of
toppling deformation of rock slopes from the perspective of the
energy field. Dong et al. (2020); Dong et al. (2022) combined field

FIGURE 3
Plane layout of surface displacement monitoring.

FIGURE 4
Lithology, slope, and elevation distribution map.
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monitoring data to simulate the excavation process of anti-dip
rock slopes with the discrete element method and analyzed the
influence of different factors on the slope. The results show that
the scale and stability of the deformation zone of the anti-dip
rock slope have a specific influence, and the lithology determines
the failure mode of the toppling failure. Cheng et al. (2021) used a
digital camera to take high-speed images of real-time
deformation behavior of overturn-resistant rock slopes under
external loads, analyzed the entire damage process of anti-dip
rock slopes, and discussed in detail the ultimate damage modes of
the anti-dip rock slopes with different joint angles. Ding et al.
(2021) studied the characteristics and process of the flexural
toppling of anti-dip rock slopes. They obtained the
characteristics and mechanical mechanism of flexural
toppling, as well as the zoning of the slope. Xu et al. (2022)
used the discrete element method (DEM) to explore the failure of
earthquake-induced large-scale anti-dip rock landslides. Ren
et al. (2022) used the three-dimensional discrete element
method to analyze the dynamic response to the seismic
dynamic of the anti-dip rock slopes. Nie et al. (2022)

TABLE 1 Bank slope geological zoning basis.

Type Lithology Slope/° Elevation/m

Grade

1: Lower Triassic Daye Formation (T1d) 1: 0–27 1: 620–725

2: Lower Triassic Jialingjiang Formation (T1j) 2:28–44 2: 726–840

3:45–57 3: 841–954

4:58–67 4: 955–1,059

5: 68–90 5: 1,060–1,180

Partition number Hundreds digit Tens digit Single digit

FIGURE 5
Geologic geometric displacement superimposed partition map.

FIGURE 6
Bank slope geological geometric partitioning unit area of
statistical results.
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conducted a study on the control of deformation damage of NPR
structural cables on rocky slopes under excavation by using
numerical simulation method, and revealed the control
mechanism of NPR structural cables on rocky slope tipping
deformation. They studied the amplification effect, the change
in the Fourier spectrum, the failure mechanism, and the
permanent displacement of the slopes under seismic action.

As this project is a typical anti-dip layered rock slope, it has
attracted the attention of many experts and scholars. Cai et al.
(2014) established the cantilever beam limit equilibrium
calculation model and verified its correctness with the
numerical software UDEC, and obtained that the damage

zone of anti-dip stratified rock slope is determined by the
foot of the slope, dip angle of the rock layer, and slope
height. Gao et al. (2015) considered the Goodman-Bray
method of calculating the stability of anti-dip rock slopes
under the action of groundwater. Wei. (2015) used numerical
software (UDEC) to study the variation rule of toppling
deformation of anti-dip slopes with the thickness ratio of
adjacent rock strata. Jiang et al. (2016) divided the damage of
anti-dip rock slopes into three main stages: bending, bending
cracking, and fracture cracking.

Many factors affect the tipping deformation of rocky slopes, and
the research results also have specific reference values. Most scholars

FIGURE 7
Spatial and temporal evolution nephogram of horizontal displacement (mm).
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mainly analyze the overall stability of anti-dip rock slopes through
theoretical analysis, physical model tests, and numerical simulation,
and analyze the deformation evolution characteristics of rocky
slopes as a whole (Gschwind et al., 2019; Martino et al., 2020;
Wang et al., 2020; Tang et al., 2022; Liang et al., 2022; Zheng et al.,
2022; Lei et al., 2022; Wang et al., 2020; Wang et al., 2023; Ren et al.,
2023). However, the actual monitoring data show that the
deformation evolution characteristics of anti-dip rock slopes vary
significantly in different areas and have different geological
geometric characteristics. Therefore, this paper takes the typical
anti-dip rock slope as the research object. Based on field
investigation, it takes the lithology, slope, and elevation of the
rock slope as the characteristic geological factors and analyzes its
spatial distribution characteristics (Wang et al., 2022; Wu et al.,
2022). Based on the discrete actual displacement monitoring data,
the evolution nephogram of toppling displacement of rock slope is
obtained by Inverse Distance Weight method, and the
Spatiotemporal evolution nephogram of displacement is
superimposed with geological and geometric characteristics. This
study explores the geometric characteristics of the anti-dip rock
slope and its displacement superposition evolution characteristics,
which can provide a reference for similar engineering examples.

2 Project overview

Xiaodongcao-Zhengjiadagou bank slope is located on the
right bank of the upper reaches of Xixi River, Zhongliang
Township, Wuxi County, Chongqing (Figure 1), 1.2 km from
Zhongliang Reservoir (Figure 1), with the elevation of the bank
slope ranging from 540 m to 1,183 m and the width of 700 m; the
overall topography of the bank slope is steep, the slope aspect is
345°, the vegetation in the area is developed, the front part of the
topography is steep, the topography slope angle is 45°–68°, and
the back part of the topography is relatively gentle, the
topography slope angle is 11°–18°, and the local section can
reach 37°. The topographic characteristics of the bank slope

are mainly controlled by lithology and geological structure.
According to the field geological survey and engineering
investigation, it is revealed that the rock mass of the bank
slope is mainly composed of the Lower Triassic Jialingjiang
Formation (T1j) and Daye Formation (T1d); among them,
Jialingjiang Formation (T1j) is a medium-thick laminated
dolomitic tuff, mainly distributed in the middle and front part
of the bank slope, mainly subject to shear stress. The rock
structure is relatively complete, but the local weathering is
substantial. The Daye Formation (T1d) is a thin and medium-
thick laminated marl tuff, mainly distributed in the middle and
posterior part of the bank slope, which is in the area of obvious
tensile stress during the bending and tipping deformation, so the
rock structure is broken, and the bending and tipping
deformation of the rock layer is obvious (Figure 2).

The surface displacement monitoring system mainly consists
of 22 surface displacement monitoring points evenly distributed
throughout the study area, including 17 monitoring points on the
bank slope body and five outside the bank slope boundary; the
surface displacement monitoring time was from December
2012 to December 2016. The monitoring system was divided
into five transverse and three longitudinal profiles based on their
arrangement characteristics. After the reservoir completion, the
water level was raised by nearly 100 m compared with the
original, and the deformation of the front and trailing edge of
the bank slope was more pronounced. The surface of the trailing
edge showed obvious pulling cracks, which seriously threatened
the life safety of the downstream residents (Figure 3).

3 Analysis of bank geometric
characteristics zoning

3.1 Analysis of geometric characteristics
factor

The geometric characteristics of the bank slope area were
analyzed by ArcGIS, and the distribution characteristics of
stratigraphic lithology, slope, and elevation in the bank slope area
were obtained. As can be seen from Figure 4, the front part of the
bank slope is steep, except for the rear part, which is relatively gentle
(0°–27°); most of the other areas have a slope angle greater than 44°,
the slope body gully is developed, the gully is “V"-shaped, with
significant differences in topographic relief. The Lower Triassic
Jialingjiang Formation (T1j) is located in the front to the middle
of the bank slope, and the Daye Formation (T1d) is located at the
rear edge of the bank slope.

3.2 Geometric characteristics superposition

The lithology, slope, and elevation raster layers were reclassified,
and the lithology was assigned to the hundreds digit, slope to the
tens digit, and elevation to the single digit by the Spatial Analyst tool
of GIS. The geological geometry of the bank slope was performed
according to the Jenks Natural Breaks Classification (Table 1), and
the bank slope was finally divided into 35 characteristic partitions
(Figure 5).

FIGURE 8
Area of horizontal displacement strong deformation zone.
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3.3 Analysis of geometric superposition
characteristics

The geological geometric displacement superposition
partition map can be divided into 35 characteristic partitions
by GIS raster calculation, with a total area of 97039.01 m2.
Among them, the characteristic partition area with an
area greater than 2000 m2 accounts for 85.04% of the total
area, and the largest characteristics partition is the 142nd
(Figure 6).

4 Analysis of the evolutionary
characteristics of displacement
nephogram

The Inverse Distance Weight method was used to interpolate the
displacement deformations of the bank slope surface monitoring points.
The displacements were classified into nine categories by the Jenks
Natural Breaks Classification. The horizontal displacement deformation
nephogram, vertical displacement deformation nephogram, and total
displacement deformation nephogramwere interpolated every 6 months.

FIGURE 9
Spatial and temporal evolution nephogram of vertical displacement.
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4.1 Analysis of the evolution of horizontal
displacement nephogram

The temporal and spatial evolution nephogram of the horizontal
displacement of the bank slope below (Figure 7) shows that the bank
slope’s obvious area of horizontal displacement deformation mainly
appears in the front and middle of the bank slope. The maximum
horizontal displacement appears in the front of the bank slope, mainly
distributed in a dotted shape and a strip distribution in themiddle.With
time, it can be seen from the evolution nephogram that the horizontal
displacement deformation in the middle increases significantly and
gradually expands to the right side, and the horizontal displacement on
the right side of the middle is significantly larger than that on the left
side. The area with horizontal displacement deformation greater than
150 mm is the obvious area of horizontal displacement deformation. As

shown in Figure 8, the obvious area of horizontal displacement
deformation increases and decreases with time, reaching a
maximum of 20780.38 m2 in June 2016, and then the deformation
of the middle displacement gradually weakens and changes to the right
side of the front, gradually fading to point. The horizontal displacement
of the middle strip deformation area and the front point deformation
area alternately control the evolutionary law of tipping deformation of
the anti-dip rock slope, where shear deformation mainly occurs.

4.2 Analysis of the evolution of vertical
displacement nephogram

The temporal and spatial evolution nephogram of the vertical
displacement of the bank slope below (Figure 9) shows that
the obvious area of vertical displacement deformation mainly
occurs in the front of the bank slope and the back edge of the
bank slope. The maximum vertical displacement occurs in the
middle area of the front of the bank slope and the trailing edge
of the bank slope and is dotted. The vertical displacement change in
the middle of the bank slope is the smallest. With time, the
deformation of the front and back edges became more
pronounced and gradually increased. The trailing edge of the
bank slope mainly occurs in vertical deformation, corresponding
to the evolution law of toppling deformation.

The vertical displacement of the front of the bank slope gradually
increases overall. It gradually expands from the middle to the left and
right sides, and the front middle of the bank slope and the change of
vertical displacement on the left side is more evident than on the right
side. The change of vertical displacement in the middle and rear part of
the bank slope and the rear edge is more pronounced, with a point-like
distribution, and gradually increases with time. The area with vertical
displacement less than −80 mm is defined as the obvious area of vertical
displacement deformation (Figure 10). In June 2016, the area of the
strong deformation zone reached a maximum of 30592.39 m2. The
evolutionary characteristics of the vertical displacement in themiddle of
the bank slope were not prominent, and the change in the right side of
the middle was small; it showed the anti-dip evolutionary
characteristics of the bank slope.

4.3 Analysis of the evolution of the total
displacement nephogram

The temporal and spatial evolution nephogram of the total
displacement of the bank slope below (Figure 11) shows that the
total displacement and horizontal displacement deformation are
relatively similar, with the maximum total displacement mainly
occurring in the front of the bank slope, with a point-like
distribution. With time, the total displacement deformation in the
middle gradually increases. As can be seen from Figure 12, the area of
the total displacement strong deformation zone reached amaximum of
35057.62553 m2 in June 2016 and expanded from the front to the
middle of the bank slope, and the deformation of the right side of the
middle was significantly more significant than the left side; the tipping
deformation was dominated by horizontal displacement changes, and
the horizontal displacement deformation was significantly more
significant than the vertical displacement changes.

FIGURE 10
Area of strong deformation zone in the vertical direction.

FIGURE 11
Spatial and temporal evolution nephogramof total displacement.

Frontiers in Earth Science frontiersin.org08

Hu et al. 10.3389/feart.2023.1121618

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1121618


5 Analysis of displacement
superposition characteristics

Based on geological geometric superposition, the horizontal
displacement nephogram, vertical displacement nephogram, and
total displacement nephogram of the later interpolation are assigned
to the thousands digit, and the displacement geometric superposition
characteristics partition based on the geological geometric partition is
obtained. The displacement strong deformation zone and the most
prone area of the bank slope are analyzed.

5.1 Analysis of geometric superposition
characteristics of horizontal displacement

The horizontal displacement is reclassified into three categories
17 mm–103 mm as the weak deformation zone, 104–146 mm as the
medium deformation zone, 147 mm–255 mm as the strong
deformation zone, and the horizontal displacement is superimposed
with geological geometry to get the horizontal displacement geometry
superimposed characteristics zone, which is divided into
88 characteristics partitions (Figure 13).

FIGURE 12
Area of strong deformation zone in total direction.
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The area of each horizontal displacement geometric
superposition characteristics partition was counted by GIS
(Figure 14). The characteristics partition with a strong
deformation area larger than 1,500 m2 was selected as the

horizontal displacement strong deformation partition. Among
them, the horizontal displacement strong deformation partition
with the largest strong deformation area is the 141th partition,
whose strong deformation area is 7,311.724 m2, accounting for

FIGURE 13
Superposition of displacement geometric characteristics.
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72.29% of the 141th partition. This characteristic partition is
located in the Jialingjiang Formation (T1j), medium slope, and
bottom elevation. The horizontal displacement-prone partition is
the 154th partition, 97.95% of which is the strong deformation
zone, and the strong deformation area is 1779.01 m2. This
characteristic partition is located at the boundary between
Jialingjiang Formation (T1j) and Daye Formation (T1d), high
slope and medium elevation.

5.2 Analysis of geometric superposition
characteristics of vertical displacement

The area of each vertical displacement geometric superposition
characteristics partition was counted by GIS (Figure 15). The
characteristics partition with a strong deformation area larger than
1,500 m2 was selected as the vertical displacement strong deformation
partition. Among them, the vertical displacement strong deformation

FIGURE 14
The ratio of the area of strong deformation of horizontal displacement and its characteristic area.

FIGURE 15
The ratio of the area of strong deformation of vertical displacement and its characteristic area.
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partition with the largest strong deformation area is the 141th partition,
whose strong deformation area is 6,832.61 m2, accounting for 68.16% of
the 141th partition. This characteristic partition is located in the
Jialingjiang Formation (T1j), medium slope, and bottom elevation.
The vertical displacement-prone partitions are the 154th and 14fourth,
100% of which are strong deformation zones. They are located at the
boundary between Jialingjiang Formation (T1j) and Daye Formation
(T1d), with a high slope and medium elevation.

5.3 Analysis of geometric superposition
characteristics of total displacement

The area of each total displacement geometric superposition
characteristics partition was counted by GIS (Figure 16). The
characteristics partition with a strong deformation area larger than
1,500 m2 was selected as the total displacement strong deformation
partition. Among them, the total displacement strong deformation
partition with the largest strong deformation area is the 132nd partition,
whose strong deformation area is 6,832.61 m2, accounting for 81.61% of
the 132nd partition. This characteristic partition is located in the
Jialingjiang Formation (T1j), medium slope, and bottom elevation.
The total displacement-prone partition is the 235th partition, 96.21% of
which is the strong deformation zone. This characteristic partition is
located at the boundary between Jialingjiang Formation (T1j) and Daye
Formation (T1d), high slope and medium elevation.

6 Conclusion

Based on the analysis of typical anti-dip layered rock slope cases,
based on discrete surface displacement monitoring data and

combined with different geological zones, this paper explores the
real evolution law of toppling deformation in each zone. It can
reference similar anti-dip slope monitoring, early warning, and
prevention. The main results are as follows.

(1) The geometric characteristics overlay was obtained by
superimposing geometric factors such as lithology, slope, and
elevation of the bank slope strata through ArcGIS raster
calculation. It was divided into 35 characteristics partitions
with an area of 97039.01 m2. The characteristics partition
with the largest superimposed area is the 142nd partition,
located in the Lower Triassic Daye Formation, bottom
elevation, medium slope.

(2) The analysis of evolution characteristics of horizontal
displacement nephogram, vertical displacement nephogram,
and total displacement nephogram shows that the obvious
zone of horizontal displacement deformation mainly occurs
in the front and middle of the bank slope and is dominated by
shear deformation, the vertical displacement is mainly in the
front of the bank slope and the back edge, the total displacement
deformation is more similar to the horizontal displacement, the
horizontal displacement value is larger than the vertical
displacement value, and the horizontal displacement
deformation controls the overall toppling deformation of the
bank slope.

(3) Based on the geological geometric superposition, the
displacement nephogram of the last interpolation is overlaid
with it. The results show that: the strong deformation partition
of horizontal and vertical displacement is the 141th partition,
and the strong deformation zone of total displacement is the
132nd partition. The horizontal displacement-prone area is the
154th partition, the vertical displacement-prone area is the

FIGURE 16
The ratio of the area of strong deformation of total displacement and its characteristic area.
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154th and fourth partition, and the total displacement-prone
area is the 235 partition.
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