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Unlike normal-pressure gas wells, wellbore instability is more likely to occur during
testing for high-pressure gas wells. Gas acceleration effect exists in gas flow during
high-pressure gas well testing, which was ignored in previous wellbore instability
analysis. In this paper, the developments of effective circumferential stress and
effective radial stress are analyzed in the near-wellbore area of high-pressure gas
well, considering the influence of in-situ stress non-uniformity and acceleration
effect. To analyze the effective circumferential stress and the effective radial stress
more accurately, it is established that the fluid-structure coupling stress field of the
finite large thick wall cylinder The flow field considers three cases, namely Darcy’s
law, Darcy–Forchheimer model and Darcy-Forchheime model considering gas
acceleration. The results show that in-situ stress non-uniformity has a similar
influence on tensile failure and shear failure. It is observed that the location of
occurring shear failure and tensile failure may not be on the wellbore wall. When the
formation fluid is under abnormally high pressure, it is more likely to have a tensile
failure, while when the formation fluid is under abnormally low pressure, it is more
likely to have a shear failure. The Biot parameter has the same effect on tensile failure
and shear failure. These results are helpful to control sand production during testing
and production for high-pressure gas wells.
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1 Introduction

High-pressure gas reservoirs are characterized by natural fractures, high formation pressure and
large variation of a production pressure difference which is on account of depletion production. In
the process of gas test production, the non-Darcy characteristic of high speed is the prominent
characteristic of high-pressure gas flow, which is not only manifested in the inertial resistance, but
also in the significant gas acceleration effect induced by the rapid expansion of the gas volume (Jin
et al., 2011a; Chen et al., 2011; Jin et al., 2012). The characteristic makes the spatio-temporal
evolution of gas pressure more complex (Jin et al., 2019; Zhang et al., 2021; Hou et al., 2022a; Zhang
et al., 2022). Traditionally, the inertial effect of near-wellbore gas flow is simply expressed by adding
the Forchheimer inertial drag to Darcy’s Law. However, this description of the inertial effects of
compressible fluid flows is incomplete. Wooding (1957) might be the first to add an accelerated-
inertial term to the gas momentum equation. The model with the accelerated-inertial term has been
discussed in detail for a high-speed compressible flow in porousmedia (Nield, 1994; Levy et al., 1995;
Chang and Hou, 2022). Jiang et al. (2015a; 2015b; 2015c; 2016) finds the reason why the gas
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acceleration effect was ignored in the past literature and analyzes the
importance of the gas acceleration effect in detail. Jin et al. (2011b)
establishes a plane radial model considering the acceleration effect and
presents a method for quantitative evaluation of the gas acceleration effect.
Tensile stress is easy to form in the surrounding rock stress of the wellbore
wall considering the acceleration effect by analyzing the fluid-structure
coupling stress equation in the infinite thick-walled cylinder. The
relationship of effective radial stress under different seepage models is
not pointed out. Wellbore instability failure is usually divided into two
categories, one is a shear failure, and the other is a tension failure. The
current research focuses on shear failure (Zhao et al., 2021; Hou et al.,
2022b; Hou et al., 2022c; Warsitzka et al., 2022), while the strength of
extension is frequently used in analyzing tensile failure for wellbore
instability during testing and production (Tan et al., 2021; Hou et al.,
2022d; Sun et al., 2022; Hou et al., 2022e; Huang et al., 2023).

In this paper, we investigate the properties of near-wellbore stress using
a set of equations that is built in the finite thick-walled cylinder in the non-
uniform in-situ stress field. It is proved that the acceleration effect increases
the possibility of tensile and shear failure. It is shown that the two types of
failure do not necessarily occur on the wellbore wall. It is also shown that
when the formation fluid is under abnormally high pressure, it is more
likely to have a tensile failure, while when the formation fluid is under
abnormally low pressure, it is more likely to have a shear failure. The Biot
parameter has the same effect on tensile failure and shear failure.

2 Wellbore stress distributions in the
finite large thick wall cylinder model

The stratum is assumed to be a uniform isotropic, linear elastic porous
material, and the surrounding rock is considered to be in a plane strain
state. σH is the horizontal maximum stress and σh is the horizontal
minimum stress. The stress distributions for a radially varying pore
pressure given by Eqs. (4.51)–(4.52) in the literature (Fjaer et al., 2008)
is under the uniform stressfield. Thewellbore stress under the non-uniform
in-situ stress can be obtained by changing both equations according to the
theory of elasticity. The new wellbore stress distributions are:
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where η � (1 − 2vfr)αB/2(1 − vfr) is the poroelastic coefficient,
Δp(r) � p(r) − pe, and υfr is the rock frame Poisson ratio.

When σH is equal to σh, Equation 1 will be simplified to Eqs.
(4.51)–(4.52) in the literature (Fjaer et al., 2008). The dimensionless
stress distributions related to Equation 1 are:
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where A � σH + σh/pe, where (A> 2), B � σH + σh/pe, D � pw/pe,
where (D< 1), and Δp(r) � p(r) − 1.

The dimensionless effective stress distributions are:

σr′ � σr − αBp r( ) � A
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where αB is the Biot parameter.

3 Analysis of the influence of
acceleration effect on the wellbore
stress

The traditional Darcy–Forchheimer model is not suitable for
characterizing the flow of high-pressure gas into the well, so the
acceleration effect of gas should be considered (Jin et al., 2011; Chen
et al., 2011; Jin et al., 202). The acceleration effect of near-wellbore gas
can be characterized by the dimensionless quantity λ. After
considering the acceleration effect, the three characteristics of gas
flow in high-pressure gas wells are:

1) With the decrease of bottomhole pressure, there is a maximum
mass flow rate of fluid into the well, mmax.

m max �

λ

√
D (4)

2) The gas pressure gradient of the three flow models which are
Darcy’s law, the Darcy-Forchheime model and the Darcy-
Forchheime model considering gas acceleration has the
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following relation when the mass flow is the same. The subscript
AC stands for the Darcy-Forchheime model considering gas
acceleration, DF is the Darcy-Forchheime model, and D points
to Darcy’s law.

dp

dr
( )

AC

> dp

dr
( )

DF

> dp

dr
( )

D

(5)

3) Under the same mass flow rate, the bottomhole pressure of the
three models has the following relationship.

D( )AC < D( )DF < D( )D (6)

3.1 Comparative analysis of effective radial
stress

Jin et al. (2011b) believed that the effective radial stress in the
near-wellbore zone is more likely to change into tensile stress
after considering the acceleration effect, but he did not give the
relative size for the effective radial stress of the three flow models.
To facilitate the analysis of this relationship, the inhomogeneity
of in-situ stress is ignored, i.e., B=0, and the Biot parameter is
equal to 1. According to Eq. 3, σ ′r|r�1,αB�1 � 0 for the three flow
models.

The derivative of effective radial stress for Darcy’s law is:
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The derivative of effective radial stress for the Darcy–Forchheimer
model can be given by
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where δ/λ is constant.
The derivative of effective radial stress for the Darcy–Forchheimer

model considering gas acceleration becomes
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The difference in derivative of effective stress on the wellbore
between Darcy’s law and Darcy–Forchheimer model with the same
mass flow rate is:
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Equation 11, when m≥
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The given distance ra must exist. (σ′r)D > (σ ′r)DF, when the radius
in polar coordinates is between 1 and ra, i.e., 1< r< ra, combining
σ ′r|r�1,αB�1 � 0.

The difference in derivative of effective stress on the wellbore
between Darcy–Forchheimer model and Darcy–Forchheimer
model considering gas acceleration with the same mass flow
rate is:
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Equation 12 when m≥

2(r2e /r2e−1−η)(DDF−DAC)
δ
λ (1/DAC−1/DDC)+1/DλAC

√
� m2.

As well, the given distance rb must exist. (σ ′r)DF > (σ ′r)AC, when
the radius in polar coordinates is between 1 and rb, i.e., 1< r< rb,
combining σ ′r|r�1,αB�1 � 0.

Combining equation 11 and 12, we can get (σ′r)D > (σ ′r)DF > (σ ′r)AC,
when


λ

√
DAC ≥m≥max(m1,m2) and 1< r<min(ra, rb).

FIGURE 1
The effective radial stress distribution for the three flow models.
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It is quite clear that (σ ′r)D > (σ ′r)DF > (σ ′r)AC even if αB < 1.
Effective radial stress near the wellbore must be a negative value when

d(σ ′r)AC/dr|r�1 < 0. We can find that the effective radial stress is minimal
for the Darcy–Forchheimer model considering gas acceleration because
(σ ′r)D > (σ ′r)DF > (σ ′r)AC. In other words, the tensile stress is minimal for
the Darcy–Forchheimer model considering gas acceleration.

According to Equations 7 and 8 and 9, we can obtain
(dσr/dr)D < (σr/dr)DF< (σr/dr)AC and the pore pressure gradient
plays a decisive role in the effective radial stress by using Equation 5.

To better observe the variation in tensile stress, a case is presented. The
mass flow rate, m, equals 0.0412 which is bigger than the maximum
betweenm1 equal to 0.0232 andm2.given by 0.0245. Set other parameters
as follows. re � 2000, η � 0.5, λ � 0.5, δ � 50,A � 2.2, and B � 0. In the
above parameters, the distribution of the stress for the three flowmodels is
illustrated in Figure 1. Firstly, for Darcy’s law, the effective radial stress on
the wellbore is zero, which is the minimum in the stress distribution.
Secondly, for the Darcy-Forchheimer model, the effective radial stress at
r=1.0395 equals −0.0105, which is the minimum. Finally, for the Darcy-
Forchheimer model, the effective radial stress is equal to −0.0282 at
r=1.0568, which is the minimum, i.e., it is 2.82MPA when the
formation pressure is 100MPa.

3.2 Difference between effective
circumferential stress and effective radial
stress

For the convenience of comparative analysis, the inhomogeneity of in-
situ stress is not considered here, and the Biot parameter is assumed to
be one.

From Equation 2, we can conclude that

σθ|r�1 � re2A − re2 + 1( )D
re2 − 1

+ 2η D − 1( )

� A

1 − 1
r2e
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r2e
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where A
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r2e

− 2η> 0, and
1+ 1

r2e

1− 1
r2e

− 2η> 0.

When the mass flow rates of the three flow models are the same,
the wellbore pressure can be written as (D)AC < (D)DF < (D)D. Then,
we have (σθ|r�1)AC > (σθ|r�1)DF > (σθ|r�1)D and
(σ ′θ|r�1)AC> (σ ′θ|r�1)DF> (σ ′θ|r�1)D.

Because the effective radial stresses on the wellbore for the three
flow models are zero, it can be obtained that

σ ′θ|r�1 − σ ′r|r�1( )> AC σ ′θ|r�1 − σ ′r|r�1( )
DF

> σ ′θ|r�1 − σ ′r|r�1( )
D

(11)

It is quite clear that Equation 13 is correct, even if αB < 1.
When 1< r< re, from Equation 3, we have

σ ′θ �
r2e r2 + 1( )A
2r2 r2e − 1( ) − r2e + r2

r2 r2e − 1( )D + 2η − αB( )p r( )

− 2η
r2

∫r

1
r′p r′( )dr′ + r2 − 1

r2e − 1
∫re

1
′p r′( )dr′[ ] − 2η

r2

As long as η≤ αB/2, σ ′θ and p(r) are negatively correlated for
the same mass flow rate. Then we can conclude that
(σθ′)AC> (σθ′)DF> (σθ′)D, where 1≤ r< re. The accelerating flow
has the highest difference:

σ ′
θ − σ ′r( )

AC
> σ ′θ − σ ′r( )

DF
> σ ′θ − σ ′r( )

D
(12)

To better observe the variation in the difference between effective
circumferential stress and effective radial stress, a case is presented.
When the other parameters are set to m � 0.0412, re � 2000, η � 0.5,
λ � 0.5, δ � 50,A � 2.2, and B � 0, the difference is shown in Figure 2.
The difference between effective circumferential stress and effective
radial stress reaches the maximum at r=1, which is equal to 0.6147, for
Darcy’s law. It becomes 1.0004 reaching the maximum at r=1.0584 for
Darcy–Forchheimer models. Meanwhile, For the acceleration flow,
this difference equals 1.0980 at r=1.0063 which is the maximum in the
distribution. When the formation pressure is 100MPa, the maximum
for the three flow models is 61.47MPa, 100.04 MPa and 109.80 MPa
respectively.

FIGURE 2
Difference between effective circumferential stress and effective
radial stress for the three flow models.

FIGURE 3
The effective radial stress distribution the acceleration flow for
various A
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4Analysis of the influence of in situ stress
on the wellbore stress

4.1 Comparative analysis of effective radial
stress

Since r2e/r
2
e − 1 − r2e /(r2e − 1)r2 > 0, we have dσ ′r

dA > 0. Thus, the
effective radial stress considering the acceleration effect is the
monotone-increasing function of A. When the effective radial
stress is negative, the smaller A is, the greater the tensile stress is,
indicating that the formation fluid is under abnormally high pressure,
while the tensile stress is greater.

We plot the effective radial stress for m � 0.0412, re � 2000,
η � 0.5, λ � 0.5, δ � 50 and B � 0 in Figure 3. It shows that the
effective radial stress is the minimum at r=1.0568, which
is −0.0282 when A=2.2. While A=2.4, the effective radial stress
is −0.0191 at r=1.0395 which is also minimum. When A=2.6, the
mini effective radial stress is −0.0132 at r=1.0253. When

1< r<


3+3/r2e
1+1/r2e+4/r4e

√
and cos 2θ > 0, we have (r2e(r4e+r2e+4)(r2e−1)3 + 3r4e(r2e+1)

(r2e−1)3r4 −
12r2e r

2

(r2e−1)3) cos 2θ < 0.
Thus, dσ ′r/dB< 0. It can be seen that the effective radial stress

considering the acceleration effect is a monotone-decreasing function
of B. When the effective radial stress is tensile, the stronger the non-
uniformity of in-situ stress is, the smaller the effective radial stress is,
that is, the greater the tensile stress is and themaximum tensile stress is
obtained in the direction of the maximum horizontal principal stress.

In Figure 4, we plot the effective circumferential stress form � 0.0412,
re � 2000, η � 0.5, λ � 0.5, δ � 50,A � 2.4 and θ � 0. In the direction of
the maximum horizontal principal stress, the minimum effective radial
stress is −0.0359 at r=1.0667 when B=0.2.When B=0.4, the effective radial
stress is theminimum at r=1.1010, which is−0.0590.When B=0.6, it is the
minimum at r=1.1278, which is −0.0859.

4.2 Difference between effective
circumferential stress and effective radial
stress

From Equation 3, the difference between effective
circumferential stress and effective radial stress in the
acceleration flow is given by

σ ′θ − σ ′r �
Are

2

re
2 − 1( )r2 − 2D

r2e − 1( ) + 2ηΔp r( ) − 4η

r2
∫r

1
r′Δp r′( )dr′

−B cos 2θ
r2e r4e + r2e + 4( )

r2e − 1( )3 + 3re
4 r2e + 1( )

r2e − 1( )3r4 − 6r2er
2

r2e − 1( )3⎡⎣
+2 r

2
e r4e + r2e + 1( )
r2e − 1( )3r2 ] (13)

FIGURE 4
The effective radial stress distribution in the acceleration flow for
various B

FIGURE 5
Difference between effective circumferential stress and effective
radial stress in the acceleration flow for various A.

FIGURE 6
Difference between effective circumferential stress and effective
radial stress in the acceleration flow for various B.
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It is obvious that d(σ ′θ − σ ′r)/dA> 0, so the value, σ ′θ − σ ′r, is
smaller when the formation pressure is from the normal pressure
to the abnormally high pressure.

The parameters in Figure 5 are the same as that in Figure 3. When
A=2.0, the maximum stress is 0.9014 at r=1.0142. When A=2.4, when
r= 1.0036, the value, σ ′θ − σ ′r, is 1.2963. When A=2.8, σ ′θ − σ ′r reaches
its maximum value at r=1.004, which is 1.6950.

It can be written as F(r) � r2e(r4e+r2e+4)
(r2e−1)3 + 3r4e(r2e+1)

(r2e−1)3r4 −
6r2e r

2

(r2e−1)3 + 2r
2
e(r4e+r2e+1)
(r2e−1)3r2 .

When 1≤ r≤ re, dF(r)
dr < 0 and F(r)≥ r6e−3r4e+9r2e+5

(r2e−1)3 > 0. Thus,
d(σ ′θ−σ ′r)

dB > 0, for cos 2θ < 0. These imply that the greater the stress

non-uniform, the greater the value σ ′θ − σ′r.

In Figure 6, we plot the difference between effective
circumferential stress and effective radial stress in the acceleration
flow for m � 0.0412, re � 2000, η � 0.5, λ � 0.5, δ � 50, A � 2.4 and
θ � π/2. When B=0.2, the maximum stress is 1.6947 at r=1.0004.
When B=0.4, when r=1.0004, the value, σ ′θ − σ ′r, is 2.0940. When
B=0.6, σ ′θ − σ′r reaches its maximum value at r=1, which is 2.4938.

5 Wellbore stability of uncased hole in
the high-pressure gas wells

5.1 Tensile fracture

According to the analysis in section 3.1 of this paper, when the
stress of the surrounding rock near the wellbore reaches the tensile
strength, the acceleration flow requires less mass flow than the Darcy
model and the Darcy-Forhheimer model, that is, the surrounding rock
near the wellbore is the first to fail in the s acceleration flow. According
to the analysis in section 4.1 of this paper, tensile failure occurs first in
the surrounding rock near the wellbore in the direction of maximum
horizontal principal stress.

We will assume the Biot parameter αB � 1, so σ ′r|r�1,αB�1 � 0. Thus,
the effective tensile stress depends on the positive or negative sign of
the effective radial stress derivative at the wellbore. In other words, the
condition for the onset of effective tensile stress is dσ ′r/dr|r�1 � 0.
Combining the condition, Equation 9 can be written as

−re2*(A − 2D − Are2 + 2Dre2 + 4B cos 2θ + 2Bre2 cos 2θ)
re2 − 1( )2 − 2D

− 2D
re2 − 1

− 2η p
− −D( ) − 1 −D2

2D ln re
� 0

The critical bottomhole pressure, D, for the onset of tensile stress
is determined from the above equation.

5.2 Shear failure

It is assumed that the shear failure of rock follows the weak surface
failure criterion (Zeng et al., 2021). The Mohr-Coulomb failure
criterion for β< β1 or β> β2 is defined as

σ1 − σ3 � 2 Cw + tan ϕwσ3( )
1 − tan ϕw cot β( ) sin 2β

β1 �
ϕw

2
+ 1
2
arcsin

σ1 + σ3 + 2Cw cot ϕw( ) sin ϕw

σ1 − σ3
[ ]

β2 �
π

2
+ ϕw

2
− 1
2
arcsin

σ1 + σ3 + 2Cw cot ϕw( ) sin ϕw

σ1 − σ3
[ ]

whereCo is the cohesion of the rock, ϕo is the friction angle of the rock,
Cw is the cohesion of the weak plane, ϕw is the friction angle of the
weak plane, and β is the angle between maximum principal stress and
weak plane normal, related to the failure mode of the anisotropic
mudstone with the weak plane.

Only the case is discussed where σ ′θ > σ ′z > σ ′r and weak plane shear
failure occurred in the rock. According to the analysis in section 3.2,
shear failure occurs first in the surrounding rock of the acceleration
flow when the mass flow rate increases and shear failure occurs first in
the minimum horizontal direction of the surrounding rock according
to the analysis in section 4.2.

Thus, when r=1, Equation 13 can be written as

σ ′θ − σ ′r( )
r�1 � A

r2e
r2e − 1

− B

2
4r2e r2e + 2( )
r2e − 1( )2 cos 2θ

−Dr2e + 2
r2e − 1

− 1 − 2η( )D − 2η (14)

Thus, D � sin 2β(1−μw cot β)(A r2e
r2e−1

−2Br2e (r2e +2)
(r2e −1)2

cos 2θ−2η)+2Cw

r2e +2
r2e −1

+(1−2η)+2μw(1−αB)
.

The critical bottomhole pressure is proportional to the Biot
parameter, that is, when the Biot parameter increases, the mass
flow required for shear failure decreases. When the Biot parameter
increases, the effective radial stress decreases, the tensile stress
increases and the required pore pressure gradient decreases. In
other words, when the Biot parameter increases, the mass flow rate
required for tensile failure decreases. Therefore, the Biot parameter has
the same effect on tensile failure and shear failure.

6 Conclusion

Considering the dual effects of non-uniformity of in-situ stress and
acceleration effect in the process of seepage, the stress state of
surrounding rock suitable for high-pressure gas well and its
influence on tensile failure and shear failure in the process of gas
test of the high-pressure gas well are analyzed, and the following
conclusions are as following.

1) Considering the acceleration effect, the difference between
effective circumferential stress and effective radial stress at
any flow radius is larger than that in the other two flow
models, which is more likely to cause shear failure. The
difference between the effective circumferential stress and the
effective radial stress does not reach the maximum value at the
wellbore wall.

2) The pore pressure gradient plays a decisive role in the effective
radial stress. Considering the acceleration effect, the minimum
effective radial stress is smaller than that of the other two flow
models, which is more likely to lead to tensile failure. The
conditional expression of tensile stress generation considering
the non-uniformity of in-situ stress is given.

3) The influence of Biot parameter on tensile failure and shear failure
is the same.
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