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Salt lakes on the Tibetan Plateau (TP) are rich in lithium (Li), boron (B) and othermineral
resources, and accurate assessment of the mineral content and spatial distribution of
the brine in those salt lakes is important to guide the development and utilization of
their mineral resources. There are few studies estimating the mineral content of salt
lakes on the TP due to the lack of in situ investigation data. This study introduced an
intelligent prediction model combining a feature selection algorithm with a machine
learning algorithm using Sentinel-2 satellite data to estimate the Li, B, and TDS
contents of Bieruoze Co and Guopu Co lakes on the TP. First, to enrich the
spectral information, four mathematical transformations (reciprocal, logarithmic,
reciprocal of logarithm, and first-order derivative) were applied to the original
bands. Then, feature selection was performed using the genetic algorithm (GA) to
select the optimal input variables for the model. Finally, prediction models were
constructed by partial least squares regression (PLSR), multiple linear regression
(MLR), and random forest (RF). The results showed that: 1) The spectral
mathematical transformation provided rich spectral information for the mineral
content estimation. 2) The performance of the estimation model constructed by
the feature optimizationmethod usingGAwas better than that of the estimationmodel
constructed based on all spectral bands. Based on GA for feature optimization, the
MAPEofGA-RF for estimating Li, B and TDS contents on the testing setwas reduced by
77.52%, 28.54% and 36.79%, respectively. 3) Comparedwith the GA-MLR andGA-PLSR
models, GA-RF estimated Li (R2=0.99, RMSE=1.15 mg L-1, MAPE=3.00%), B (R2=0.97,
RMSE=10.65 mg L-1, MAPE=2.73%), and TDS (R2=0.93, RMSE=0.60 g L-1,
MAPE=1.82%) all obtained the optimal performance. This study showed that the
combination of the GA-based feature selection method and the RF model has
excellent performance and applicability for monitoring the content of multiple
minerals using Sentinel-2 imagery in salt lakes on the TP.
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1 Introduction

The Tibetan Plateau (TP), known as the “Water Tower of Asia”, is
rich in lake resources, most of which are saltwater lakes and saline
lakes (Ma et al., 2011; Liu et al., 2021; Qiao et al., 2021). The brine of
salt lakes is not only high in salinity but also rich in potassium,
magnesium, lithium (Li), boron B), uranium and other salt resources,
which have high development potential and strategic value. With the
advancement of Li battery technology, Li has gained notoriety as a
strategic asset. Li brine resources are abundant in China, which has the
third-largest Li reserves in the world. Li brines are primarily found on
the TP. Due to the growing demand and the lower production cost of
Li extraction from brines, the technology for Li extraction from salt
lake brines has received much attention (He et al., 2020; Zhang et al.,
2022). B is a crucial essential raw ingredient for the production of
ceramics, detergents, fertilizers, and glass. Salt lake brines account for
80% of the world’s Li and 25% of its B salt production (Kong et al.,
2021). Total dissolved solids (TDS) reflect the overall content of anions
and cations in salt lakes. The TP is relatively minimally influenced by
humans, and changes in brine mineral content are mainly affected by
natural conditions. In recent years, due to climate change and other
factors, some salt lakes on the TP have shown varying degrees of lake
desalination and decreases in brine mineral content (Yan and Zheng,
2015). Investigation and monitoring of the mineral content of salt
lakes can provide an important theoretical basis for the study of the
mineralization law, mineralization mechanism, and geological survey
of salt lakes in the TP region (Ding et al., 2022).

Traditional monitoring methods involve conducting field
sampling and laboratory analysis. However, owing to the extreme
natural environment of the TP and the poor accessibility of some salt
lakes, traditional methods cannot reflect the spatial distribution of the
mineral content in salt lakes as a whole. The use of remote sensing to
estimate water parameters has been used in salt lakes (Wang et al.,
2015; Wang et al., 2021), estuaries (Geiger et al., 2013; Fang et al.,
2017), seas (Chen and Hu, 2017), inland freshwater lakes (Bayati and
Danesh-Yazdi, 2021; Li et al., 2022) and other regions. Compared with
traditional measures, the use of satellite remote sensing to monitor
mineral content has the advantages of a large range, long duration, and
periodicity (Sun et al., 2022), which overcome the shortcomings and
limitations of traditional methods. Remote sensing technology can be
used to quickly and accurately search for areas with high mineral
content in the salt lake and to fully grasp the spatial distribution and
changes in resources, thus scientifically guiding the development and
production of mineral resources in the salt lake. The multispectral
satellite data have high spatial resolution and are suitable for mineral
content studies of salt lakes on the TP. Sentinel-2 is a multispectral
satellite with publicly available free data that is commonly used for
hydrological remote sensing studies (Miles et al., 2017; Marinho et al.,
2021).

The models commonly used for hydrological remote sensing are
multiple linear regression (MLR) (Chen and Hu, 2017), partial least
squares regression (PLSR) (Song et al., 2013; Cao et al., 2018), random
forest (RF) models (Hafeez et al., 2019; Cao et al., 2020; Maier et al.,
2021; Sun et al., 2022), and artificial neural network models (Bayati
and Danesh-Yazdi, 2021). Due to the lack of actual measurement data,
there are few studies on the estimation of Li, B, and TDS contents of
salt lakes on the TP. The available studies estimated the mineral
content of the salt lake mainly through empirical and machine
learning models. For example, Zhang et al. (2007) used the ratio

method and principal component analysis to reveal the spatial
distribution pattern of boron oxide content in Zabuye Salt Lake.
This method is easy to implement, but the estimation accuracy is
low. The second approach used machine learning algorithms to
construct estimation models. For example, Zhou et al. (2016) used
an adaptive band selection method to determine the optimal band
combination and a BP neural network algorithm to construct an
inversion model for the ion content of the salt lake. Liu et al. (2021)
used the LightGBM algorithm to invert the Li content of the Zabuye
salt lake. Machine learning methods have been shown to be a better
way to address complex problems without prior knowledge (Saberioon
et al., 2020), and machine learning methods can address non-linear
and other complicated regression issues. Therefore, machine learning
models also have great potential for mineral content estimation in salt
lakes.

Wang (2019) performed mathematical transformations such as
logarithmic transformation and first-order differential transformation
on Sentinel-2 data and predicted the Li content of Alisallo salt lake,
and the results showed that spectral transformation played an
important role in the prediction model. Spectral transformation has
been proven to be an effective spectral preprocessing method. The
spectral mathematical transformation can enrich the spectral
information and extract information that is more sensitive than the
original spectrum, thus improving the accuracy of the prediction
model (Wang et al., 2022). In remote sensing inversion studies,
input irrelevant bands can affect the accuracy of the model and
even lead to overfitting. The spectral feature band selection method
can improve the prediction of the model, effectively eliminate
redundant information and retain valid information. The above
study on mineral content estimation of salt lakes used principal
component analysis for data dimensionality reduction work. The
principal component analysis, as a heuristic feature selection
method, is simple to operate but cannot handle the complex
relationships between input and output variables. Meta-heuristic
algorithms avoid these limitations. The genetic algorithm (GA) is a
meta-heuristic intelligent algorithm based on natural selection and
genetics (Katoch et al., 2021). Sun et al. (2022) used the GA for band
selection and used the chosen bands and PLSR to estimate the soil
organic matter content. Shekofteh and Masoudi (2019) designed an
algorithm combining the GA with the artificial neural network (ANN)
to select five soil properties that have the most influence on soil quality
indicators. The GA has now been used to solve optimization problems
in many fields, including feature selection (Cao et al., 2018). So far, the
GA has not been applied to the study of the estimation of minerals in
salt lakes. Based on this, our innovation is to use the GA for feature
selection and machine learning models to estimate the mineral
content.

Current studies on mineral content estimation of salt lakes on the
TP have focused on Zabuye Salt Lake (Tian et al., 2005; ZHANG et al.,
2007; Xu et al., 2017; Liu et al., 2021). It is necessary to investigate and
survey other salt lakes on the TP using remote sensing technology and
machine learning algorithms. This study investigates the feasibility of a
strategy combining feature selection based on the GA and machine
learning in estimating the content of multiple minerals in salt lakes,
and provides an application example and theoretical support for
future assessment and monitoring of mineral resources in salt lakes
on the TP. In this work, we proposed an intelligent method for
estimating the Li, B, and TDS contents of salt lakes on the TP
using Sentinel-2 imagery and in situ data from two typical salt
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lakes. 1) The feature bands were constructed by mathematical
transformations, which can enhance the spectral information and
raise the predictive model’s accuracy. 2) Using the GA for feature band
selection, the best input band combination was intelligently selected.
3) PLSR, MLR, and RF models were constructed using the optimal
band combination, and the accuracy of the three models was
contrasted. 4) The best estimation model was used to monitor and
map the mineral content of the salt lakes.

2 Study area and data

2.1 Study area

The research area is made up of two lakes, Bieruoze Co and Guopu
Co, and is situated in the southeastern Ali region of the TP (Figure 1).
Based on the results of the 2018 field survey, Bieruoze Co is located at
32°24′-32°28′N, 82°52′-82°59′E, with an altitude of 4,400 m. The lake is
approximately 9.6 km long from east to the west and 4.8 kmwide, with
a surface area of 36 km2 and an average water depth of 3.3 m. Guopu
Co is located at 31°49′-31°55′N, 83°7′-83°15′E, with an altitude of
4,700 m. The east‒west length of the lake is approximately 14 km, it is
approximately 5.9 km at its widest point, its surface area is
approximately 61 km2, and its average water depth is 2.8 m.

Bieruoze Co and Guopu Co are both salt lakes, blue in color, and
are non-discharge lakes without outlets. The lake water is colorless,
odorless, salty, and transparent. The lake contains a large number of

brine worms, and the soluble mineral salts in the area around the lake
constantly converge in the lake through surface runoff. The dynamic
changes in the lake are barely affected by human activities, mainly
relying on atmospheric precipitation, snow and ice melt and spring
recharge; the discharge relies on strong evaporation.

2.2 In situ data

In May-June 2018, field measurements of the Li, B, and TDS
contents of Bieruoze Co and Guopu Co were conducted. According to
the “salt lake and salt mineral geological survey specification”, the
surface area of Bieruoze Co was between 10 and 50 km2, the
observation network degree was 2 km, and the point distance was
1–2 km; the surface area of Guopu Co was between 50 and 100 km2,
the observation network degree was 2–4 km, and the point distance
was 2 km. To obtain more sample data, the observation network and
sampling point spacing were established at 2 km × 1 km intervals, and
the local sampling point spacing was set to 0.5 km. Figure 2 depicts the
locations of the 32 sampling points in Bieruoze Co and the
50 sampling points in Guopu Co. Water samples were collected at
a depth of 0.2 m from the lake surface using a 0.55 L polyethylene
water bottle, and all samples were forwarded to the laboratory for
analysis.

Table 1 displays the maximum, minimum, mean, standard
deviation (SD) and coefficient of variation (CV) of the measured
values at all sampling points. The measured data show that the two salt

FIGURE 1
Location of the research region. (A) Topographicmap of the TP. (B) and (C) are the Sentinel-2 imagery of Bieruoze Co andGuopuCo, respectively, inMay
2018.
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lakes, Bieruoze Co and Guopu Co, are rich in Li, B and TDS resources.
The variation in Li content in Bieruoze Co Lake ranged from 36.84 to
44.35 mg L-1, with an average content of 41.71 mg L-1. The
concentration of B was greater than that of Li, with the variation
in B content ranging from 194.23 to 232.48 mg L-1, with an average
content of 222.66 mg L-1. The variation in TDS content ranged from
19.61 to 23.43 g L-1, with an average content of 22.21 g L-1. The Li
content of Guopu Co was lower than that of Bieruoze Co, and the B
and TDS concentrations were higher than those of Bieruoze Co. The
variation in Li content was small, ranging from 8.18 to 10.06 mg L-1,
with an average content of 9.37 mg L-1. The variation in B content
ranged from 302.95 to 358.46 mg L-1, with an average of 338.52 mg L-1.
The variation in TDS content ranged from 25.20 to 28.14 g L-1, with an
average of 26.90 g L-1.

We used 82 sampling points data from two salt lakes to construct
the model, 70% were randomly selected as the training dataset, and
30% were selected as the testing dataset. The number of samples in the
training dataset was 57 (including 22 from Bieruoze Co and 35 from
Guopu Co); the number of samples in the test dataset was 25
(including 10 from Bieruoze Co and 15 from Guopu Co). To
ensure comparability among the tested models, the training and
testing sets of each model were identical.

2.3 Satellite data and preprocessing

Sentinel-2 is a high-resolution multispectral imaging satellite
with an orbital altitude of 786 km. Sentinel-2 carries a multispectral
instrument covering 13 bands from visible to shortwave infrared
with a maximum spatial resolution of 10 m. The revisit period is
10 days for a single satellite and 5 days for two complementary
satellites (Sentinel-2A/B). Sentinel-2 data were obtained from the
Copernicus Data Centre of the European Space Agency (https://
scihub.copernicus.eu/). To obtain more accurate experimental
results, the satellite data time needs to be as close as possible to
the in situ measurement time, and there should be no clouds
covering the lake, so we selected Sentinel-2 satellite image data
from May 2018. We used the Sen2Cor processing tool for
atmospheric correction to obtain the Level-2A products,
resampled all spectral band images to a 10 m resolution, and
finally extracted the lake extent using the normalized difference
water body index (NDWI) (Gao, 1996; Liu et al., 2019).

NDWI � Green − NIR( )/ Green + NIR( ) (1)
where Green denotes the B3 band of Sentinel-2 and NIR denotes the B8
band of Sentinel-2.

FIGURE 2
The spatial distribution of sampling points. (A) Bieruoze Co. (B) Guopu Co.

TABLE 1 Statistical information on the measured values of all the sampling points of Bieruoze Co and Guopu Co.

Lake name Measured plots Parameters Max value Min value Mean value SD CV

Bieruoze Co 32 Li (mg·L-1) 44.35 36.84 41.71 1.79 0.04

B (mg·L-1) 232.48 194.23 222.66 7.70 0.03

TDS (g·L-1) 23.43 19.61 22.21 0.92 0.04

Guopu Co 50 Li (mg·L-1) 10.06 8.18 9.37 0.37 0.04

B (mg·L-1) 358.46 302.95 338.52 11.84 0.04

TDS (g·L-1) 28.14 25.20 26.90 0.73 0.03
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3 Methods

The methodology used in this study is shown in Figure 3. In the
first step, we collected in situ data from two salt lakes on the TP,
including Li, B, and TDS contents. Sentinel-2 data of the
corresponding periods were obtained and pre-processed. In the
second step, the spectral bands of Sentinel-2 were processed by
mathematical transformations, including reciprocal
transformation (RT), logarithmic transformation (LT),
reciprocal of logarithm (RL), and first-order derivative (FD).
The sample data were randomly divided into the training set
and testing set. In the third step, firstly, the spectral bands
obtained after the mathematical transformation in the second
step and the original bands were put into the GA for spectral
feature selection. The GA adaptively selected the feature bands
according to the fitness function. Subsequently, the feature bands
obtained by GA screening were used as input variables of RF, MLR,
and PLSR models to construct estimation models. Finally, the
performance of the three estimation models was evaluated using
the evaluation function, and the optimal model was used for the
mineral content estimation of the two salt lakes.

3.1 Spectral feature transformation

First-order derivative transformation is a common preprocessing
method for hyperspectral data that is capable of extracting more
delicate spectral data than the original spectrum and has been widely
used for water quality parameter estimation (Wang et al., 2022) and
soil parameter estimation (Wang et al., 2021). The introduction of
spectral derivative transformation into multispectral images can
further exploit the differences between spectral data to retrieve
valuable information and thus improve the accuracy of prediction
models (Wang et al., 2021). The spectral mathematical transformation
allows the extraction of hidden features of water body spectra and the
effective use of differences in spectral data to estimate different water
body parameters.

We used the reciprocal transformation (RT), logarithmic
transformation (LT), reciprocal of logarithm (RL), and first-order
derivative (FD) for the Sentinel-2 spectrum.

RT Bi( ) � 1/ Bi( ) (2)
LT Bi( ) � Ln Bi( ) (3)

RL Bi( ) � 1/ Ln Bi( ) (4)

FIGURE 3
Flow chart.
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FD Bi( ) � B i+1( ) − Bi

λi+1 − λi
(5)

where Bi denotes a single band of Sentinel-2 and λi denotes the central
wavelength. In this study, the above four transformations and the
untreated original spectral bands (OR) are used as input variables for
the estimation model.

3.2 Feature optimization using GA

The number of input variables for machine learning models can
have a considerable impact on how accurate the prediction model is;
extraneous variables complicate the structure of the prediction model
and increase the number of calibration parameters, which confounds
training (Bayati and Danesh-Yazdi, 2021). Additionally, keeping
useless bands raises the computational cost (Han et al., 2022). To
avoid these problems, we used the GA to determine the best
combination of bands for predicting mineral contents.

The GA is ametaheuristic global optimization algorithm that has been
used to solve spectral subset selection problems. The GAwas designed and
proposed based on evolutionary laws of organisms in nature (Abba et al.,
2022), and it is founded on the ideas of natural selection and evolution,
applying the concepts of superiority and inferiority to find optimal
solutions to optimization problems (Li et al., 2015). As a non-
deterministic method of choosing variables (Tiyasha et al., 2021), the
GA finds the best combination of bands by the following steps.

1. Initialize the population: Spectral variables are encoded as binary
data, with 0 and 1 as individuals, and a population consists of
multiple individuals.

2. Selection: According to the fitness function, suitable parents are
chosen, with individuals with greater fitness levels having a larger
chance of being chosen.

3. Crossover: Genetic exchange between individuals of the parental
generation produces two new offspring individuals.

4. Mutation: Random variation in the individual for a particular gene
value.

The above process simulates the stages of natural evolution,
leading to the creation of generations that are more suited. The
flow chart of the GA is demonstrated in Figure 4.

3.3 Model construction

3.3.1 RF model
RF is a machine learning technique based on decision trees for

classification and regression. The basic unit of the RF is a decision tree,
and several decision trees are created during the training process. Each
decision tree creates a number of weak classifiers for local learning
using randomly chosen samples and characteristics and then
combines them to create a powerful global classifier. The final
output is the mean of the predicted values for each decision tree
(Wang et al., 2022). RF reflects the non-linear regression relationship
between water parameters and spectral data without the need to
explicitly know their functional correlation. RF has the advantage
of a strong ability to handle multidimensional data and avoid
overfitting.

The RF model is run in Python 3.7, and the hyperparameters are
determined by a “grid search” strategy.

FIGURE 4
Flow chart of GA.

Frontiers in Earth Science frontiersin.org06

Guo et al. 10.3389/feart.2023.1118118

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1118118


3.3.2 PLSR model
A multivariate regression technique called PLSR combines the

benefits of principal component analysis with those of standard
correlation analysis (Wold et al., 2001; Cao et al., 2018). PLSR
compresses the input data matrix by choosing consecutive
orthogonal elements to maximize the covariance between Y (water
body parameters) and X (spectral bands) (Zhu et al., 2022). It
successfully addresses the issue of multicollinearity between spectral
data and maintains accurate predictions even with few samples (Xie
et al., 2022).

3.3.3 MLR model
MLR is the most widely used linear regression method (Hestir

et al., 2015). MLR attempts to fit the relationship between multiple
independent variables and dependent variables through a linear
equation (Abba et al., 2017). Although MLR has lower predictive
accuracy than machine learning-based models, it can be easily
interpreted (Nemati et al., 2015).

3.4 Accuracy evaluation

Four evaluation metrics are used to assess the estimation
effectiveness of the models, namely, the coefficient of
determination (R2), root mean square error (RMSE), mean absolute
error (MAE) and mean absolute percentage error (MAPE). R2 is a
metric for how well a model matches the data and illustrates the
model’s capacity for prediction, so the best model can be selected
based on R2. Usually, an R2 value closer to one indicates a more robust
model. RMSE is used to evaluate the deviation between the estimated
and true values, and MAE and MAPE metrics are used to measure the
closeness of the estimated values to the true data. The smaller the
RMSE, MAE, and MAPE are, the better the predictive performance of
the model (Wagle et al., 2019). The following is the calculation for
these metrics:

R2 � ∑n
i�1 Pi − �Mi( )2∑n
i�1 Mi − �Mi( )2 (6)

RMSE �
������������
1
n
∑n
i�1

Mi − Pi( )2
√

(7)

MAE � 1
n
∑n
i�1

Mi − Pi( )| | (8)

MAPE � 100%
n

∑n
i�1

Mi − Pi

Mi

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ (9)

where Mi is the in situ data, Pi is the predicted value,‾M is the average
of the in situ data.

4 Results

4.1 Mineral content prediction model results

4.1.1 Modeling results without feature selection
Before constructing the predictionmodel using feature selection, we

used the OR and all four transformed spectral bands as the input bands
and the Li, B, and TDS contents as the dependent variables to build the
PLSR,MLR, andRF predictionmodels. Table 2 lists themodeling results

for all bands. The PLSR model estimated R2 and MAPE values of 0.81%
and 38.93% for Li, 0.82% and 6.29% for B, and 0.70% and 4.11% for
TDS, respectively, for the testing set. The RF model estimated R2 and
MAPE values of 0.91% and 13.33% for Li, 0.88% and 3.82% for B, and
0.87% and 2.88% for TDS, respectively, for the testing set. By comparing
these two models, the estimation performance of the RF model was
higher than that of the PLSR model. In addition, the MLR model
performed poorly in estimating the three mineral contents
(MAPE >30%), possibly due to too many independent variables.
Using all the bands to build the estimation model does not achieve
satisfactory results. In addition, redundant bands increase the cost of
model training and reduce the model accuracy. Therefore, this study
used the strategy of spectral feature band selection to solve these
problems and improve the model prediction accuracy.

4.1.2 Results of the prediction model based on GA
feature optimization

The GA-PLSR, GA-MLR, and GA-RF models were constructed
based on the GA for feature selection. The number of generations of
the GA was 500, and the number of populations was 50. The model
accuracy evaluation is shown in Table 3. In all the models, the accuracy
of the training was higher than that of the testing, which indicated that
all the models were not overfitted.

From the modeling results, the performance of all three models
built based on the GA for feature band selection was better than that of
the models constructed based on all bands. The model performance
for estimating three mineral contents was the GA-RF > GA-MLR >
GA-PLSR. The plots of the predicted versus measured contents of the
models obtained using the GA-PLSR, GA-MLR, and GA-RF are
shown in Figure 5, Figure 6, Figure 7. Table 4 showed the 17, 20,
and 17 feature bands selected by GA for use in the GA-RF model. The
GA-RF model estimated Li (R2=0.99, RMSE=1.15 mg L-1,
MAE=0.78 mg L-1, MAPE=3.00%); B (R2=0.97, RMSE=10.65 mg L-
1, MAE=7.91 mg L-1, MAPE=2.73%); TDS (R2=0.93, RMSE=0.60 g L-1,
MAE=0.46 g L-1, MAPE=1.82%) all achieved the best performance.

Figure 8 displays the spatial distribution of the MAPE for the three
mineral contents that were estimated using the GA-RF model. Overall,
the sampling point errors for model training were smaller than those
for model testing. The MAPE values of the three mineral contents
estimated in Bieruoze Co ranged from 0.04% to 8.38% (Li), 0.01%–
12.97% B), and 0.06%–6.22% (TDS); the average MAPEs were 2.29%
(Li), 1.67% B), and 1.58% (TDS). The MAPE for the three mineral
contents estimated at Guopu Co ranged from 0.02% to 8.76% (Li),
0.04%–5.56% B), and 0.08%–5.65% (TDS); the mean MAPE were
1.74% (Li), 1.62% B), and 1.31% (TDS).

4.2 Mapping of the spatial distribution of
mineral content

Wemapped the geographic distribution of Li, B, and TDS contents
in Bieruoze Co and Guopu Co using the GA-RF model and Sentinel-2
imagery (Figure 9). The variation in the three mineral contents in
Bieruoze Co ranged from 33.93 to 43.46 mg L-1 (Li),
201.43–250.37 mg L-1 B), and 20.29–23.78 g L-1 (TDS). The
distribution of Li content in the northwest was high, and that in
the southeast was low; the spatial distribution of B content was
relatively uniform; and the TDS content in the west was slightly
higher than that in the east. The variation in the three minerals in
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Guopu Co ranged from 8.51 to 9.93 mg L-1 (Li), 305.01–353.23 mg L-1

B), and 24.31–27.61 g L-1 (TDS); the three minerals were high in the
north and east of Guopu Co.

5 Discussion

5.1 Advantages of spectral feature
transformation

In this study, spectral transformation had a significant part in
estimating the mineral content of salt lakes on the TP. Li, B, and
TDS, as non-optically active substances, have more complex optical
properties (Alparslan et al., 2009). We mathematically transformed the
Sentinel-2 spectral band using four methods: RT, LT, RL, and FD. The
correlation coefficient plots were obtained by analyzing the Pearson
correlations of Li, B, and TDS contents and different spectral variables
(Figure 10). For Li, the correlation coefficients of the original reflectance
(OR) and LT spectra with Li content were negative, the correlation
coefficients of the RL spectra with Li content were positive, and the
correlation coefficients of RT and FD with Li content were alternately

positive or negative. For B, the correlation coefficients of the OR and LT
bands with B were all positive, the correlation coefficients of RL with B
content were all negative, and the correlation coefficients of RT and FD
with Li content were alternately positive or negative. The trends of the
correlation coefficients of the spectra with TDS content and B content
were basically the same. The correlations of the RT-, LT-, RL-, and FD-
treated spectra with Li, B, and TDS were all improved to different degrees
compared to the OR, and the bands with the highest correlations were all
RTB1 (Li = 0.93, B = −0.93, TDS = −0.84). RT showed the highest
correlations, followed by LT and OR. The results suggested that the
mathematical transformation of the spectra can significantly reduce the
negative effects in the spectra, enhance the small fluctuations in the
reflectance spectral features, enrich the spectral details of images, highlight
spectral features, and provide effective information for prediction models.

5.2 Advantages of the GA-RF model

The GA-RF model has two advantages, the first one is the
advantage of using the GA for feature optimization extraction, and
the second one is the advantage of the RF model.

TABLE 2 Results of estimation models based on all spectral bands.

Training Testing

R2 RMSE MAE MAPE R2 RMSE MAE MAPE

Li MLR 0.67 9.13 2.89 22.63 0.66 9.16 6.95 47.35

PLSR 0.89 5.27 4.42 35.60 0.81 6.90 4.98 38.93

RF 0.99 1.15 0.54 3.50 0.91 4.81 1.97 13.33

B MLR 0.38 77.68 33.27 11.50 0.19 142.67 108.37 37.45

PLSR 0.87 20.27 15.77 5.33 0.82 24.79 17.59 6.29

RF 0.97 9.51 6.92 2.40 0.88 20.29 11.61 3.82

TDS MLR 0.28 13.10 5.76 22.63 0.16 13.34 10.97 43.71

PLSR 0.77 1.18 0.92 3.77 0.70 1.25 1.05 4.11

RF 0.92 0.71 0.44 1.79 0.87 0.84 0.71 2.88

TABLE 3 Performance of the estimation model based on the feature selection method.

Training Testing

R2 RMSE MAE MAPE R2 RMSE MAE MAPE

Li GA-PLSR 0.91 4.75 3.78 28.81 0.87 5.66 3.94 28.85

GA-MLR 0.98 2.15 1.52 9.64 0.93 4.15 2.30 13.75

GA-RF 0.99 0.60 0.32 1.50 0.99 1.15 0.78 3.00

B GA-PLSR 0.89 18.79 14.67 5.03 0.85 22.69 14.87 5.57

GA-MLR 0.96 11.27 8.29 2.88 0.91 18.00 11.39 4.00

GA-RF 0.99 4.30 3.40 1.16 0.97 10.65 7.91 2.73

TDS GA-PLSR 0.80 1.11 0.84 3.48 0.77 1.10 0.88 3.48

GA-MLR 0.89 0.81 0.64 2.65 0.86 0.87 0.67 2.70

GA-RF 0.97 0.43 0.30 1.24 0.93 0.60 0.46 1.82
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FIGURE 5
Fitting of measured and predicted values using GA-PLSR models. Estimated Li contents based on the training (A) and testing (B). Estimated B contents
based on the training (C) and testing (D). Estimated TDS content during training (E) and testing (F).

FIGURE 6
Fitting ofmeasured and predicted values using GA-MLRmodels. Estimated Li content based on the training (A) and testing (B). Estimated B content based
on the training (C) and testing (D). Estimated TDS content based on the training (E) and testing (F).
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Table 2 displays the results of modeling based on the full spectral
bands; however, the accuracy of all models was not satisfactory. This
was due to the presence of invalid information in the spectral band,
which affects the estimation performance of the models. In machine
learning, selecting the best input variables remains a difficult task;
too many input spectral variables not only complicate the operation
and increase the time cost but also reduce the prediction
performance of models with limited samples, which is known as a
dimensional catastrophe and leads to models suffering from the
“curse of dimensionality” (Bach, 2017). In contrast, using too few
input spectral bands could prevent the spectrum from fully revealing
its hidden information. Therefore, it is essential to select the best
input variables. Common feature selection methods include both
heuristics and metaheuristics. Heuristics are simple to operate but
cannot handle complex relationships between input and output
variables, such as principal component analysis, while
metaheuristics avoid these limitations. The GA is a classical
artificial intelligence algorithm among metaheuristics (Katoch

et al., 2021). In the GA, a single spectral variable is considered a
gene on a chromosome, represented by a binary code: 0 means that
the band is unselected, and 1 means that it is selected. Second, the
genes are dynamically modified by the probability of crossover and
variation to change the search process and reach the optimal
solution. The GA can evaluate all individuals and output the
result of optimal feature selection; therefore, the GA has better
global search capability. Figure 11 exhibits the MAPE of the test
set of the model constructed based on full bands and the model based
on the GA for feature selection. The performance improvement of
the GA-MLR and GA-RF models is large. Compared with the MLR
model, the MAPE of the GA-MLR model on the testing set was
reduced by 70.96% (Li), 89.32% (B), and 93.83% (TDS). Compared
with the PLSR model, the MAPE of the GA-PLSR model on the
testing set was reduced by 25.90% (Li), 11.47% (B), and 15.39%
(TDS). Compared with the RF model, the MAPE of the GA-RF
model on the testing set was reduced by 77.52% (Li), 28.54% B) and
36.79% (TDS). In general, the accuracy of various prediction models

FIGURE 7
Fitting of measured and predicted values using GA-RF models. Estimated Li content based on the training (A) and testing (B). Estimated B content based
on the training (C) and testing (D). Estimated TDS content based on the training (E) and testing (F).

TABLE 4 Spectral feature bands of GA-RF model obtained by GA.

Model Parameters Spectral bands Number of bands

GA-RF Li B1, B4, B5, RTB4, RTB5, RTB7, LTB4, RLB4, RLB5, RLB6, RLB8a, FDB2, FDB4, FDB5, FDB8, FDB8a, FDB9 17

B B6, B7, B8, RTB8, LTB1, LTB7, LTB8, LTB8a, LTB9, LTB12, RLB3, RLB8, FDB1, FDB2, FDB6, FDB7, FDB8, FDB8a, FDB9,
FDB11

20

TDS B1, RTB1, RTB8a, RTB9, RTB11, RTB12, LTB1, LTB8a, LTB12, RLB2, RLB3, RLB9, FDB1, FDB2, FDB5, FDB8, FDB9 17
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with feature optimization by the GA was improved compared with
the estimation models constructed based on all spectral bands. This
indicates that the GA can extract the necessary information from all
bands and reduce the interference of non-essential information, thus
improving the accuracy of model prediction. Therefore, the GA can
be used as an effective spectral band feature selection algorithm for
estimating mineral content.

Zaman Zad Ghavidel and Montaseri. (2014) estimated the TDS
content in the Zarinehroud Basin, Iran, using a gene expression
programming algorithm with R=0.96 and RMSE=28.99. Zhou et al.
(2016) used a BP neural network inversionmodel to invert the salt lake
mineral ion content of the Taijinar Salt Lake in the Qaidam Basin. The
inversion accuracy was above 85%. Wang. (2019) used Sentinel-2 data
and BP and RF models to invert the Li content of Alisaro Salt Lake

FIGURE 8
Spatial distribution map of MAPE at sampling points in Bieruoze Co and Guopu Co by using GA-RF model. (A), (B) and (C) are the MAPE of Li, B, and TDS,
respectively, estimated by Bieruoze Co. (D), (E) and (F) are the MAPE of Li, B, and TDS, respectively, estimated by Guopu Co.
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with R2=0.731 and R2=0.771, and the results showed that the RF model
achieved the best results. As a machine learning model, RF can train
the model with less data and a lower computational cost while
possessing high accuracy and generalization performance, which is
suitable for mineral content inversion of salt lakes on the TP. Figure 12
illustrates the boxplots of the three models, with the first box
indicating the results of the measured values in the field and the
other three boxes indicating the results of the different model
estimates. The results of the GA-RF model were more similar to

the results of the field measurements, and the GA-RF model estimates
were the closest to the mean, median, and range of values of the field
measurements of the two lakes, as well as fewer outliers. Taylor
diagram allows a visual comparison of the three different statistical
indicators RMSE, SD and correlation. It is obvious from Figure 13 that
the predictive performance of the GA-RF model was higher than the
other models. The merits of the GA-RF model can be summarized as
lower errors and higher correlations. Although the accuracy of GA-
MLR, GA-PLSR models was improved by the GA for feature selection.

FIGURE 9
Spatial distribution of mineral content in Bieruoze Co and Guopu Co by using GA-RF model. (A), (B), (C) are the distribution maps of the Li, B, and TDS
contents of Bieruoze Co. (D), (E), (F) are the distribution maps of the Li, B, and TDS contents of Guopu Co.
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However, the performance of the two models is still lower than that of
the GA-RF model because the MLR and PLSR models are weaker in
dealing with non-linear complex problems. Figure 7 demonstrates that
GA-RF can handle complex non-linearities between spectral variables
and has a high sensitivity for predicting mineral content. In this study,
four evaluation metrics were used to assess the accuracy of the model,

and the GA-RF model possessed the highest R2 and the lowest RMSE,
MAE, and MAPE values. MAPE, as one of the most popularly used
accuracy evaluation metrics, has the advantages of scale independence
and interpretability. The GA-RF model indicated that the MAPEs
were all below 3%. Therefore, the GA-RFmodel proposed in this study
also performs well compared to previous studies.

FIGURE 10
Correlation coefficients between spectral bands and Li, B, and TDS. (A) Li; (B) B; (C) TDS.
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5.3 Importance analysis of variables for the
GA-RF model

A variable importance analysis was performed on the input
spectral variables of the optimal model (GA-RF) to help interpret
the model results and the importance of each spectral feature in the
model. The variable importance value indicates the degree of influence
of that input variable on the model. Theoretically, the higher the
variable importance is, the more important that input variable is to the
prediction model (Wei et al., 2015). The importance of the different
bands in the GA-RF is shown in Figure 13. The analysis shows that for
Li, the importance of B1 is greater than 0.35 and the importance of
FDB2 and FDB8 is greater than 0.15. For B, LTB1 has the highest
variable importance (0.43), followed by FDB8 (0.11) and FDB6 (0.08).

The importance of LTB1 is much higher than that of the other input
bands. For TDS, RLB2 (0.31) and RTB1 (0.24) are the two bands with
the highest importance. Although the importance of the other input
variables is relatively low, their role in the prediction model still cannot
be ignored. In addition, the bands with the highest importance are also
the bands with higher correlations, so feature optimization using the
GA can obtain spectral bands that are more sensitive to minerals and
enhance the performance of the prediction model. Figure 14.

5.4 Future research

Our study showed that Sentinel-2 satellite data can estimate the
brine mineral content of salt lakes on the TP with high accuracy.

FIGURE 11
Radar plot of MAPE on the testing set of the three models. (A–C) are the model results for estimated Li, B, and TDS contents, respectively.

FIGURE 12
Boxplots of fieldmeasurements and threemodel estimates of Li, B, and TDS contents. (A), (B) and (C) indicate themeasured andmodel estimates of Li, B,
and TDS contents of Bieruoze Co, respectively. (D), (E) and (F) indicate the measured and estimated values of Li, B, and TDS contents of Guopu Co.
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According to the industrial standard in the Code for Geological
Exploration of Salt Lakes and Salt Minerals (DZ/T0212-2002), the
Li and B contents of Bieruoze Co and Guopu Co have reached the
boundary grade, which has the potential for the development and
prospecting of those minerals. The inversion method of mineral
content of salt lakes on the TP based on machine learning
algorithms will provide a more comprehensive, objective and
accurate response to the spatial distribution of mineral content of
salt lakes, and enable long-term dynamic monitoring.

Although the strategy of combining GA with RF improved the
estimation accuracy, there are still some unexplained variations in
information, which may be due to the influence of water body
information by other environmental factors (e.g., water depth). By
incorporating these environmental variables, it may be possible to
enhance the estimation performance of the mineral content prediction
model further. The performance of the RF model is limited by the data
and the study area. If there is noise in the training data, it may cause
overfitting. In addition, the generalizability of machine learning
models has been a popular research topic, and it is still challenging
to construct a general machine learning model. Different saline lakes
on the TP vary widely, and we will collect data from different regions
and periods to conduct large-scale dynamic monitoring in the future.

At the same time, the method will be tested in lakes or other aquatic
systems with different salinities to check the applicability of the
method as a larger-scale tool in different types of aquatic
environments and at different salinity levels.

The multispectral satellites commonly used in water quality
inversion are Landsat and Sentinel. Sentinel-2 satellite has 13 bands
with a maximum spatial resolution of 10 m. In recent years, China has
launched some multispectral satellites with similar characteristics,
such as GF-1 and GF-6. The Gaofen-6 satellite is an optical remote
sensing satellite in China’s Gaofen series, which was launched in 2018.
The GF-6 satellite combines high-resolution and wide-field-of-view
(WFV) imaging capabilities with a spatial resolution of 8 m, and has
great potential for remote sensing inversion monitoring (Wang et al.,
2019). In addition, feature selection algorithms have been widely used
for spectral subset selection of hyperspectral satellites. In 2021, China
launched the GF5-02 satellite, which carries a hyperspectral camera
Advanced Hyperspectral Imager (AHSI) with 330 bands and a
maximum spectral resolution of 5 nm. Compared with
multispectral satellites, hyperspectral satellites have a higher
spectral resolution. The emergence of new remote sensing satellites
provides more possibilities and higher quality data for salt lake
monitoring on the TP. In future work, we will apply the model to

FIGURE 13
Taylor diagram of the GA-RF, GA-MLR, and GA-PLSR models. (A) Li; (B) B; (C) TDS.

FIGURE 14
Importance of input variables for the GA-RF model. (A) Li; (B) B; (C) TDS.
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new satellite data to explore the potential of new satellites for mineral
content estimation and monitoring of salt lakes.

The GA-RF model proposed in this study managed to improve the
accuracy of the prediction model and generated a set of modeling
methods with some generalization. With the field data, the adaptive
intelligent prediction model developed in this study can be used for
mineral content estimation of salt lakes on the TP and prediction of
other water body parameters such as total phosphorus, total nitrogen,
and chlorophyll a.

6 Conclusion

The use of remote sensing tomonitor lake parameters has proven to
be amature technique; however, there are fewer studies on brinemineral
content monitoring in saline lakes. We conducted in situmeasurements
of two typical salt lakes on the TP and collected Li, B, and TDS content
data. An intelligentmodel for estimating themineral resource content of
salt lakes on the TP was developed using Sentinel-2 high spatial
resolution remote sensing data. The original spectral images were
first processed by four mathematical transformations (RT, LT, RL,
FD). Then, the optimal input bands were selected by feature
selection through the GA. Finally, three estimation models of PLSR,
MLR and RF were developed. The research conclusions were as follows.

(1) Spectral transformations played an important role in estimating the
mineral content of salt lakes on the TP. The correlation between
spectral bands and Li, B, and TDS contents was increased to
different degrees by spectral mathematical transformations while
providing rich spectral information for the model.

(2) The estimation model using GA for feature selection method
outperforms the estimation model based on all spectral bands.
Compared with the MLR model, the MAPE of the GA-MLR
model on the testing set was reduced by 70.96% (Li), 89.32% B)
and 93.83% (TDS), respectively. Compared with the PLSR model,
the MAPE of the GA-PLSR model on the testing set was reduced
by 25.90% (Li), 11.47% B), and 15.39% (TDS), respectively.
Compared with the RF model, the MAPE of the GA-RF model
on the testing set was reduced by 77.52% (Li), 28.54% B), and
36.79% (TDS). The genetic algorithm can be used as an effective
spectral band feature selection algorithm for estimating the
mineral content of salt lakes.

(3) For all three parameters, the GA-RFmodel showed the best results
compared with the GA-MLR and GA-PLSR models. For Li, the
GA-RF model performance was R2=0.99, RMSE=1.15 mg L-1,
MAE=0.78 mg L-1, MAPE=3.00%; for B content, the GA-RF
model performance was R2=0.97, RMSE=10.65 mg L-1,
MAE=7.91 mg L-1, MAPE=2.73%; for TDS content, the GA-RF
model performance was R2=0.93, RMSE=0.60 g L-1,

MAE=0.46 g L-1, MAPE=1.82%. The GA-RF model predicted
MAPE below 3% for all three mineral contents.

(4) The combined strategy of the GA-based feature selection method
and the RF showed excellent performance and applicability in
mineral content prediction of salt lakes on the TP, and realized
intelligent salt lake mineral search. This study provided an
application example for remote sensing inversion and
monitoring of mineral resources in salt lakes on the TP.
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