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The extraction of gas-bearing information from the deeply underground reservoir
is extremely difficult due to the weak seismic response and complicated gas
distribution characteristics. To predict gas-bearing reservoirs efficiently, we
developed a deep neural network (DNN) embedding-based gas-bearing
prediction scheme. First, the cepstrum coefficient that is sensitive to
hydrocarbons is computed using the raw seismic data. A DNN model inspired
by the x-vector in speech recognition is designed, comprising the long short-term
memory (LSTM) networks and two fully connected (FC) networks, stacked from
the bottom to the top layer. Then, the cepstrum features are fed into the DNN for
training and testing, and DNN embedding is extracted from the top layers after
optimized network parameters are determined. Finally, the gas-bearing probability
of the reservoir is predicted by calculating the cosine distance between pairs of
DNN embeddings. When applied to synthetic seismic data, the proposed method
offers greater than 90% accuracy at SNR > 3 dB. Besides, the predicted result
applied in deep carbonate reservoirs in China’s Sichuan Basin is in basic agreement
with the actual situation, demonstrating the certain feasibility of the proposed
scheme.
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1 Introduction

The targets for oil and gas exploration continue to develop to greater depths as the
conventional technology for exploration in the petroleum industry advances. Deeply
underground reservoirs are covered by massive thick sediments that have minimal
physical differences from surrounding rocks, low porosity, strong non-homogeneity, and
poor seismic response, making the distribution of oil and gas complicated. Traditional
methods used to detect gas-bearing properties in reserves include the “bright spot” method
(Hammond, 1974), AVO analysis (Hampson, 1991), and low-frequency shadowing (Taner
et al., 1979). These methods are effective in specific scenarios (Cao et al., 2022), for example,
bright spot technology is mainly useful in shallow unconsolidated clastic reservoirs, while
AVO analysis technology is suitable for formations with a relatively simple and gentle
structure. Low-frequency shadowing is mainly applied to lithologies that are already known.
However, these traditional techniques are difficult to effectively quantify the complex and
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non-linear connection between seismic response and gas-bearing
properties in deeply buried reservoirs.

Recently data-driven deep learning methods are widely used in
geophysics for first-to-wave pickup (Liao et al., 2020; Qu et al.,
2021), seismic data denoising (Wang and Chen, 2019; Liu et al.,
2020; Liu et al., 2022), and seismic facies recognition (Tschannen
et al., 2020; Liu et al., 2021). Due to the advantage of automatically
characterizing complex multivariate non-linear relationships, DNN
is also used for acquiring reservoir gas-bearing properties. For
example, a deep neural network (DNN) model with several
hidden layers (Yang et al., 2021; Zhang et al., 2022) is built for
gas-bearing prediction by leveraging the capability of DNN to
handle an end-to-end task. The convolution neural network
(CNN), one of the most promising DNN approaches for
geophysics issues, has been trained for extracting oil and gas
properties (Song et al., 2022). The characteristics of the reservoir
are reflected in the comparison with the surrounding rock layers
above and below it. However, these methods primarily concentrate
on learning the gas-bearing information of the target layer, and the
contextual relationship between the seismic waveforms is not given
the same level of attention.

Although there have been many deep learning methods applied
to the processing and interpretation of seismic data, few studies
have focused on hydrocarbon detection. This article presents an
innovative experiment that uses neural networks to quantitatively
identify the gas-bearing information in seismic records based on
the similarities between seismic and acoustic data. The similarities
are manifested in two aspects (Xie et al., 2017). First, seismic
primary waves and acoustic waves can be considered as the same
kind of wave since their propagation in the elastic medium follows
the same physical laws. In addition, both can be characterized by
convolutional models. The seismic record can be seen as a
convolution of stratigraphic reflection coefficients and waves,
and the acoustic record can be regarded as the convolution of
the vocal cord excitation and the vocal tract. Therefore, speech
feature parameters can be integrated into seismic data processing.
For example, cepstrum is applied to the computation for thin beds
thickness (Hall, 2006) and gas-bearing detection (Tian and Cao,
2011; Xue et al., 2016), and the Linear Prediction cepstral
Coefficient (LPCC) is utilized for seismic facies analysis (Xie
et al., 2016). With the demand for improving speaker

recognition technology, the novel speech characteristics
generated by DNN have grown increasingly prominent.
Especially, the x-vector, namely, DNN embedding, captures
accurately the vocal information of speakers by translating
arbitrary-length inputs into fixed-length embeddings, making it
effective for short-time records (Snyder et al., 2017; Snyder et al.,
2018). Therefore, this article utilizes DNN embedding to predict
gas-bearing reservoirs due to its outstanding feature extraction
ability for short seismic responses.

Facing the problems of weak seismic response and thin
thickness of deep buried reservoirs, we have improved and
modified the DNN model prediction method. First of all, for
data preparation, we obtained datasets tailored to seismic data
characteristics. And the cepstrum is employed as the DNN input
since it has been shown sensitive to the response of the gas-bearing
layer (Cao et al., 2011; Cao et al., 2019). Secondly, in terms of the
DNN model, it employed long short-term memory (LSTM)
networks as the bottom layer to contextualize feature learning
and the two FC layer as the primary top layer for embedding
extraction. Thirdly, to visualize the gas-bearing distribution, the
backend of the model outputs DNN embedding pairs’ similarity
using cosine distance. Evaluations based on both synthetic and
actual seismic records from China’s Sichuan Basin demonstrate
that our method has significant advantages over traditional SVM-
based approach (Tian and Cao, 2011).

2 Materials and methods

Since acoustic waves and seismic waves share certain similarities
described above, it is theoretically possible to apply speaker
recognition technology to identify certain geological bodies, such
as gas-bearing reservoirs. Speaker recognition identifies the speaker
by acquiring common features in numerous utterances. Similarly,
when common characteristics in seismic records are extracted for
gas-bearing prediction, the gas-bearing reservoir corresponds to the
speaker, and the seismic records correspond to the acoustic records.
Nonetheless, these two records differ, and the technique cannot be
transferred directly. Based on the characteristics of the seismic data,
the proposed scheme displayed in Figure 1 is designed for seismic
records.

FIGURE 1
Workflow of gas-bearing prediction for the deep reservoir based on DNN Embeddings.
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2.1 Data preparation

When preparing the dataset, the difference in attenuation,
repeatability, and frequency of seismic data must be taken into
consideration (Cao et al., 2011; Cao et al., 2019).

2.1.1 Attenuation
The speaker is the source of speech records, and there is no

attenuation as time passes. While the source of seismic records is
the reflection or dispersion of the seismic source signal, which is a
secondary source and decays with increasing recording time. Therefore,
amplitude-preserving processing is necessary (Gao et al., 2022) to
remove the effects of spherical diffusion and inelastic attenuation.

2.1.2 Repeatability
The “voiceprint” characteristic is repeated in a single

utterance for acoustic records, and a single speaker can give
numerous bits of utterances. Seismic records are continuous and
redundant (Coléou et al., 2003). The continuity means that the
geological condition over a certain spatial range is similar, which
is the foundation of tectonic and stratigraphic interpretation. The
redundancy exists in some spreading information of wavefront
propagation that occurs in both longitudinal and lateral
directions. To sum up, seismic records within a certain lateral
and longitudinal range can be approximately regarded as the
response of a similar reservoir.

2.1.3 Short-time smoothness
Speech recognition decomposes acoustic records into frames,

and each frame can be regarded as a smooth signal. The frequency
of seismic records is much lower than the frequency of acoustic
records, so the seismic response can only be considered smooth
when the time window is narrow. Since the characteristics of the
reservoir are reflected in the comparison with the surrounding
rock above and below it, the window can be expanded within a
reasonable range.

2.2 Pre-processing

Before extracting the features from the raw seismic records, pre-
processing needs to be implemented. Pre-processing consists of pre-
emphasis, framing, and windowing operations. Except for important
parameter values which are specially set according to our practical
experience, the process is consistent with speech signal processing
(Muda et al., 2010).

2.3 Feature extraction

The cepstrum feature is selected as the input feature for DNN to
extract stratigraphic response features by taking into account the
following factors. Firstly, the cepstrum feature is sensitive to gas-
bearing characteristics in hydrocarbon prediction (Cao et al., 2011;
Cao et al., 2019). Then, the cepstrum has a simple derivation process
compared with the widely used Mel Frequency Cepstral Coefficient
(MFCC) and the FilterBank (FBank) (Zheng et al., 2001; Wang
et al., 2014) in speech recognition, which is represented in
Figure 2. Moreover, the cepstrum also can simplify the relation
between seismic wavelet and stratigraphic reflection coefficients
which will be demonstrated below.

The cepstrum is the real component of the Inverse Discrete
Fourier transform (IDFT) for a time domain sequence’s logarithmic
amplitude spectrum, which is a homomorphic transform. Assume
that [x(n), n � 0, 1, 2, . . . , N − 1] is a time domain discrete signal
with N sampling points, in which n is the discrete sampling of time.
The cepstrum of x(n) is described by the equation below.

x n( ) � Re F−1 log F x n( )( )| |( )[ ] (1)
In the Formula 1, F denotes Discrete Fourier transform (DFT),

F−1 denotes IDFT, and | · | denotes the mode-taking operation.
Besides, F(x(n)) can be written as X(k), in which X(·) represents
the frequency domain signal of x(n) and [k � 0, 1, 2, . . . , N − 1] is
the discrete sampling of the analog frequency.

FIGURE 2
The extraction process of MFCC, FBank, and Cepstrum features.
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The discrete seismic signal is expressed as the following equation
based on the seismic record convolutional model.

s n( ) � w n( )pr n( ) (2)

In Formula 2, r(n) is the stratigraphic reflection coefficient,
w(n) is the seismic wavelet, which is typically the Ricker wavelet,
and * is the convolution operation. According to Formula 1, the
cepstrum domain parameters of the seismic record can be computed
as follows.

Re F−1 log S k( )| |( )[ ] � Re F−1 log W k( )| |( )[ ] + Re F−1 log R k( )| |( )[ ]
(3)

In Formula 3, S(k),W(k) and R(k) are the spectrum of seismic
record, seismic wavelet, and reflection coefficients, respectively. In
the cepstrum domain, the correlation between seismic wavelet and
reflection coefficient becomes simple, i.e., the convolutional
relationship in the time domain becomes a sum of two in the
cepstrum. Before input to DNN, the energy, mean, and variance
of the cepstrum are added to the first three dimensions of each frame
feature to enhance the dimensionality of the feature parameters.

2.4 Training DNN model

The DNN architecture is comparable to the network architecture in
the Kaldi Voxceleb recipe (Kumar et al., 2020), which consists of the
frame-level layer, segment-level layer, and softmax layer as shown in
Figure 3. The first frame-level layers in Kaldi consist of time-delay neural
networks (TDNN) with a context and are utilized for learning repetitive
features in multiple frames. In this paper, we suggest switching from
TDNN to LSTM networks, because that LSTM can automatically learn
long-term relationships between sequences and have a similar time-delay
function. And then, the segment-level layer gathers information from the
context to recognize the segment characteristics of seismic records,
among which, a statistical pooling layer combines the mean and
standard deviation from the output of frame 5, and two fully
connected (FC) layers can be utilized to extract embedding after the
training is completed. The number of hidden layer nodes is reduced
according to the length of the frame there because of the smaller size of
seismic data. The top softmax layer outputs the maximum posterior
probability for each reservoir type and it is no longer required once the
DNN training is complete. In addition, each layer has a batch
normalization (BN) layer and a rectified linear units (ReLUs)
activation function to enhance DNN performance.

2.5 Scoring prediction

The front of our proposed method is used for extracting seismic
embeddings. Once the DNN model has been trained, two FC layers
produce the embeddings, which are the representations of the
seismic records. The output of segment 1 is Embedding a (EMa),
which is immediately output on the statistics layer, while the output
of segment 2 is Embedding b (EMb), which is extracted from the FC
layer after the ReLUs layer.

The back-end in our scheme is scoring prediction based on the
embedding similarity. The embedding of the gas reserve is derived

from the seismic record adjacent to the gas-bearing well, which is
indicated as EMg. Similarly, the embedding for a seismic record to
be predicted is labeled as EMp. The embedding similarity between
EMg and EMp represents the gas-bearing probability of the
corresponding layer where the seismic records are located. The
normalized cosine distance is employed in this research to represent
the similarity, which is described by the equation below.

Cos EMg, EMp( ) � 0.5 ×
EMg · EMp

EMg

����
���� · EMp

����
����
+ 0.5 (4)

3 The experiment of the geological
model

A geological attenuation model was developed to test the
effectiveness of gas-bearing prediction with the dispersive
viscosity equation (He et al., 2009). By referring to reservoir
logging parameters and geological data in the Sichuan Basin,
China, the geological model was designed and its parameters
were configured in Table 1. In Figure 4A, Layer ③, ④, and ⑤

are the water-bearing reservoir, the gas-bearing reservoir, and the
gas-water mixed reservoir, respectively, and they are all 40 m thick.
The Ricker wavelet with a frequency of 30 Hz is employed to imitate
seismic records, and the digital sampling frequency is 500 Hz. The
model is first orthorectified based on the viscous dispersive wave
equation, and then the simulated seismic profile was obtained by
applying conventional wave equation offset. As a result, the
synthetic seismic record is generated as shown in Figure 4B,

FIGURE 3
The DNN architecture of the proposed scheme.
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which is without noise. A particular amount of Gaussian white noise
is added to the seismic record to imitate the low signal-to-noise
(SNR) environment of the deeply underground reservoir. The SNR
of the synthetic seismic record after adding noise ranges from 1 dB
to 10 dB. Figures 4C, D show the synthetic seismic data at SNR =
1 dB and SNR = 10dB, respectively.

When preparing the dataset, the seismic records including the
stratigraphic response of layers ③, ④, and ⑤ are divided into the
seismic response of the water-bearing reservoir, the gas-bearing

reservoir, and the gas-water mixed reservoir, respectively. Ten
seismic records with stratigraphic responses around layers ③, ④,
and ⑤ are eliminated to limit the impact of distinct stratigraphic
borders. Among the stratigraphic responses of each type of reservoir,
60% and 10% of the seismic records are selected randomly as
training datasets and validation datasets respectively, while the
remaining 30% are test datasets. In pre-processing and feature
extraction, the parameter values are all adopted by our prior
experiment. The pre-emphasis coefficient is 0.93, the frame

TABLE 1 Rock properties for the geological model (where, Vp is the primary velocity, ρ is the density, ξ is the dispersion coefficient, η is the viscosity coefficient, Q is
the attenuation coefficient).

Layer number Vp(m.s−1) ρ(g.cm−3) ξ (HZ) η(m2.s−1) Q

① 6,246 2.7290 1 1 200

② 6,109 2.6850 1 1 200

③ 6,400 2.7800 30 3 15

④ 5,900 2.7280 10 500 5

⑤ 5,950 2.7605 20 200 8

⑥ 6,422 2.7256 1 1 200

⑦ 6,426 2.8364 1 1 200

FIGURE 4
(A) Geological model. (B) The synthetic seismic record without noise. (C) The synthetic seismic record with SNR = 1 dB. (D) The synthetic seismic
record with SNR = 10 dB.
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length is set to 20 milliseconds (ms), and the frameshift is set the half
of the frame length. Besides, Hamming window is selected because
the cepstrum coefficient calculated from it is relatively stable. Then,
the seismic records’ cepstrum parameters are calculated and fed into
the DNN model. The DNN model in Kaldi is primarily written in
C++, whereas the proposed DNN model is constructed and trained
in Pytorch. When training a DNN model, the objective function is a
multiclassification cross-entropy function, the optimizer uses Adam

(Barakat and Bianchi, 2021), and the learning strategy is OneCycle
(Smith, 2017). The training process at extremely low SNR
(1 dB~4 dB) is represented in Figure 5, while the training results
with SNR greater than 4 dB are not shown since the accuracy of the
training and validation datasets exceeds 98% and the loss is less
than 0.1.

When the training of the DNNmodel is completed, the parameter
values of eachDNN layer are fixed. The embedding extracted from the
seismic records at the center of layers③,④, and⑤ is regarded as the
embedding of reservoirs in which they are located. The cosine distance
between the embedding of the seismic record to be predicted and three
types of reservoir embedding is calculated respectively, and the
reservoir corresponding to the highest cosine distance is the
predicted reservoir. When the DNN input features are Cepstrum,
MFCC, and FBank, three alternative gas-bearing prediction models
are generated. From the result indicated in Figures 6A, B, it can be
seen that cepstrum as a feature parameter has a robust advantage over
the other two features.

The bottom layer of the x-vector uses TDNN with context to learn
the segment feature in speech recognition. The effective response time
of the reservoir in the seismic record is shorter than that of the speech
record, and a shorter context should be set. In order to assess the impact
of contextual width, we configure the TDNN-based gas-bearing
prediction models with three time-delay strategies. These three
strategies, labeled as TDNN_311, TDNN_331, and TDNN_333, set
the context of frames 1, frame 1~2, and frames 1~3 to 3 respectively,
while the other layers have no delay. TDNN is implemented in the deep
learning toolkit Torch by 1d-CNN because TDNN is equivalent to 1d-
CNN (Daniel et al., 2018). Because the process of selecting the optimal

FIGURE 5
(A, B)Accuracy for training and validation sets. (C, D)Loss for
training and validation sets.

FIGURE 6
The predicted error rate of the geological model. (A) EMa with different DNN inputs. (B) EMb with different DNN inputs. (C) EMa with different
architectures. (D) EMb with different architectures.
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combination from the three schemes is somewhat inefficient, we
propose to replace TDNN with LSTM. To compare the
improvement of the proposed method, we also compare it with
previous studies (Tian and Cao, 2011), in which the absolute value
of the difference between 1 and 2-order cepstral coefficients is extracted
as the training samples of the support vector machine (SVM) classifier.
The predicted error rate of the test samples belonging to the
corresponding reserve is calculated based on different architectures
respectively, which is shown in Figures 6C, D. The superior
performance of LSTM shows that it may automatically learn the
long-term relationships among sequences with the use of input
gates, forgetting gates, output gates, and internal memory units.

4 The experiment of field

The work area is located in the Xiaoquan–Xinchang tectonic belt
of the western Sichuan exploration area in China, with 150 km2 as
shown in Figure 7. This tectonic zone is mainly zonal distribution
located in the Longmenshan foreland basin, one of the most
important China’s natural gas-rich areas. The marine strata of
this area dominated by carbonate is buried deep (about
4,000 m–7,000 m) including from Sinian to Middle Triassic. In
this area, the Upper Triassic Maan Tang Formation (T3m) and
the Leikoupo Formation (T2l) are the target layer due to massive

natural gas resources. The thickness of the gas reservoir is thin,
which results in minor differences in the physical parameters of the
gas-bearing layer and surrounding rocks, and the poor seismic
response signal makes exploration with current technologies

FIGURE 7
Structural diagram of the study area Cao et al. (2022).

FIGURE 8
Accuracy and loss based on the field data.
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more difficult. There are three drilled well sites in the field area, and
the geological formations of Well A, Well B, andWell C are a water-
bearing reservoir, a gas-bearing reservoir, and a gas-water mixed
reservoir in the target layer, respectively. When the datasets are
generated, the seismic record from the top weathered crust ofT3m to
the bottom of T2l4 (around 150 m) is intercepted as the target layer
along longitudinal time. Moreover, the seismic data (about

450 records) in the lateral 300 m range around Well A, B, and C
is chosen. The seismic records close to the three wells are divided
into three distinct types of stratigraphic response, namely, the
seismic response of the water-bearing layer, the gas-bearing layer,
and the gas-water mixed layer. The training and the validation curve
are represented in Figure 8.

After training, the seismic embeddings nearest to three wells are
generated and used as the reservoir represent in which they are
located. The cosine distances are calculated independently by the
embeddings of the to-be-predicted seismic records and the
embeddings of three reservoirs. Subsequently, the cosine score
with the gas reservoir indicates the gas-bearing probability. When
the Cepstrum, MFCC, and FBank are selected as input features, it
shows the same phenomenon in the geological model that the error
rate with Cepstrum is lower than that of the other two feature
parameters in Figure 9A. Similarly, Figure 9B shows that LSTM has a
moderate performance compared with the three strategies of TDNN
and obvious advantages over previous SVM architectures. Further,
we list the probabilities of the test samples belonging to each
category with the proposed and the previous method in
Figure 10. To make the comparison fairer, we normalized each
probability using the formula below, where j � 1, 2, 3 denote the
three categories of reservoirs, respectively, Pj is the initial
probability, and _Pj is the normalized probability.

_Pj � Pj

∑3
i�1Pi

, j � 1, 2, 3 (5)

To visualize the gas-bearing distribution clearly, the proposed
approach is applied to the whole work area. In Figure 11, the value of

FIGURE 9
The predicted error rate of the field. (A) With different DNN
inputs. (B) With different architectures.

FIGURE 10
(A) The predicted probability based on EMb. (B) The predicted probability based on SVM.
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the region predicted as reservoir B is equal to the cosine scoring,
whereas the value of the region predicted to be reservoir A and C are
set to 0 and 0.5, respectively. The prediction results based on the two
embeddings show comparable gas-bearing distribution zones, while
the gas-bearing region based on EMb is slightly larger which is
consistent with the result in Figure 9 that fewer of the gas-bearing
test samples are poorly predicted.

5 Conclusion

To deal with the difficult challenge of gas-bearing prediction in
deeply buried reservoirs, this paper proposes an innovative gas-
bearing prediction model based on DNN embedding. Motivated by
the similarity between seismic data and acoustic data, the DNN
model is designed by referring to the structure of the x-vector in
speech identification, in which gas-sensitive cepstral parameters are
the input, the bottom layers are LSTM networks that can learn the
contextual relationship of the seismic waveforms, and the output is a
DNN embedding used for similarity scoring. The validity of the
proposed method was demonstrated in both generated synthetic
seismic records and actual seismic data. The next study is to consider

the hyperparametric assessment since the parameters in feature
extraction and DNN training are mainly chosen empirically.
Furthermore, data augmentation might be explored to improve
predictive capabilities because data amount is the fundamental
restriction of DNN.
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