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In the era of artificial intelligence and big data, semantic segmentation of images
plays a vital role in various fields, such as people’s livelihoods and the military. The
accuracy of semantic segmentation results directly affects the subsequent data
analysis and intelligent applications. Presently, semantic segmentation of
unmanned aerial vehicle (UAV) remote-sensing images is a research hotspot.
Compared with manual segmentation and object-based segmentation methods,
semantic segmentation methods based on deep learning are efficient and highly
accurate segmentation methods. The author has seriously studied the
implementation principle and process of the classical deep semantic
segmentation model—the fully convolutional neural network (FCN), including
convolution and pooling in the encoding stage, deconvolution and upsampling,
etc., in the decoding stage. The author has applied the three structures (i.e., FCN-
32s, FCN-16s, and FCN-8s) to the UAV remote sensing image dataset AeroScapes.
And the results show that the accuracy of vegetation recognition is stable at about
94%. The accuracy of road recognition can reach up to more than 88%. Themean
pixel accuracy rate of the whole test dataset is above 91%. Applying full
convolution neural network to semantic segmentation of UAV remote sensing
images can improve the efficiency and accuracy of semantic segmentation
significantly.
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1 Introduction

In remote sensing, satellite remote sensing images or UAV remote sensing images can be
used for ground object recognition. Satellite remote sensing images have a low resolution for
low-altitude targets. They are often affected by weather factors and obscure ground objects,
resulting in difficulties in ground object recognition. UAV remote sensing technology takes
low-speed unmanned aircraft as the aerial remote sensing platform, captures aerial image
data with infrared and camera technology, and processes the image information by
computer. Compared with satellite remote sensing platforms, UAVs fly at a lower
altitude and can fly close to the ground to improve the resolution of objects (Liu et al.,
2021). And their close-range image resolution can reach the centimeter level, which can
quickly and economically collect low-altitude high-resolution aerial images. UAV remote
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sensing can be applied to environmental monitoring (Green et al.,
2019). It can fast update, correct, and upgrade geo-environmental
information and outdated GIS databases, providing timely technical
assurance for government and related departments’ administration,
land, and geo-environmental management. In addition, UAV
remote sensing can also be applied to electric power inspection
(Zhang et al., 2017), agricultural monitoring (Zhang et al., 2021),
high-speed patrol (Yang et al., 2021), disaster monitoring and
prevention (Kamilaris Prenafeta-Boldú, 2018), meteorological
detection (Funk and Stütz, 2017), aerial survey (De Benedetti
et al., 2017), etc. In recent years, UAV remote sensing has
become a hot topic for global research due to its mobility, speed,
and economic advantages. It has gradually developed from research
and development to the practical application stage, becoming one of
the future leading aerial remote sensing technologies.

With the development of deep learning and the Internet of Things
(IoT), the research on the integration of UAV remote sensing and
artificial intelligence has become more and more abundant. Many
researchers have succeeded in automatic target recognition of UAV
remote sensing images based on convolutional neural networks with the
help of deep learning methods, such as Region-Convolutional neural
network (R-CNN), Fast Region-based Convolutional Network (Fast
R-CNN), Faster Region-based Convolutional Network (Faster
R-CNN), Single Shot Mutibox Detector (SDD), You Only Look
Once (YOLO) and other frameworks (Xu et al., 2017; Li et al.; Liu
et al., 2020). Xu et al. (2017) extended the framework of Faster R-CNN
for detecting cars from low-altitude UAV images taken over signal
intersections and demonstrated that Faster R-CNN has excellent
potential for parking lot car detection. Li et al. (2020) proposed a
method for UAVmonitoring railroad scenes based on SSD detection of
small objects. Liu et al. (2020) developed a special detection method for
small targets in UAV view based on YOLOv3. All these methods used
regular rectangles to frame and identify targets. Still, in many cases, one
would like to be able to use the shape of the target itself to locate and
precisely segment it, for example, to precisely distinguish the shape of
each building, road, river, vehicle, etc., itself, i.e., to achieve semantic
segmentation.

Semantic segmentation has been a research hotspot in artificial
intelligence. It takes some raw data (e.g., a flat image) as input and
converts them into a mask with highlighting by finding the location
of all pixels and what they represent, thus understanding the
meaning of the image. Semantic segmentation can be used in
land monitoring (Mohammadimanesh et al., 2019), autonomous
driving (Li et al., 2021), face recognition (Meenpal et al., 2019),
precision agriculture (Milioto et al., 2018), etc., and plays a vital role
in social development and people’s life. This paper discusses
applying the fully convolutional neural network in deep learning
to semantic segmentation of UAV remote sensing images to
accurately extract vegetation, roads, and other targets in the
features and improve the segmentation accuracy (Li et al., 2019;
Li et al., 2019).

The contributions of this paper are as follows.

(1) The author has conducted an in-depth study on the structure of
the fully convolutional neural network and meticulously
analyzed the encoder and decoder components. And it forms
a network structure image with clear feature map size variation,
convolutional kernel size, and fusion ideas.

(2) Under the premise of maintaining the classification balance to
the greatest extent, the training set, validation set, and a test set
of the AeroScapes dataset are re-divided, and the image files and
labels are normalized and label encoded before semantic
segmentation, and a complete set of data processing
algorithm flow is refined.

(3) The experiments of applying three fully convolutional neural
networks (FCN-32s, FCN-16s, and FCN-8s) on the UAV
remote sensing image dataset AeroScapes are completed, and
the results show that the segmentation effect is good.

The remainder of this paper is organized as follows: Section 2
introduces the work related to UAV remote sensing images, semantic
segmentation, and FCN; Section 3 explains the dataset used and the
processingmethod of the dataset, the semantic segmentationmethod of
UAV remote sensing images and the implementation steps; Section 4
shows the experimental results and the related discussion; Section 5
concludes the work of this paper.

2 Related works

This section introduces the research related to this paper, which
includes semantic segmentation models and fully convolutional
neural networks.

2.1 Semantic segmentation models

Semantic segmentation is one of the critical tasks in computer vision.
It is the process of classifying each pixel in an image and linking each
pixel to a category label, which is widely used in medical image analysis
(Yang and Yu, 2021), unmanned driving (Feng et al., 2020), geographic
information systems (Li et al., 2019), etc., Various models, such as FCN,
SegNet, U-Net, DeepLab, etc., can achieve semantic segmentation.

FCN is the cornerstone of deep learning techniques applied to
semantic segmentation problems (Shelhamer et al., 2017), building a
fully convolutional neural network. The convolutionalmodel with images
introduces conditional random fields (CRF) as a post-processing module
in the CNN to tune the output of the segmentation architecture and
enhance it to capture fine-grained information. The decoder encoder
model is divided into encoder structure and decoder structure. SegNet
encoder follows the network model of VGG16, which mainly categorizes
and analyzes the low-level local pixel values of the image to obtain higher-
order semantic information to achieve parsing of object information.
Pyramid Scene Parsing Network (PSPN) (Zhao et al., 2017) is a multi-
scale and pyramid network-based model that uses ResNet, a covariance
network with null convolution, for feature extraction and better learning
of global information. The null convolution model can exponentially
expand the field of perception without losing resolution. Themost typical
model of null convolution is DeepLab and its upgraded version. DeepLab
V1 (Chen et al., 2014) uses null convolution and CRF to solve the
problem of information loss and probabilistic model between labels not
being applied due to previous model pooling. DeepLab V2 (Chen et al.,
2017a) introduces Atrous Spatial Pyramid Pooling (ASPP), which
extracts features using multiple sampling rates of null convolution in
parallel, and then fuses the features and changes the base layer from
VGG16 to ResNet. DeepLab V3 (Chen et al., 2017b) proposes a more
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general framework that applies to any network. DeepLab V3+ (Chen
et al., 2018) adds encoder-decoder constructs to achieve accuracy and
time balance by changing the Atrous rate. The recurrent neural network-
basedmodel RNN successfullymodels global contextual information and
improves segmentation results by linking pixel level with local
information. The attention mechanism model (Chen et al., 2016)
assigns different weights to different scale images, e.g., large weights to
small-scale targets to achieve large scaling and small scaling to closer
targets in the image. Learning active contour models ACMs (Chen et al.,
2019) propose a new loss function that considers the information of
boundary line length and region and a convolutional neural network
based onDense U-Net. In addition, there are segmentationmodels based
on the GAN for semi-supervised semantic segmentation. The semantic
segmentationmodel based ondeep learning is shown in Figure 1 (Minaee
et al., 2021).

2.2 Fully convolutional neural network

FCN is the first neural network applied to image semantic
segmentation, which replaces the fully connected layers of
VGGNet with convolutional layers to build a deep, fully
convolutional neural network. FCN adopts “end-to-end”
feature learning, which reveals the non-linear features hidden
in the data through multi-layer feature extraction, and can
automatically learn global features from a large number of
training sets to realize the transformation of feature models
from manual to learned features.

In the FCN, the last three layers of the CNN network are all
transformed into multi-channel convolutional layers of equivalent
vector length corresponding to 1 × 1 convolutional kernels
(Shelhamer et al., 2017). The network model consists entirely of
convolutional layers, and no fully connected layers generate
vectors. CNN is an image-level recognition, that is, from image
to result. At the same time, FCN is a pixel-level recognition,
labeling which category each pixel on the input image is most
likely to belong to. FCN changes the classification network into a
fully convolutional neural network, specifically transforming the
fully connected layers into convolutional layers with up-sampling
by deconvolution, fine-tuning using migration learning methods,
and using jump structure. Thus, semantic information can be

combined with symbolic information to produce accurate and
surprising segmentations. The first half of the FCN network is
based on the convolutional layer of VGG, so the weight parameters
of the VGG network are directly referenced as the pre-training
parameters of the FCN and then fine-tuned. The structure of the
FCN and the coding and decoding process are introduced in
Section 3.2. Like other segmentation network models, the FCN
model loss function is a pixel-level cross-entropy loss function and
also uses a stochastic gradient descent optimization algorithm for
momentum. Instead of following the previous interpolation of
interpolation upsampling, FCN proposes a new upsampling,
i.e., deconvolution, which can be understood as the inverse
operation of the convolution operation. The deconvolution
cannot compound the loss of values due to the convolution
operation and simply reverses the steps in the convolution
process to transform once, so it is also called transposed
convolution. The convolution formula is shown in formula 1,
and the deconvolution formula is shown in formula 2:

F � i − k + 2 × p

S
+ 1 (1)

Where F is the output image size. i is the input image size. k is the
convolution kernel size. p is the padding, the complementary zero
size. S is the step size.

F � i − 1( ) × S + k − 2 × p (2)
Formula 2 is to exchange the input and output in formula 1 into

a sparse state.
FCN training, at least 175 epochs after the algorithm, will

perform well. That is, too little will affect the algorithm
performance, while too much on the algorithm performance is
no more remarkable improvement. And its learning rate can be
adjusted after 100 times and is getting smaller. FCN in the
upsampling process, only the fusion of pool 5 and pool 4 feature
map, pool 3 before the feature map, does not need to be fused. When
FCN emerged, it surpassed the most advanced techniques in
semantic segmentation. It allows the input of images of arbitrary
size, and the output of the same size can be obtained after effective
learning, and state-of-the-art results are obtained on the PASCAL
VOC, NYUDv2, and SIFT Flow datasets. However, FCN does not
have a category-balancing strategy, and the accuracy of semantic

FIGURE 1
The timeline of DL-based segmentation model for 2D images.
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segmentation suffers when the categories in a dataset are not
balanced.

3 Data and methods

3.1 Semantic segmentation dataset

The AeroScapes aerial semantic segmentation benchmark
includes images captured using commercial UAVs in the altitude

range of 5–50 m. The dataset provides 3,269 720p (1,280 × 720)
images and 11 categories (excluding background) of ground-truth
masks (Figure 2). The dataset offers 3,269 720p (1,280 × 720) images
and 11 categories (excluding background) of real masks (Figure 2A),
where the 11 categories include Person, Bike, Car, Drone, Boat,
Animal, Obstacle, Construction, Vegetation, Road, and Sky. The
dataset is provided with a mask map, so no mask map conversion is
required. The file structure is as follows.

ImageSets folder: two txt files are stored, dividing the training
and test sets.

FIGURE 2
Dataset of semantic segmentation: (A) partial images in the dataset; (B) corresponding label data.
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JPEGImages folder: holds the RGB images.
SegmentationClass folder: holds the mask map of the labels.
Visualizations folder: holds the label images.
This dataset does not divide the training and test sets directly

into the corresponding folders, so to use this dataset, it is necessary
to read the images according to the divided txt file and distribute
each image in the corresponding folder. In addition, the validation
set is not provided in this dataset. In this paper, when the original
remote sensing images are sent to FCN for training, the author sets
the crop to 1,280 × 704 pixels size and divides a part of the images as
the validation set under the premise of ensuring the category balance
as much as possible in the training set.

It can be seen from Figure 2B that various categories of objects
are labeled with different colors, and this is the final output image
effect of FCN.

3.2 Semantic segmentation of UAV remote
sensing images

UAV remote sensing images usually contain a wide range of
complex features, and insignificant differences between features,
making it challenging to obtain high segmentation accuracy
using manual methods. In the early days, most segmentation
networks are classified for pixels by finding a piece of the region
containing this pixel and using the category of this region as the
category of pixel points, which is memory-consuming and
inefficient as the areas may overlap. Therefore, this paper uses
deep learning to perform semantic segmentation (Minaee et al.,
2021).

3.2.1 The principle and implementation of the three
structures of the FCN model

Many network models for deep semantic segmentation
include fully supervised learning image semantic segmentation
methods and weakly supervised image semantic segmentation
methods (Huang et al., 2021). However, the performance of most
weak supervised methods still lags behind that of fully supervised
methods (Tian et al., 2019). This paper uses a fully supervised
learning method, FCN, to perform semantic segmentation on the
AeroScapes aerial semantic dataset. FCN is the first attempt to
classify pixels directly from abstract semantic features, and the
pre-training model of VGGNet is used in advance to greatly
reduce the training time without affecting the classification
accuracy. The pre-training model of VGG16 is used in this
paper. After the first five convolutions and pooling, FCN
replaces the original fully-connected layer with a fully-
convolutional layer. And then completes the deconvolution
operation by bilinear interpolation and sums with the
corresponding pooled middle layer information to recover the
original image resolution finally and achieves end-to-end, pixel-
to-pixel semantic segmentation, and the most crucial feature of
this network is that it learns features by itself according to the
designed algorithm without human intervention (Shelhamer
et al., 2017). In this paper, three fully convolutional neural
networks, FCN-32s, FCN-16s, and FCN-8s, have been used to
carry out the study, and the structures of the three network
models are shown in Figure 3.

These three networks, with identical pre-encoding processes,
complete the downscaling and feature extraction of the original
image, and the good or bad feature extraction directly affects the
final prediction results. As shown in Figure 3, after two
convolutional layers, called 1 convolutional block (i.e., Conv1),
the feature map is obtained, and after the first pooling layer
(i.e., Pool1), the feature map is obtained after 1/2. Similarly, after
the second convolution block and the second pooling layer, the
feature map becomes 1/4 of the original map; after the third
convolution block and the third pooling layer, the feature map
becomes 1/8 of the original map; after the fourth convolution block
and the fourth pooling layer, the feature map becomes 1/16 of the
original map; after the fifth convolution block and the fifth pooling
layer, the feature map becomes 1/32 of the original map. This
process is called downsampling, i.e., the process of feature
extraction. FCN uses the five convolutions and five pooling in
the VGG16 model, the feature map size becomes 1/32 of the
input image size, and the channels change from 3 to 512. FCN
replaces the sixth and seventh fully connected layers in VGG16 with
fully convolutional layers, and the feature map size does not change,
still 1/32 size, but transforms the number of channels to 4,096. After
the final transition convolution, the channel number is converted to
the number of label categories of the dataset.

The difference between the three networks lies in the post-
decoding process, where the decoding is completed to gradually
recover the smaller size feature maps into predicted maps of the
same size as the image. FCN-32s is to directly up-samples the
encoded feature map by 32 times, i.e., to complete the
deconvolution. Then, the obtained feature map is passed to the
softmax classifier to output a prediction map of the same size as the
input image to get the dense prediction result, which does not use the
skip architecture. FCN-16s first up-samples the 1/32 sized encoded
feature map by a factor of 2 to 1/16 size, and transform the 1/16 sized
feature map after the fourth pooling (Pool 4) into the number of
label categories of the dataset by transition convolution, then fuses
the two 1/16 sized feature maps (i.e., skip architecture). Finally, up-
samples them by a factor of 16 to produce a prediction map of the
same size as the input image after the softmax classifier. FCN-8s first
up-samples the fused feature map from the previous step by a factor
of 2 to 1/8 size, transforms the 1/8 sized feature map after the third
pooling (Pool 3) to the number of label categories of the dataset by
transition convolution, and fuses the two 1/8-sized feature maps,
again with skip architecture. Finally, it up-samples them by a factor
of 8 to produce a prediction map of the same size as the input image
after the softmax classifier. It is worth noting that in FCN-16s and
FCN-8s, when multiple feature maps are fused, it must be ensured
that each feature map size is the same. The skip architecture of FCN
enables the models to ensure both robustness and accuracy, and all
three models achieve end-to-end deep semantic segmentation.

3.2.2 Data preprocessing
The deep semantic segmentation network needs a lot of time and

effort to process the dataset before training, and the processing effect
of the dataset directly affects the accuracy of semantic segmentation.
Each image in the dataset corresponds to a labeled graph, and each
category of targets in the image is identified with different colors,
i.e., different labels, and the preprocessing process is shown in
Figure 4.
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3.2.3 A label processing and encoding
Label encoding is to form a one-to-one correspondence from

colors to labels. It needs to store the names and corresponding RGB
values of all categories (including background category) in a csv file
to form a color map, and hash map each pixel point in the color map
to the category it represents using a 256 decimal-like method
through a hash function, as shown in formula 3 and formula 4.

k � cm 0[ ] × 256 + cm 1[ ]( ) × 256 + cm 2[ ] (3)
cm2lbl k[ ] � i (4)

cm[0], cm[20], and cm[10] denote the RGB value in a pixel, k
denotes the converted integer, cm2lbl is a hash table constructed
using the hash function, and k is used as the index of the pixel in the
cm2lbl table to query the category i corresponding to the pixel.

3.2.4 B initializing the dataset
After completing the corresponding processing, initializing the

dataset is to divide the images and labels into the training set,
validation set, and test set. Firstly, it is necessary to define the crop
size and transformation content. The AeroScapes dataset needs to

FIGURE 3
Deep learning network structure, including encoder and decoder. The decoder part shows the decoding process of FCN-32s, FCN-16s, and FCN-8s
respectively. (A) FCN-32s; (B) FCN-16s; (C) FCN-8s.
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crop each image to 1,280 × 704, transform the image into a tensor
and normalize it, and encode the labels using the steps in Figure 3A.
In this way, the cropped and correspondingly transformed images
and labels can be obtained and combined into a corresponding
dictionary for subsequent use.

3.2.5 Network training
Semantic segmentation of remote sensing images based on a

fully convolutional neural network is trained using PyTorch
1.12 GPU version deep learning framework, Python 3.7, Intel (R)
Xeon (R) 12-core processor, NVIDIAQuadro P6000, 24G GDDR5X
video memory, and 64G DDR4 memory. In this paper, the training
set, validation set, and test set are divided according to the ratio of 6:
2:2, and 1967 training images, 654 validation images, and 648 test
images, and the training steps and techniques are shown as follows:

(1) Setting parameters: setting the number of categories, Batch Size,
Epoch, initial learning rate value, and image crop size. The
AeroScapes dataset contains 11 categories and 1 unlabeled
category, 12 in total. In order to improve the training speed
and segmentation accuracy, the Batch Size is set to 4; Epoch is
set to 175; the learning rate is initialized to 1 × 10–4, and every
time 50 Epochs are completed, the learning rate is reduced to
half of the original one. The training of FCN goes through
5 times of pooling, and after each pooling, the feature map size
will change to 1/2 of the original one, and to prevent the image
size leads to training failure, the image size is uniformly cropped
to 1,280 × 704.

(2) Downloading the pre-training model: in order to speed up the
training, migration learning can be performed using some pre-
trained models to obtain the weights of the model parameters

quickly. When training FCN, the pre-encoding process uses the
backbone of VGG16, and at the beginning of the first training,
the model structure of VGG16 is downloaded from the network
first according to the URL https://download.pytorch.org/
models/vgg16-397923af.pth, and it only needs to be
downloaded once and saved locally. None of the subsequent
training needs to be downloaded, which dramatically saves
training time, obtains reliable parameter weight values, and
increases the training speed of the network. In this paper, the
pre-training model uses the network structure of VGG16, and
subsequent attempts can be made to use the structure such as
VGG19.

(3) Randomly disrupting the order of training images: In deep
learning, the model is often “biased” in the training process
because the dataset is not disrupted, and the trained network
model cannot fit the abstract features of the training set well, and
the performance is poor. When FCN is trained, the order of the
training images is randomly shuffled. And the model can learn
different features of the training set better instead of being
limited to some features, which not only enhances the
generalization ability of the model but also improves the
training accuracy.

(4) Selecting Adam optimizer: after the loss function is
calculated in the training of the deep neural network, the
optimizer needs to be used to obtain the network parameters
with the minimum loss function for backpropagation and
complete the update of the network parameters, so as to
complete the model training as fast as possible and save
computer resources. In this paper, the Adam (Kingma and
Ba, 2014) optimizer is chosen, which is simple and efficient,
requires less memory, makes the convergence speed fast

FIGURE 4
Data preprocessing process: (A) label processing and encoding; (B) initializing the dataset.
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while making the fluctuation amplitude small, and achieves
parameter self-renewal by the newly added two correction
terms.

4 Results and discussion

The main evaluation metrics of semantic segmentation are
execution time, memory usage, and accuracy, where the
accuracy metrics include pixel accuracy (PA), mean pixel
accuracy (mPA), and mean intersection over union (mIoU)
(Feng et al., 2020).

Assuming that there are k categories (including one
background category), pij represents the total number of
pixels that are true for category i but predicted for category j.
Specifically, pii represents true positives, pij represents false
positives, and pji represents false negatives; the pixel accuracy
can be calculated with the formula 5.

PA � ∑k
i�1pii

∑k
i�1∑

k
j�1pij

(5)

The pixel accuracy represents the ratio of the number of
correctly classified pixel points to the number of all pixel points.

The mean pixel accuracy can be calculated with the formula 6.

mPA � 1
k
∑k

i�1
pii

∑k
j�1pij

(6)

The mean pixel accuracy represents the average ratio of the
number of correctly classified pixel points per category and the
number of all pixel points in that category.

The mean intersection over the union can be calculated with the
formula 7.

mIoU � 1
k
∑k

i�1
pii

∑k
j�1pij +∑k

j�1pji − pii

(7)

The mean intersection over union represents the average
intersection ratios for each category.

4.1 Experimental results

FCN-32s, FCN-16s, and FCN-8s are trained by 1967 UAV
remote sensing images. The model parameters are updated using
the validation set during the training process, and the loss functions,
PA, and mIoU of training and validation are shown in Table 1. The
final trained optimal models are used for semantic segmentation
prediction of 648 UAV remote sensing images. The PA, mIoU, and
mPA are shown in Table 2; the training, validation, and prediction
accuracy of 12 categories are shown in Table 3. The results show that
the mPA of all three full convolutional neural network structures can
be achieved with a rate above 90%. Among all categories, the
segmentation accuracy is higher for vegetation, road, and people
and lower for animals and boats. By analyzing the training images of
the dataset, it can be found that the image number of animals and
boats is extremely small, which is the reason for their poor
segmentation results.

Due to a large number of predicted pictures, they cannot be
displayed entirely. The paper selected ten typical scene pictures as
sample data and arranged them in the order of original image,
labeled image, FCN-8s prediction image, FCN-16s prediction
image, and FCN-32s prediction image for display, as shown in
Figure 5.

4.2 Discussion on experimental results

The semantic segmentation of UAV remote sensing images
using deep learning is undoubtedly fast and effective, but some
problems still deserve further study.

(1) According to the general experimental conclusion, the
segmentation effect of FCN-8s should be significantly
higher than that of FCN-32s. Still, from the results of
Table 2, this is not the case, which may be related to the
resolution of our dataset. The author chooses a crop size
closest to the resolution of the original image for this
experiment. In future research, the researcher can consider
a more optimal crop treatment that makes the number of
datasets larger and reflects the differences between various
models more obviously.

(2) As shown in Table 2, it can be found that the overall
segmentation effect of the categories of animals and
boats is poor, which is caused by the imbalance of data
categories in the AeroScapes dataset, where there are fewer
images in these two categories. The category imbalance
problem is especially obvious in the detection and
segmentation tasks and often requires special attention.
In the future, if continuing to use the public dataset,
which is no longer able to change its internal results,
the author can consider using weights to control the
category balance. Those with more category data should
have smaller weights to reduce the impact on the overall

TABLE 1 The accuracy evaluation indicators of the training and validation
datasets.

Network Training Validation

Loss
%

PA% mIoU
%

Loss
%

PA% mIoU
%

FCN-32s 0.564 65.730 94.358 17.848 53.222 58.631

FCN-16s 0.613 65.794 94.541 15.816 54.446 62.621

FCN-8s 1.082 65.497 92.898 14.739 54.387 62.418

TABLE 2 The accuracy evaluation indicators of the test dataset.

Network PA% mIoU% mPA%

FCN-32S 35.271 45.509 91.562

FCN-16S 37.853 44.521 91.607

FCN-8S 36.313 43.120 91.200
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model. If the authors use their dataset, it is necessary to
ensure the category balance, either trying to control the
category balance when collecting data or considering

adding algorithms such as adversarial generative networks
to solve the small sample data problem and obtain better
semantic segmentation results.

TABLE 3 The accuracy evaluation indicators for each category in the test dataset.

Category Network Training accuracy% Validation accuracy % Test accuracy %

Person FCN-32s 97.269 76.878 52.674

FCN-16s 97.433 81.793 54.686

FCN-8s 96.921 81.635 56.772

Bike FCN-32s 82.967 46.656 10.873

FCN-16s 81.844 46.369 15.369

FCN-8s 80.392 47.730 13.848

Car FCN-32s 71.140 58.594 38.622

FCN-16s 73.215 59.028 47.340

FCN-8s 71.138 58.795 40.827

Drone FCN-32s 33.753 19.198 13.000

FCN-16s 32.914 21.207 18.789

FCN-8s 32.770 19.484 15.954

Boat FCN-32s 5.956 3.868 2.397

FCN-16s 5.950 5.549 2.866

FCN-8s 5.921 3.994 2.760

Animal FCN-32s — — —

FCN-16s — — —

FCN-8s — — —

Obstacle FCN-32s 95.337 60.213 22.732

FCN-16s 96.060 66.266 29.772

FCN-8s 95.923 65.356 20.178

Construction FCN-32s 95.010 67.319 31.460

FCN-16s 92.949 67.421 35.959

FCN-8s 94.974 69.510 35.869

Vegetation FCN-32s 99.813 96.194 95.903

FCN-16s 99.789 96.102 93.882

FCN-8s 99.738 96.076 94.191

Road FCN-32s 99.873 97.827 86.388

FCN-16s 99.867 98.246 85.989

FCN-8s 99.634 98.156 88.054

Sky FCN-32s 41.911 58.696 33.932

FCN-16s 43.712 56.921 31.729

FCN-8s 43.059 57.520 30.989

Background FCN-32s 99.486 89.135 75.615

FCN-16s 99.421 89.819 78.092

FCN-8s 99.186 90.011 77.814
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(3) From the segmentation results of the last two images in Figure 4,
it can be easily seen that the animals are not properly labeled,
and the same colors are used as persons, which is a common
problem of inconsistent scales and small differences between
categories in remote sensing images. When the UAV is flying at
a low altitude, the images of animals captured are about the
same size as the images of persons captured when the UAV is
flying at a high altitude. At the same time, the animals standing
up have a very high similarity to the appearance of persons, and
the differences between the two categories are small, so the

segmentation results are wrong. How to deal with this kind of
problem needs further study.

(4) During the experiments, only label coding, center cropping, and
normalization were done on the dataset, and the dataset was not
expanded by data augmentation. In future studies, geometric
enhancements such as horizontal flipping, random cropping
and scaling, random mirroring, or texture enhancements such
as adjusting brightness and contrast can be considered to
expand the dataset to make the trained segmentation model
have better robustness and generalization performance.

FIGURE 5
Semantic segmentation results in the AeroScapes dataset with FCN-8s, FCN-16s, and FCN-32s, respectively. Different colors represent different
labels. (A) Image; (B) Label; (C) FCN-8s; (D) FCN-16s; (E) FCN-32s.
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5 Conclusion

This paper has researched the implementation method and
process of semantic segmentation of UAV remote sensing
images using three fully convolutional neural network
structures. And the author has used three models, FCN-32s,
FCN-16s, and FCN-8s, respectively, and trained 1,967 images,
validated 654 images, and predicted 648 images. The
experimental results show that setting the appropriate batch
size and initial learning rate value for the fully convolutional
neural network and choosing the Adam optimizer can segment
the UAV remote sensing images effectively, and the
segmentation results of FCN-16s and FCN-8s are better.
Compared with traditional semantic segmentation methods
such as region-based and SVM methods, deep learning-based
segmentation methods do not depend on the quality of features
extracted by domain experts, and can solve the problem of
automatic feature learning, which is bound to improve the
efficiency and accuracy of semantic segmentation
significantly. Meanwhile, with the gradual popularization of
UAV equipment, it is also easy to obtain high-resolution
remote sensing images, which is more beneficial for us to
apply deep learning to accomplish more valuable tasks in the
image field.
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