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Fengcheng Formation in the Mabei Slope of Junggar Basin has low porosity and
permeability. However, fractures are well developed, representing an effective
storage space for shale oil. Core and experimental data show that the shale oil
reservoir of Fengcheng Formation positively correlates with oil content and
fractures. And the fracture density has a good quantitatively positive correlation
with crude oil production from the production data. Fengcheng Formation has been
significantly enriched and accumulated with shale oil due to fractures serving as
reservoirs and seepage channels. Therefore, quantitative prediction of fractures is the
key to finding high production areas of shale oil in the Fengcheng Formation. The
purpose of this study is to extract the seismic attributes that are sensitive to shale oil
reservoir fractures. These attributes include curvature, deep learning fracture
detection, maximum likelihood, eigenvalue coherence, and variance cube.
Furthermore, a seismic multi-attribute fracture density prediction model is trained
at the well point using a feedforward neural network method, and the spatial
distribution of fracture density is predicted. The results show that the predicted
fracture density is consistent with the formation micro imaging logs in the area.
Simultaneously, combined with the understanding of the quantitative relationship
between fracture density and shale oil production, quantitative prediction results of
fracture density could provide the basis for determining the distribution and optimal
location of high-quality shale oil wells in the study area. This study will serve as a
benchmark for identifying fractures in shale oil reservoirs worldwide.
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1 Introduction

In the Junggar basin ofWestern China, exploration and development have gradually moved
toward deep areas with substantial potential resources, but these deep-buried reservoirs are
usually unconventional tight sandstone reservoirs or shale reservoirs with low porosity and
ultra-low permeability. Shale reservoirs of the Fengcheng Formation in Mabei have average
effective porosity lower than 6%, and their horizontal permeability is less than .024 mD (Song
et al., 2022). In this reservoir, fine dolomite siltstone and dolomitic mudstone dominate, which
indicates low porosity and ultra-low permeability (Zhi et al., 2021). However, microfractures are
well developed and provide significant oil reservoir space. Based on core observation and
description, there is a significant positive correlation between the shale oil content and fracture

OPEN ACCESS

EDITED BY

Qamar Yasin,
Institute of Geophysics (Polska Akademia
Nauk - PAN), Poland

REVIEWED BY

Qazi Adnan Ahmad,
Yonsei University, South Korea
Xufei Gong,
Shandong University of Science and
Technology, China

*CORRESPONDENCE

Gang Chen,
jointinversion@163.com

SPECIALTY SECTION

This article was submitted to Solid Earth
Geophysics,
a section of the journal
Frontiers in Earth Science

RECEIVED 02 December 2022
ACCEPTED 05 January 2023
PUBLISHED 19 January 2023

CITATION

Chen G, Qi H, Yu J, Li W, Xian C, Lu M,
Song Y and Wu J (2023), Application of a
multi-layer feedforward neural network to
predict fracture density in shale oil,
Junggar Basin, China.
Front. Earth Sci. 11:1114389.
doi: 10.3389/feart.2023.1114389

COPYRIGHT

© 2023 Chen, Qi, Yu, Li, Xian, Lu, Song and
Wu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 19 January 2023
DOI 10.3389/feart.2023.1114389

https://www.frontiersin.org/articles/10.3389/feart.2023.1114389/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1114389/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1114389/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1114389/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1114389&domain=pdf&date_stamp=2023-01-19
mailto:jointinversion@163.com
mailto:jointinversion@163.com
https://doi.org/10.3389/feart.2023.1114389
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1114389


in this area (Yang et al., 2021). The reservoirs are characterized by
extensive fractures that have contributed to the accumulation and
enrichment of shale oil and served as an important storage area and
seepage channel (Ahmad et al., 2020; Ahmad et al., 2022).

Currently, mainly geological, logging, and seismic methods are
used for fracture prediction. With continuous observation in space,
seismic data has played a significant role in fracture prediction. There
are mainly two ways of seismic fracture prediction: post-stack and pre-
stack. However, at present, seismic fracture prediction primarily uses
geometric attributes like amplitude or phase attributes extracted from
seismic data to predict fractures qualitatively, but a quantitative
prediction method for fracture density has not yet been formed.
Machine learning is the combination of algorithms and statistical
model that enables computers to extract attribute information directly
from large data sets without inferring the physical mechanism.
Experienced seismologists have the intuition and logic in data
analysis, but machine learning can surpass human beings to
discover new and invisible attributes hidden in datasets (Jia et al.,
2019; Xie et al., 2019; Chen et al., 2021). Research has applied machine
learning to fracture prediction, but most of them are limited to the
prediction of logging data (Shen et al., 2007). Li et al. (2006) combined
logging data with seismic data and used BP neural network to
comprehensively predict fracture development zones. He et al.
(2020) used the approximate support vector machine algorithm for
fracture classification.

In order to realize the quantitative prediction of fracture density in
Mabei Fengcheng Formation, this study proposes to establish a
quantitative prediction relationship between fracture sensitive
attributes and fracture density interpreted by FMI logging based on
a multi-layer feedforward neural network algorithm. Firstly, fracture
sensitive attributes are extracted which should be compatible with FMI
logging. Then, a seismic multi-attribute fracture density prediction
model is trained at the well point using a multi-layer feedforward
neural network method. Finally the spatial distribution of fracture
density is predicted.

2 Geological settings and reservoir
characteristics analysis

The north slope of Mahu sag is structure with Wuxia fault zone in
the north and Mahu sag in the south. Wuxia fault zone is mainly
composed of NE trending faults, folds, which are related to thrust
faults and fault folds. There are few faults and undeveloped folds in the
southern slope, and the Permian, Triassic, Jurassic, and Cretaceous are
inclined to the South as a whole. High quality alkaline lacustrine
source rocks are developed in Fengcheng Formation, which is the key
strata for exploration as well. The Fengcheng Formation is jointly
affected by terrigenous clastic sedimentation, endogenous chemical
sedimentation and volcanic activity, forming the orderly distribution
of glutenite dolomitic sandstone dolomitic mudstone and argillaceous
dolomite, which are spatially associated with conventional volcanic
rocks and fractured reservoirs, forming a full range of reservoirs. Thus,
the shale oil reservoir lithology of Permian Fengcheng Formation in
the north slope area of Mahu sag is dominated by dolomite and a small
amount of volcanic rock fragments. Through the analysis of logging
data, seismic facies, and paleogeomorphology, it is considered that this
formation mainly develops shore-shallow lacustrine, with inner-
sourcing fine-grained sediments as the main and out-sourcing

sediments as the auxiliary (He et al., 2021). Fengcheng Formation
is controlled by facies sequence, and all types of oil and gas reservoirs
of conventional oil reservoir, tight oil reservoir and shale oil reservoir
coexist orderly. Some areas are affected by strong volcanic activities,
which led to high tufaceous content.

According to reservoir sample analysis of Fengcheng Formation,
the porosity of the dolomite sweet spots reservoir is 3.1%~12.3%, with
an average of 5.3%. And the permeability is .011~228 mD, with an
average of .201 mD, which belongs to low porosity and ultra-low
permeability reservoir with typical shale oil characteristics (Song et al.,
2022). The pores containing shale oil in Fengcheng Formation, Mabei
area are fractures and dissolution pore. From the comprehensive
interpretation of core, slice, and well logging, shale microfractures
are relatively developed in Fengcheng Formation, which represents an
important storage space for shale oil. The fracture types of Fengcheng
Formation include netted fractures, straight split fractures, oblique
fractures, and horizontal fractures (Figures 1A–C) with an average
fracture density of 20~30 fractures per meter, average fracture width of
.1~8 mm, and average fracture length of 1~53 cm. Through core
observation and analysis, we found that there is an obvious
positive correlation between the oil content and fracture in the
Fengcheng Formation shale oil reservoir. For the same lithofacies,
the more developed the fractures are, the better the oil-bearing
property is (Figure 1D).

3 Theory and methodology

We consider that the quantitative prediction of fracture density is
a regression problem. Therefore, to find out the fracture development
area of the shale oil reservoir in the Mabei Fengcheng Formation, the
fracture quantitative prediction model is established by multi-layer
feedforward neural network (Rumelhart and McClelland, 1986).
Firstly, it is important to extract the seismic attributes sensitive to
shale oil reservoir fractures. Secondly, a quantitative prediction
relationship is established between fracture-sensitive attributes and
fracture density interpreted by FMI logging based on multi-layer
feedforward neural network algorithm.

3.1 Seismic fracture attributes

Currently, there are mainly three methods for seismic fault
identification: coherence attribute, curvature attribute, and
unconventional attributes. Coherence class attributes include
coherence, variance, and likelihood. These attributes are based on
the discontinuity of seismic reflection events caused by the fault to
predict the fault distribution. Curvature attributes (maximum positive
curvature, maximum negative curvature, Gaussian curvature, etc.)
mainly predict the fault development position through the bending
change of seismic waveform caused by the fault. In recent years, the
distribution of faults predicted by unconventional methods has also
gradually increased. These methods are based on deep-learning which
is helpful to improve the identification ability of small faults.

3.1.1 Maximum positive curvature
Curvature is used to reflect the bending degree of geometry. It

describes the bending degree of any point on the curve and
indicates the degree of deviation of the curve from the straight
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line (Roberts, 2001). The greater the curvature is, the greater the
degree of curvature of the curve. Among various curvature
attributes, the maximum positive curvature and the minimum
negative curvature have been widely concerned by researchers
and proved effective for fault and fracture identification. The
maximum positive and minimum negative values of all normal
curvatures of a point are the maximum positive and the minimum
negative curvatures, respectively. The maximum positive curvature
highlights the positive curvature value at any point on the surface.
It highlights the anticline and uplift structures on the surface. The
minimum negative curvature highlights the negative curvature
value at any point on the surface and highlights the syncline
and depression structure on the surface (Chopra and Marfurt,
2007).

3.1.2 Maximum likelihoods attribute
The maximum likelihood attribute is proposed by Hale in

2012 when studying fault section extraction and fault distance
estimation mainly used to enhance the seismic imaging effect of
faults. The calculation of the likelihoods attribute is based on the
seismic similarity attribute, so the similarity attribute is calculated
firstly before calculating likelihoods attribute. Similarity attribute
(Semblance) oriented by highlighting fault identification can be
expressed as follows:

Semblance �
g( )2s[ ]

f

g2( )s[ ]
f

(1)

Where g is seismic data volume, (•)s represents the structural guided
smoothing of the seismic data volume in brackets, (•)f represents
another filtering along the fault strike and dip direction. This filtering
is mainly used to enhance the stability of semblance attribute calculation.

Likelihoods attribute can be calculated as follows:

Likelihoods � 1 − Semblance8 (2)
The likelihood attribute is the difference between the exponential

power of the semblance attribute and 1, and its value range is limited to
0–1. Compared with the semblance attribute, the likelihood attribute
has an amplification effect on the comparison of similarity between
adjacent samples, which is more conducive to convexity imaging of
obvious fracture. At the fault location, the continuity of the seismic
event becomes poor, the semblance becomes small, and the likelihood
attribute becomes large, which means that the possibility of the fault is
increased.

3.1.3 Variance attribute
The theoretical basis of variance attribute is error analysis

theory, which describes the horizontal heterogeneity of strata
and lithology by using the similarity between adjacent seismic
traces, especially in identifying faults and understanding the
distribution of sand bodies closely related to reservoir
characteristics. The core of the variance attribute is to obtain
the variance value of all points of the whole three-dimensional
data volume. The specific steps are: firstly, the variance value of
each sample point is obtained, that is, the variance between the
point and the average principal value calculated by all sample
points in the time window of adjacent seismic traces around, and
then the required value by weighted normalization is acquired
(Zhao et al., 2006).

3.1.4 Deep learning fracture identification
In conventional attributes, faults are considered as seismic

reflection discontinuities and are detected by calculating attributes
that estimate reflection continuities or discontinuities. In the

FIGURE 1
Core photos of Fengcheng Formation of Mahe north slope and Correlation between oil-bearing attribute and fracture density, (A) Clay shale, fracture
filled with dolomite, (B) Clay shale, high angle oblique fracture, (C) dolomitic shale, map cracking, (D) Correlation between oil-bearing attribute and fracture
density of Fengcheng Formation.

Frontiers in Earth Science frontiersin.org03

Chen et al. 10.3389/feart.2023.1114389

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1114389


unconventional deep-learning method, fault detection is considered a
binary image segmentation problem of labeling a 3D seismic image
with ones on faults and zeros elsewhere. An efficient image-to-image
fault segmentation is performed by using a supervised convolutional
neural network. To train the network, 200 3D synthetic seismic
images, and corresponding binary fault labeling images are created
by seismic fault forward modeling (Figures 2A,B). These fault labeling
images are comprised of different scale faults. After training with only
the synthetic datasets, the network automatically learns to calculate
rich and proper features that are important for fault detection.
Compared with conventional methods, the network can identify
different scale fractures, including the large-scale fault fracture
zone, the mesoscale fracture zone, and the small-scale fracture
zones. Multiple field examples show that the neural network
(trained by only synthetic datasets) can more accurately and
efficiently predict faults from 3D seismic images than the
conventional methods (Wu et al., 2019).

3.1.5 Eigenvalue coherence attribute
Eigenvalue coherence is the third generation coherence

technique, a quantitative method to calculate the similarity of
waveforms. It is realized by defining the global aperture in time
and space and calculating inclination and azimuth. In this

attribute, a covariance matrix is composed of the multi-channel
seismic data. The correlation between the multi-channel data is
obtained by using the multi-channel feature decomposition
technique.

3.2 Multi-layer feedforward neural network
(MFNN)

Machine learning is widely used in oil and gas exploration and
production. It is suitable for a large amount of data and many types
of data. The machine learning algorithm is used to mine the
desired information and improve work efficiency; Feedforward
neural network, also known as multi-layer perceptron, is a typical
Machine learning model (Figure 3). It is a unidirectional multi-
layer structure, in which each layer contains several neurons, and
each neuron is fully interconnected with the next layer of neurons,
without the same layer connection and cross layer connection,
including an input layer, an output layer, and several hidden
layers.

3.2.1 Initial value weight
The neural network weights are initialized to small random

numbers, and each neuron has an associated bias, which is also
initialized to small random numbers.

3.2.2 Forward propagation input
Take a single neural network cell as an example, as shown below.
Given the cell j of a hidden layer or output layer, the net input of

cell j is Ij, as shown below:

Ij � ∑
i

wijOi + θj (3)

Wherewij is the connection weight of cell i from the upper layer to cell
j, Oi is the output of cell i from the upper layer, θj is the bias of cell j.

Given the net input Ij of cell j, the output of cell j is Oj, as shown
below:

FIGURE 2
(A) fault label, (B) seismic synthetic with fault label forward.

FIGURE 3
Schematic diagram of forward propagation input.
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Oj � 1
1 + e−Ij

(4)

3.2.3 Backward propagation error
For the output layer cell j, error Errj can be calculated as follows:

Errj � Oj 1 − Oj( ) Tj − Oj( ) (5)

Where Oj is the actual output of cell j, Tj is the known target value of
cell j from training data.

For the hidden layer cell j, error Errj can be calculated as follows:

Errj � Oj 1 − Oj( )∑
k

Errkwjk (6)

Where wjk is the connection weight of cell j from the upper layer to
cell k, Errk is the error of cell k.

3.2.4 Weights and bias update
Weights update, as shown below:

Δwij � l( )ErrjOi (7)
wij � wij + Δwij (8)

Where Δwij is the change amount of the weight wij, l is the learning
rate, usually take a constant value between .0 and 1.0.

Bias update, as shown below:

Δθj � l( )Errj (9)
θj � θj + Δθj (10)

Where Δθj is the change amount of θj.
The process of error back propagation is to distribute the error to

all cells of each layer, to obtain the error signal of each layer, and then
correct the weight of each cell, that is, the weight adjustment process.

3.3 Workflow of fracture quantitative
prediction model established by MFNN

To realize the quantitative prediction of fracture density, a specific
workflow based on sensitive seismic attributes and a multi-layer
feedforward neural network algorithm is explicitly described and
shown in Figure 4.

• The seismic fracture identification attributes compatible with
fracture density interpreted by FMI logging are extracted. The
near well attribute traces are used as the training data of MFNN.

• The fracture density interpreted by FMI logging is used as the
labeled data, and the MFNN is applied for learning to obtain the
fracture quantitative prediction model.

• The fracture quantitative prediction model is applied to the
whole seismic fracture identification attribute volumes to obtain
the fracture density volume, then verify the accuracy of the
fracture density volume, and find out the favorable area for
fracture development.

4 Application results

4.1 Seismic fracture attributes extraction

The maximum positive curvature attribute of the third member of
the Fengcheng Formation in Mabei is superimposed on the current
geomorphic map. The shale oil reservoir in the target area is
compressed by north-south tectonic stress, forming two large-scale
East-West regional structural faults. Large curvature values represent
large structural faults, and medium and small curvature values
represent small-scale faults and fracture-developed areas. On the

FIGURE 4
Flow chart of fracture quantitative prediction model using multilayer feedforward neural network.
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whole, fractures are relatively developed near large-scale faults and
in the shale with high dolomite in the northern part of the area
(Figure 5).

According to the development of local fracture characteristics, the
fracture development of well one and well three is greater than that of
well two, which consists of the interpretation result that the fracture
density of well one and well three is greater than that of well two
interpreted by logging FMI (Figure 6). Therefore, the curvature
attributes can be used as attributes for fracture density prediction.

The seismic curvature attributes reflect the difference of formation
faults resulting from the different degree of plane bending when the
formation is compressed by tectonic stress (Figure 7A). The maximum
likelihood method is to use the probability model to find the
corresponding fault attributes that can produce different seismic
trace with high probability (Hale D. 2013) (Figure 7B). The basis
of seismic variance cube is error analysis, which mainly counts the
variance value of adjacent seismic signals to represent the similarity, so
as to describe the faults (Figure 7C). Wu et al. (2019) used the U-net

FIGURE 5
Plane view of curvature attributes superimposed current structural fractures prediction in upper sweet spots of Fengcheng Formation, Mabei slope.

FIGURE 6
FMI logging of fracture density of the third member of Fengcheng Formation in Mabei slope.
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simplified end-to-end convolution neural network proposed by
Ronneberger et al. (2015) to train a large number of forward
seismic sections containing faults and fault label data in the way of
binary pattern recognition, and established a deep learning fault
recognition model, which obtained an excellent effect in fracture
recognition (Wu et al., 2019) (Figure 7D). The basis of eigenvalue
coherence is the coherence algorithm, which establishes the matrix of
adjacent seismic subbodies, and calculates the eigenvalues of the
matrix to describe the development law of faults (Figure 7E).

4.2 Fracture density prediction by multi-layer
feedforward neural network

The quantitative prediction of fracture density interpreted by FMI
logging based on multiple seismic fracture sensitive attributes is a
quantitative prediction of continuous regression value. Therefore, the
multi-layer feedforward neural network is selected. Within the
network, neurons of each layer are fully interconnected with that
of the next layer, and there is no same-layer connection or cross-layer
connection between neurons. Such a structure is called multi-layer
feedforward neural network.

The neural network learning process is to adjust the weight
between neurons and the threshold value of each functional
neuron according to the training data. The main idea is to input
the training dataset into the input layer of MFNN, pass through the
hidden layer, and finally reach the output layer and output the results,
which is the forward propagation process of MFNN. Due to the error
between MFNN output and the actual outcome, we managed to
calculate the error between the estimated value and the actual
value and back propagated the error from the output layer to the
hidden layer until it is propagated to the input layer; In the process of
back propagation, the values of various parameters are adjusted
according to the error. The above process is continuously iterated
until convergence. Due to the well relativity between selected seismic
fracture sensitive attributes and the fracture density law, the regression
fracture density calculation model does not need to be too complex.
Therefore, the design of multi-layer feedforward neural network uses a
simple three-layer neural network, including 10 hidden nodes and five
input nodes with 50 times of total iterations and 50 times of conjugate
gradient.

According to the quantitative FMI logging prediction of structural
fracture density based on seismic multi-fracture sensitive attributes,
the fracture density of well 1 is between 1 and 2 fractures per meter,

FIGURE 7
Stereoscopic display of the fracture attribute body, (A) maximum positive curvature, (B) maximum likelihoods, (C) Variance, (D) deep learning fracture
prediction, (E) eigenvalue coherence.
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which is relatively developed as a whole. There is a large fault fracture
zone in the south. The fracture density of well 2 is .5 fractures per
meter, and that of well 3 is 1.5–2 fractures per meter (Figure 8C),
which is consistent with the results of well FMI logging. Moreover, the
distribution characteristics of fracture density are consistent with the
fracture prediction attributes as a whole (Figures 8A,B), which
confirms the accuracy of fracture density prediction. By comparing
the fracture density volume with the seismic fracture prediction
attributes, the variance can only describe large-scale fractures, and
the effect of describing small-scale fractures is poor. The maximum
positive curvature attribute has a good effect on describing medium
and small-scale fractures, but the overall distribution of large-scale
fractures is slightly poor, The fracture density volume not only makes
the fracture prediction from qualitative to quantitative, but also
integrates the characteristics of all fracture prediction attributes,
which has a good description effect on large, medium and small-
scale fractures. Combining intersection analysis of fracture density and
shale oil production in the well, we can learn that when the fracture
density is less than .5, there is basically no production (Figure 8D).
Therefore, our deployment wells must be deployed where the fracture
density is greater than .5.

According to the quantitative prediction results of fracture density
and In-situ stress characteristics for the study area, a horizontal well
(well1_H) has been deployed in the fracture development zone in the
north of well1 to explore the shale oil productivity of Fengcheng
Formation in the slope of Mahu (Figure 9B). At present, the well has

been drilled and the horizontal section is 1000 m long. FMI fracture
interpretation results in Figure 9A show that the well trajectory can be
divided into four sections according to the degree of fracture development,
the corresponding fracture number and fracture density are: ①

112 pieces, .37 pieces/m, ② 452 pieces, 1.13 pieces/m, ③ 146 pieces,
.73 pieces/m,④ 492 pieces, 1.23 pieces/m. The fracture density prediction
result in Figure 9B shows that the well trajectory can also be divided into
four sections, and the corresponding fracture density is:① .4 pieces/m,②
1.0 pieces/m, ③ .7 pieces/m, ④ 1.1 pieces/m. The fracture density
prediction results are consistent with the FMI fracture interpretation
results. This shows that the quantitatively predicted fracture density
results are very reliable. Moreover, this deployed horizontal well
(well1_H) has a maximum daily crude oil output of 108t, which is
due to the fact that the trajectory of the horizontal well is optimized to
have all fracture densities greater than .5 between control points A and B.

5 Discussion

There are many fracture prediction attributes. When the neural
network is learning, seismic fracture attributes should be chosen that
are consistent with the FMI interpretation results, ensuring the
learning results’ accuracy. Variance and eigenvalue coherence are
good for characterizing large-scale fractures, and maximum
likelihoods, maximum positive curvature, deep learning fracture
prediction are advantageous for characterizing medium and small-

FIGURE 8
(A) Variance in upper sweet spot, (B) maximum positive curvature in upper sweet spot, (C) fracture density in upper sweet spot predicted by multilayer
feedforward neural network, (D) intersection analysis of fracture density and shale oil production in the well.
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scale fractures. The selection of neural network parameters is crucial to
the prediction results. The optimal number of hidden layer nodes and
the optimal times of iterations should be selected appropriately. Then,
the fracture density volume can be obtained through the training data
without wasting computing power and time. We believe that the
methodology presented in this study is not the region- or case-specific.
Therefore, it could be adopted by researchers working in different
fields.

6 Conclusion

The shale oil reservoir of Fengcheng Formation in theMabei Slope of
Junggar Basin has low porosity and permeability. However, fractures are
well developed, representing an effective storage space for shale oil. Core
and experimental data show that the Fengcheng Formation shale oil
reservoir positively correlates with oil content and fractures. Thus, a
quantitative fracture prediction model need to be established by using
seismic fracture sensitive attributes based on a multi-layer feedforward
neural network algorithm to realize the quantitative prediction of fracture
density of Fengcheng Formation in Mabei Slope of Junggar Basin. By
comparing the fracture density quantitatively predicted by the multi-layer
neural network with the fracture density explained by the FMI of the
actual drilling, it can be seen that the established fracture predictionmodel
in this paper has good accuracy. And according to fracture density being a
good positive correlation with crude oil production from the production
data, horizontal wells should not be deployed in areas with fracture
density less than .5 in the shale oil reservoir of Fengcheng Formation. This
can help guide us where the horizontal wells should be deployed to
efficiently develop shale oil. Therefore, the quantitative predictionmethod
of fracture density using a multi-layer feedforward neural network
proposed in this paper will serve as a benchmark for identifying
fractures in shale oil reservoirs worldwide.
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FIGURE 9
(A) well1_H FMI fracture interpretation result, (B) local fracture density display plan.
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