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Introduction: In the coal mining process, the intensemining pressure is an important
factor hindering the safe and efficient production of the working face. In severe
cases, it causes deformations in roadways such as roof breakages and rockbursts,
and leads to instability. This can result in the roof falling over a large area and the coal
wall, thereby inducing dynamic disasters. These aspects have restricted the
economic benefits of coal.

Methods: In this study, we set four model limitations based on the limited scope of
action of themining pressure itself and the quantitative relationships betweenmining
pressures in different regions. A multiple linear regression model with these
limitations is proposed for predicting the mining pressure for preventing roof
breakages and rockbursts. Based on a hydraulic support monitoring dataset from
a fully mechanized caving face of coal mining, the mining pressure prediction model
is trained by using the first 70% of the dataset. And the linear regression coefficient of
themodel and the predicted value of themining pressure are obtained. Then, the last
30% of the dataset was used for the validation of the model.

Results: The research results show that the constrained multiple linear regression
model can achieve remarkable prediction results. According to predictions of tens of
thousands of on-site mining pressure datasets, the predicted data and actual
pressure data have the same change trend and maintain a low relative error.

Discussion: Therefore, after real-time mining pressure monitoring, the system
obtains the roof pressure of the fully mechanized mining face. According to the
dataset, the proposed prediction model algorithm quickly predicts the roof pressure
value of the next mining section and effectively forewarns roof breakages and other
accidents.
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1 Introduction

The research on mining pressure predictions and mining pressure behavior laws has important
theoretical guiding significance for coal mining enterprises in controlling dynamic pressure
accidents, such as roof breakages and rock bursts (Hu et al., 2022; Miao et al., 2022). Therefore,
monitoring and predicting the mining pressure is very important. Most mining pressure prediction
techniques are realized by monitoring data and various parameters. Existing mining pressure
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predictionmethods include the genetic algorithm-back propagation (GA-
BP) neural networkmodel and theGrey neural networkmodel (Tan et al.,
2019; Wang et al., 2022a). However, the existing mining pressure
prediction methods employ relatively small amounts of prediction data
and are based on a single data quantity. Moreover, the data of the existing
mining pressure prediction methods have clear data characteristics, such
as the mining pressure data at a certain position of the roadway or in a
certain state of mining. Therefore, the scope of application is very narrow,
and the applicability of the prediction effect is poor. Accordingly, a new
multiple regression method for working face mining pressure is proposed
in this paper based on a hydraulic support monitoring dataset. The
method relies on a massive set of on-site mining pressure monitoring
values. Combined with a statistical multiple linear regression equation, a
feasible prediction model is established for a wide range of applications.

In addition, owing to the continuous improvement of the
requirements for underground safety production, predicting the
dangerous factors in the field can effectively achieve the purpose of
safe production. Ren et al. (2018) established a predictive model for the
scope of caved rock zones (CRZs) concerning the varying laws of lateral
pressure and forecasted the CRZ scope using a caving mining method.
Based on modified parameters in a traditional probability integral model,
(Russ et al., 2022) established a subsidence prediction model.

Many scholars have been conducting in-depth research on various types
of predictions in recent years; as such, there is a significant amount of
research on various types of pressure prediction methods. Nie et al. (2019)
team developed a straightforward and effective calibration-based gas
pressure model for a spatiotemporal prediction of CO2 in a coal matrix.
Mei et al. (2022) used a natural gradient boosting algorithm to establish a
unified probabilistic prediction model for the bond strengths of steel bars
and concrete under high temperatures while considering several key factors.
Aiming to construct a pressure prediction method for boiling liquid
expanding vapor explosions (BLEVEs), the latest research on BLEVE
stress predictions has used multiple key parameters to establish an
empirical relational formula to predict the BLEVE stress (Wang et al.,
2022b). Zheng et al. (2021) used the time series approximation ability of a
long short-term memory (LSTM) to construct a shutdown pressure
prediction model and incorporated scientific principles and theories into
their LSTM. Subsequently, a theory-guided LSTMwas proposed for pipeline
shutdown pressure predictions. Arshad et al. (2021) combined machine
learning and statisticalmethods to establish a variety of predictionmodels for
predicting the minimum ignition temperature of iron dust. Wang et al.
(2019a) established amultivariate non-linear regressionmathematicalmodel
using multiple influencing factors to predict the Sauter mean diameter. Li
and Hao, (2018) adopted a computational fluid dynamics model prediction
method combining a flame acceleration simulator simulation and ANSYS
Fluent simulation, demonstrating high accuracy in far-field overpressure
predictions. Weng and German Paal, (2022) proposed a new machine
learning-based wind pressure prediction model for low-rise non-isolated
buildings. As the pressure in the transition ladle during themanufacturing of
amorphous alloys could be influenced by numerous factors, (Liu et al., 2022)
employed a backpropagation (BP) neural network to ensure the prediction
of the transition ladle pressure during the production of amorphous alloys.
Kim et al. (2021) team used the data attribution ability of amachine learning
model to predict the missing wind pressure data of tall buildings and
proposed a generative adversarial imputation network for predicting the
pressure coefficients on tall buildings at various instantaneous time intervals.

Thus, there is significant research on numerical predictions for
various aspects of pressure forecasting. However, the limited number
of datasets used for most pressure forecasting results leads to certain

limitations. For example, if the capacity of the original monitoring or test
dataset is small, the application scope of the predicted values is limited and
narrow, and real-time predictions and effective early warnings cannot be
achieved. Accordingly, considering the random, disordered, non-uniform,
discontinuous, and other complex characteristics of a mining pressure
distribution affected by the geological and production environments, this
study is based on a massive dataset acquired by monitoring hydraulic
supports. A mathematical model for an actual mining pressure field is
established based on the massive monitoring dataset using machine
learning, and high-accuracy predictions are achieved through model
training and verification.

Existing research on the pressure distribution law of a fully mechanized
mining face provides the basis for the multiple linear regressionmodel used
in this study. Dang et al. (2021) used a numerical simulation to determine
that the pressure distribution of hydraulic support in a simulated stope was
rough “Λ” in the middle and both sides of the stope. Wang et al. (2015)
analyzed the distribution characteristics of the pressure arch of a horizontal
layered rock mass in the process of coal seam mining and concluded that
the lateral pressure coefficient had a significant influence on the pressure
arch. Wang et al. (2019b) established mechanical models for a symmetrical
compression arch and concluded that upper broken rocks formed a
symmetrical pressure arch in the near-field, and a far-field pressure arch
formed in the mining field.

The prediction technique employed in this study is based on machine
learning. The existing popular researchmethods inmachine learning include
the GA-BP neural network model, Grey neural network model, BP neural
network, extreme learningmachine, support vector machine, artificial neural
network, grid search algorithm, a gradient boosting decision tree, and
generative time intervals imputation network (Huang et al., 2019; Tan
et al., 2019; Arshad et al., 2021; Kim et al., 2021; Wang et al., 2022a; Liu
et al., 2022;Weng andGerman Paal, 2022). However, the existing prediction
methods are only applicable to data features with a single data quantity or
evident data characteristic. In contrast, we combine machine learning with
mathematical statistical algorithms to provide predictions ofmining pressure
based on a massive dataset. The main purpose of this study is to establish a
prediction model for the actual mining pressure on-site and to use the
monitoring dataset of a fullymechanized caving face of a coalmine currently
beingmined formodel training and verification, so as to assist in enabling the
safe and smooth mining of this face. Descriptive statistics analyses are
performed on the current monitoring data of the fully mechanized

FIGURE 1
Excavation working face.
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caving face in the coalmine. According to themassive dataset concerning the
mining pressure and multiple linear regression model, a new multiple linear
regression model with constraints is proposed as the mining pressure
prediction model. Taking the mining pressure monitoring data of the
fully mechanized caving face of a coal mine as a practical application
scenario, the prediction effect of the model is tested and evaluated.

2 Field experimental

2.1 Monitoring scheme

In this study, the mining pressure of the 42,203 fully
mechanized caving face of the Buertai Coal mine was

monitored by a dynamic real-time monitoring system. Owing
to the advancing of the roadway working face in the coal mine,
hydraulic supports were installed on the 320-m distance of the
fully mechanized mining face to support the roof every 1.95 m.
The hydraulic supports were successively numbered. In the
monitoring scheme, hydraulic supports were connected to a
mining pressure monitoring extension. Then, through the
collection and transmission of the data on the mining pressure
monitoring extension, the summarized data was transmitted to a
microcomputer. The working resistance of the hydraulic support
was analyzed and treated in the control room. Based on the
connected monitoring dataset of the mining pressure
generator, the mining pressure conditions (such as the support
resistance between the hydraulic pressure and initial support

FIGURE 3
Diagram of mining roof pressure.

FIGURE 2
Schematic diagram of field data collection.
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force) were monitored and analyzed, providing real-time
monitoring data for the roof pressure in the coal mine roadway
mining.

The actual excavation working face of the mining site is shown in
Figure 1. A schematic diagram of the entire working face and the
layout of the hydraulic supports are shown in Figure 2.

FIGURE 4
The surface portion of the 3D colormap surface with a projection of mining pressure.

FIGURE 5
The mapping portion of the 3D colormap surface with a projection of mining pressure.
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Figure 3 is a diagram for succinctly illustrating the formation of
the coal mine roof pressure. With an increase in the mining
influence degree of the working face, the hydraulic support
resistance of the working face mainly comes from the joint
action between the key layer structure of the overlying roof and
the multiple groups of combined cantilever beam structure; at this
time, the working face generally shows a strong mining pressure
(Liu et al., 2015). The obtained mining pressure monitoring dataset
comprises the data of the working face in the mining, which has an
annual coal output of 10 million tons. The length of the entire site’s
fully mechanized mining face is 320 m, and the advancing distance
is 4,485.2 m. The ground elevation ranges from 1,251.9 to
1,346.7 m, the floor elevation ranges from 897.42 to 948.74 m,
and the acreage is 1.4353 million m2. Through the real-time
collection, transmission, analysis, and prediction of roadway
hydraulic support monitoring data, the proposed prediction
model can prevent roof breakages and rock bursts.

2.2 Descriptive statistics

Considering that in the process of coal mining, the rock strata
movement is affected by the cumulative effects of the advancing
direction of the working face and length of the working face, the
mining pressure dataset uses the length and distance of the working
face as the factors in each mining pressure value for the pressure
prediction (Peng et al., 2022).

The monitoring data comprises the mining pressure
monitoring data for the working face whose working face length
ranges from 0 to 308.1 m; the advancing distance is within the
range of 2,308.2 and 2,808.4 m. The dataset volume is
108,704 elements. The width of the bracket is 1.95 m and the
depth of each coal cutting is 0.8 m. Thus, the value for each
area is the average value of a rectangular area with a length of
1.95 m and a width of 0.8 m. In other words, every 1.95-m interval
of the working face length is regarded as a section, and the entire
working face length involved in the monitoring data is decomposed

into 158 sections. Moreover, every 0.8 m of the working face
advancing distance is regarded as a section, and the working
face advancing distance is decomposed into 688 sections. The
mining pressure data area is divided into 108,704 small
rectangular areas that do not overlap with each other. The
carriage moves along the advancing distance parallel to the
working surface with each iteration.

Figures 4, 5 are the 3D colormap surface with a projection of the
mining pressure monitoring dataset over the whole range, where
the x-axis represents the length of the working face, the y-axis
represents the distance of the working face, and the z-axis is the
mining pressure value. According to Figures 4, 5, the entire data
volume is massive, and the data regularity is disorderly.
Nevertheless, to prevent the roadway supporting the roof from
breaking, it is necessary to predict the mining pressure of the entire
working face.

3 Algorithm

3.1 Fundamental theory

In the field of rock pressure prediction, multiple linear regression
models are often used, as they are useful for predicting the rock
pressure in a specified area with multiple mining pressures at different
locations.

Below, X and Y denote the explanatory and response variables,
respectively. α and β are the intercept and regression coefficients,
respectively. ζ denotes a random interference term. Then, the
expression for the multiple linear regression model is as follows
(Seber and Lee, 2003):

Yi � α + β1X1i + β2X2i + ... + βkXki + ζ i (1)
If there are n groups of observations {Yi, X1i, X2i, ..., Xki, i= 1~n}, one
common way to solve the model is to minimize the sum of squares of
errors. If B denotes the model coefficient and M(B) denotes the sum of
squares of errors, then the expression for M(B) is as follows:

FIGURE 6
Prediction cycle algorithm model diagram.
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M B( ) � ∑n
i�0

Yi − α − β1X1i − β2X2i − ... − βkXki( )2 (2)

3.2 Algorithm design

A mining pressure prediction is unique and differs from
generalized prediction problems. For example, the independent
variable should choose a regional mining pressure close to the
prediction area, and the mining pressure farther away from the
prediction area should have less influence on the predicted value.
What’s more, the uniqueness of the problem of mining pressure
prediction cannot be ignored. If only ordinary multiple linear

regression models or other prediction models are used, it is
possible to obtain completely inconsistent quantitative relationships
between variables. This contradicts the theories of physics and
geology, resulting in a model with a poor prediction effect.

Accordingly, by combining a multiple linear regression model
combined with a hydraulic support monitoring dataset, a new
constrained multiple linear regression model is proposed in this study
for mining pressure predictions. The goal of this model is to predict the
pressure in the next area along the direction parallel to the length of the
working face from 320 to 0 m using the mining pressure data in the
known area. The independent variable is the regional mining pressure
closest to the area to be predicted, based on the two position indicators of
the length and advancing distance of the working face.

The algorithm model is shown in Figure 6.

FIGURE 7
Relative error predicted by multivariate linear regression model
with limitations.

FIGURE 8
Prediction relative error of the independent variable in five adjacent
sections of working face distance.

FIGURE 9
Prediction relative error of the independent variable.

FIGURE 10
Relationship between prediction relative error of the independent
variable and sample size.
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According to the distribution law of mining pressure, the upper
broken rocks form a symmetrical pressure arch in the near field (Wang
et al., 2019b). Based on this, the prediction algorithm model can be
established. As the exact shape of the pressure arch above the prediction
point is uncertain, we set it as a rectangle, as shown in Figure 6.

The position coordinate of the area to be predicted is (i, j),
where i refers to the section i area of the working face length, and j
refers to the section j area in the advancing distance of the working
face. Here, the size of each area is determined by the acreage of the
measuring bracket itself. If the mining pressure in the predicted
area is denoted as Yi,j, then the selection range for the independent
variable is that the coordinate of the working face length is from
i −m to i − 1. The selection range for the coordinate of the
advancing distance of the working face is from j − n to j + n.
The total number of regional mining pressure values is K
(K � m*(2n + 1)). The mining pressure of the independent
variable is X= (Xi−m,j−n, Xi−m,j−n+1, . . . . . ., Xi−1,j+n), the
intercept term α is set to 0, the regression coefficient is β =
(βi−m, j−n, βi−m,j−n+1, . . . . . ., βi−1,j+n), and the error term is ζ i,j.
Then, the expression of the mining pressure prediction model is as
follows:

Yi,j � βi−m,j−nXi−m,j−n + βi−m,j−n+1Xi−m,j−n+1 + ...
+βi−1,j+nXi−1,j+n + ζ i,j (3)

The loss function of the mining pressure prediction model is set to
the mean square error loss function as follows:

M β( ) � 1
w
∑w
ij�0

Yi,j − βi−m,j−nXi−m,j−n( − βi−m,j−n+1Xi−m,j−n+1 − ...

− βi−1,j+nXi−1,j+n)2 (4)

In the above, w is the total number of data.
To adapt to the mining pressure prediction application scenario,

four restrictions are added to this model. Following the above
notation, the coordinate of the area to be predicted is (i, j) and the
coordinate ranges of the independent variable are i ∈ (i −m, i − 1),
j ∈ (j − n, j + n); then, the limitations (∀m1, m2 ∈ (1, m);
∀n1, n2 ∈ (0, n)) are as follows:

Limitation 1: |βi−m,j±n|< 1;
Limitation 2: βi−m1 ,j−n1 � βi−m1 ,j+n1;
Limitation 3: βi−m1 ,j±n1 > βi−m2 ,j±n2(m1 � m2, n1 < n2); and
Limitation 4: βi−m1 ,j±n1

> βi−m2 ,j±n2
(m1 <m2, n1 � n2).

The purpose of limitation 1 is to prevent overfitting while
making the regression coefficient of the model more
interpretable. The purpose of limitation 2 is to maintain a
constant effect of the mining pressure on the point to be
predicted. Limitation 2 is important because the upper broken
rocks form a symmetrical pressure arch in the near field (Wang
et al., 2019b). In addition, to make the mining pressure of the area
to be predicted more determined by the mining pressure of the area
close to it, we add limitations 3 and 4. From these, the mining
pressure comprises two mining pressures in a symmetrical
relationship centered on the advancing distance of the working
face where the area to be predicted is located. In summary, the
expression of the model is as follows:

Yi,j � βi−m,j−nXi−m,j−n + βi−m,j−n+1Xi−m,j−n+1 + ...
+βi−1,j+nXi−1,j+n + ζ i,j (5)

Here, the model parameters β
∧
= (βi−m, j−n, βi−m,j−n+1, . . . . . ., βi−1,j+n)

are estimated by solving the following optimization problems:

At the same time, β
∧
needs to satisfy Limitations 1-4 of the above.

The algorithm of the prediction model is shown below.

TABLE 1 Regression coefficient matrix.

Working face length Advancing distance

J-2 J-1 J J+1 J+2

I-5 0.000971 0.002971 0.016523 0.002971 0.000971

I-4 0.002971 0.012971 0.026523 0.012971 0.002971

I-3 0.012971 0.022971 0.046523 0.022971 0.012971

I-2 0.022971 0.042971 0.096523 0.042971 0.022971

I-1 0.042971 0.092972 0.296523 0.092972 0.042971

FIGURE 11
The MAE of all prediction models.
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Input:

X= (Xi−m,j−n, Xi−m,j−n+1, . . . . . ., Xi−1,j+n), a given mining

pressure dataset

Output:

β
∧

= (βi−m, j−n, βi−m,j−n+1, . . . . . ., βi−1,j+n), the regression

coefficient

Yi,j, the prediction data set

1: i → the section i area of the working face length

2: j → the section j area in the advancing distance

3: for all i, j in the first 70% of the data set

4: result_infun0→ ∑ (Xi,j − βi−m,j−nXi−m,j− n + βi−m,j−n+1Xi−m,j−n+1 +
...+ βi−1,j+nXi−1,j+n)2

5: end for

6: β without limitations

7: add limitations for β

8: return β
∧

9: for all i, j in the last 30% of the data set

10: Yi,j � βi−m,j−nXi−m,

j − n + βi−m,j−n+1Xi−m,j−n+1 + ... + βi−1,j+nXi−1,j+n + ζ i,j

11: return Yi,j

Algorithm. of the multiple linear regression model.

3.3 Discussion on accuracy

The mining pressure prediction model incorporates empirical
knowledge regarding the quantitative relationships between
regional mining pressures, including the practical selection of
model-independent variables. Below, we compare the effects of
different input variables of the model to identify the best selection
range.

To more accurately evaluate the performance of the prediction
model, it is decided to use the relative error δ and mean absolute error
(MAE) (Willmott and Matsuura, 2005) as the evaluation indexes, and
their calculation formulas are as follows:

δ � ỹi − yi

∣∣∣∣ ∣∣∣∣
yi

× 100% (6)

MAE � 1
N

∑N
i�1

yi − ~yi

∣∣∣∣ ∣∣∣∣ (7)

where, N is the sample number, yi is the actual value of the mining
pressure in the working face, ỹi is the predicted value.

The smaller the relative error δ is, the smaller MAE is, indicating
that the prediction effect of the model is better.

FIGURE 12
The surface portion of the 3D colormap surface with a projection of the predicted values.
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First of all, we select the range of the prediction model as the
first five sections of the working face length, and the working face
distance is advanced to the adjacent two ends. We use the
prediction effect of this prediction model as a reference to
determine the best prediction model.

Figures 7, 8 show the relative error of the prediction.
In Figure 7, the proportion of samples with a relative error of less

than 30% is 92.73%. Then, it is necessary to determine howmany sections
of the mining pressure values in the adjacent area should be added to the
predictionmodel at the advancing distance of the working face. The range
of the advancing distance of the independent variable is expanded from
the two sections of mining pressure adjacent to the two sides of the
prediction area to five sections of mining pressure. Figure 8 shows the
relative error of the prediction, where the area with a relative error of less
than 30% accounts for 86.0%.

As the input variables of the model are different for cases with
five and two adjacent sections in the working face distance,
respectively, the test set accounts for a small part of the
difference. After the test set is unified, the proportion of

samples whose relative errors are less than 30% of the original
model is 86.0%, that is, the new independent variable range
decreases the prediction effect. It is considered that the different
mining pressures in the adjacent area on the advancing distance of
the extended working face will not improve the prediction effect of
the model.

Thereby, the model-independent variables should remain the
regional mining pressures of the two adjacent sections on the
advancing distance of the working face.

To determine the optimal amount of calculated data, it is necessary
to determine the number of mine pressure values added to the
prediction model along the working face length. In Figure 9, the
independent variables are the differences in the proportions of the
relative error of less than 30%, 20%, and 10%, respectively, from the
first section to the 15th section in the length of the working face. Thus,
Figure 9 shows the differences in the proportions of the areas with
relative errors of less than 30%, 20%, and 10%, respectively.

According to Figures 9, 10, when the range of the independent
variable is smaller than the first two sections of the working face length,

FIGURE 13
The mapping portion of the 3D colormap surface with a projection of the predicted values.
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the relative errors of less than 30%, 20%, and 10% account for a small
proportion. When the range of the independent variable is from the first
two to the first 13 sections of the working face length, the relative error of
less than 30% accounts for more than 90%, and the highest is 95.56%.
Meanwhile, the proportion of the relative error of less than 20% is close to
80%, and the proportion of the relative error of less than 10% is close to
half of the number of samples. When the range of the independent
variable exceeds the first 13 sections of the working face length, the
proportions of the relative errors of prediction of less than 30%, 20%, and
10% begin to decrease. It can be seen that the accuracy of the prediction
model is high within a certain range of the independent variables.
Additionally, Figure 11 shows the mean absolute error (MAE) of the
prediction model for the first 15 segments of the working face length. As
can be seen from Figure 11, when the range of the independent variable is
from the first two to the first 13 sections of the working face length, the
MAEof the predictionmodel remains relatively stable. In particular,MAE
is the smallest in the prediction model of the first five sections of the
working face length. Moreover, when the range of the independent
variable is from the first three to the first six sections, MAE is more stable.

According to Figures 9–11, to select the optimal independent
variable in the direction of the length of the working face, we consider
the following factors:

(1) the number of samples with small relative errors is large.
(2) the percentages of the relative errors of less than 30%, 20%, and

10% are higher than those of other independent variables.
(3) MAE is relatively small and remains relatively stable within the

range of its surrounding independent variables.
(4) the prediction performance of the peripheral independent variables of

the optimal independent variables is also relatively good.

Therefore, by combining the above factors, the best independent
variable range is the first five sections of the working face length and the
two adjacent sections of the working face advance distance. The following
forecast work is based on this. In actual application, this range can be
appropriately reduced or expanded according to the actual situation.

4 Results analysis

The training set data of the constrained multiple linear regression
model consists of the first 70% of the entire dataset, that is, the mining
pressure values of a monitoring point whose working face length
ranges from 2,308.2 to 2,648.7 m. The test set data consists of the last
30% of all of the data, that is, the mining pressure values of the

FIGURE 14
The surface portion of the 3D colormap surface with a projection of the monitored values.
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monitoring point with the working face length ranging from 2,649.5 to
2,806.8 m.

For the selection of the independent variables of the model,
the mining pressures in the first five sections (i.e., m = 5) in the
working face length and the adjacent two sections (i.e., n = 2) in
the advancing distance of the working face are employed. There
are 25 (i.e., K=25) independent variables. Table 1 is the
regression coefficient matrix obtained by the prediction
model. Among them, I is the coordinate of the area on the
working face length to be predicted, and J is the coordinate of
the area on the advancing distance of the working face to be
predicted.

Therefore, the parameter matrix of the prediction model is as
follows:

β �

0.000971 0.002971 0.016523 0.002971 0.000971
0.002971 0.012971 0.026523 0.012971 0.002971
0.012971 0.022971 0.046523 0.022971 0.012971
0.022971
0.042971

0.042971
0.092972

0.096523
0.296523

0.042971
0.092972

0.022971
0.042971

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(8)

X �

Xi−5,j−2 Xi−4,j−2 Xi−3,j−2 Xi−2,j−2 Xi−1,j−2
Xi−5,j−1 Xi−4,j−1 Xi−3,j−1 Xi−2,j−1 Xi−1,j−1
Xi−5,j Xi−4,j Xi−3,j Xi−2,j Xi−1,j
Xi−5,j+1
Xi−5,j+2

Xi−4,j+1
Xi−4,j+2

Xi−3,j+1
Xi−3,j+2

Xi−2,j+1
Xi−2,j+2

Xi−1,j+1
Xi−1,j+2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (9)

Y i,j( ) � ∑5
m�1

Y i−m,j−2( ) + ∑5
m�1

Y i−m,j−1( ) + ∑5
m�1

Y i−m,j( ) + ∑5
m�1

Y i−m,j+1( )

+ ∑5
m�1

Y i−m,j+2( )
(10)

In the above, Yi−m,j−2 � βi−m,j−2Xi−m,j−2. . . . . ., Yi−m,j+2 �
βi−m,j+2Xi−m,j+2.

The test set of the last 30% of mining pressure monitoring
values (the working face distance between 2,649.5 and 2,806.8 m)
can be calculated using the constrained multiple linear regression
model, and the mining pressure prediction values can be obtained.
Compared with the monitoring values, it can be found that the
relative error is less than 30% of the predicted values, accounting
for 92.73%. From comparing the predicted values of the test set

FIGURE 15
The mapping portion of the 3D colormap surface with a projection of the monitored values.
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mining pressure (as shown in Figures 12, 13) with the monitored
values (as shown in Figures 14, 15), it can be found that the
distribution laws of the two are highly consistent.

Given the occurrence of mine safety accidents caused by
excessive roof mining pressures, a location with a large peak
mining pressure is selected for further analysis. Taking the
working face distance as the cross-section, the measured and
predicted values are sliced as shown in Figure 16. According to
the local data display, we are aiming at predicting the massive
dataset of mining pressures in the field; notably, the trends of the
predicted and measured values are completely consistent.
Simultaneously, if there is a sudden change in the predicted
pressure value, there is also a sudden change in the actual
mining pressure value, thereby providing a strong basis for
preventing disasters caused by sudden changes in mining
pressures.

From the predicted data, it can be found that the regional rock
pressure at the coordinates (i − 1, j) influences most of the
predicted regional rock pressure. Every time the force is
increased/decreased by 1 MPa, the predicted value of the rock
pressure correspondingly increases/decreases by 0.29652 MPa.
On the same working face length, the influence of the regional
mining pressure on the predicted value is much smaller for the two
adjacent working face distances. For every 1-MPa force change in
the regional mining pressure in position (i − 1, j − 1), the predicted
value only changes by 0.09297 MPa. With the increasing distance
of the working face length, the influence of the regional mining
pressure at the same advancing distance on the predicted value also
decreases rapidly. For every 1-MPa change in position (i − 5, j), the
predicted value only changes by 0.01652 MPa. The positions
(i − 4, j − 1), (i − 4, j − 2), (i − 5, j − 1), and (i − 5, j − 2) farthest
from the predicted area and corresponding areas to the right of
them have very little influence on the predicted values. Every 1-

MPa change only causes a 0.001-MPa change in the predicted
value.

Ultimately, it can be concluded that the prediction effect of the
model is remarkable. According to the 30% prediction error
standard required by the coal mining face site, it completely
meets the fieldwork requirements (exceeding 85%). For the
mining work of a fully mechanized caving face in a coal mine,
this mining pressure prediction model can play an important role
in providing early warnings and assessments of potential safety
hazards for the setting of roadways. In this study, the mining
pressure of the working face is monitored in real-time by
hydraulic support mining pressure monitoring system. By
realizing the prediction of coal mine working face pressure
through the algorithm model, the dynamic change of coal
pressure during coal seam mining can be mastered in time,
providing a scientific and effective method for roadway roof
support.

5 Conclusion

Based on the results of this study, the following conclusion can be
made.

(1) The proposed multiple linear regression model with limitations
can achieve a remarkable prediction effect; at the highest, 95.56%
of the regional mining pressure prediction values are within an
error range of 30% of the actual values. The relative error of most
models is less than 30%, accounting for more than 90% of the
values. Meanwhile, the proportion of relative error of less than
20% is close to 80%, and the proportion of relative error of less
than 10% is close to half of the number of samples.

(2) The prediction effect of the model is reduced by enlarging the
amount of mining pressure data in the adjacent area on the
advancing distance of the working face.

(3) The optimal model setting is that the independent variable
selection range comprises the first five sections in the
working face length and the adjacent two sections in the
advancing distance. These can be flexibly narrowed and
expanded within a small range according to the actual
application scenario.

(4) According to the 30% prediction error standard required by the
coal mine face site, the prediction model presented herein fully
meets the field requirements.

(5) For the mining work of a fully mechanized caving face in a
coal mine, the mining pressure prediction model can play an
important role in providing early warnings and
assessments of potential safety hazards for the setting of
roadways.
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